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Lattice solution model for order-disorder transitions in membranes and Langmuir monolayers
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Lipid monolayers and bilayers have been used as experimental models for the investigation of membrane
thermal transitions. The main transition takes place near ambient temperatures for several lipids and reflects
the order-disorder transition of lipid hydrocarbonic chains, which is accompanied by a surface density gap.
Equivalence between the transitions in the two systems has been argued by several authors. The two-state statistical
model adopted by numerous authors for different properties of the membrane, such as permeability, diffusion,
and mixture or insertion of cholesterol or protein, is inadequate for the description of charged membranes, since
it lacks a proper description of surface density. We propose a lattice solution model which adds interactions with
water molecules to lipid-lipid interactions and obtain its thermal properties under a mean-field approach. Density
variations, although concomitant with chain order variations, are independent of the latter. The model presents
both chain order and gas-liquid transitions, and extends the range of applicability of previous models, yielding
Langmuir isotherms in the full range of pressures and areas.
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I. INTRODUCTION

Lipid monolayers [1,2] and bilayers [3,4] have been
extensively used as experimental models for the investiga-
tion of thermal and structural properties of the biological
membrane. Phospholipid molecules form a monolayer film
on the air-water interface, with lipid headgroups resting on
water, while lipid hydrophobic chains acquire approximately
parallel orientation in the air phase, thus avoiding contact
with water. External lateral pressure guarantees aggregation
into the monolayer film. Alternatively, in the water solution
lipids aggregate into bilayer vesicles, as polar heads shield
hydrocarbonic tails from contact with the aqueous medium.
Bilayers are tension-free and aggregation is driven by the
hydrophobic effect.

Both systems may undergo several phase transitions. The
most thoroughly investigated of them is the pronounced
order-disorder lipid chain transition, which displays latent
heat, presented by either system. For lipid membranes tem-
perature or pH variations may yield a so-called main gel-fluid
transition. In the case of lipid monolayers, compression or
heating disclose a transition traditionally known as a liquid-
condensed liquid-expanded transition. The main transition
involves two simultaneous phenomena: an abrupt variation
in lipid surface density accompanied by disordering of the
hydrocarbon chains. The latter acquire “kinks,” while dis-
tance between polar headgroups increases, yielding decreased
surface density. This is recognized as the chief effect also
for bilayers [5–7], which undergo the main transition under
temperature -variation.

There are different advantages in adopting either of the
two experimental models. Direct measurement of surface
area per lipid molecule, whose abrupt variation signals
the transition, is possible only for monolayers. A lipid surface
density gap develops for a range of applied external lateral
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pressures, at different temperatures. In the case of bilayers,
a density gap arises at a single temperature, and the idea
of application of lateral pressure lacks physical meaning.
Bilayers are considered to be free of pressure. Nonetheless,
equivalence between the two systems for a particular pressure
on monolayers has been argued by many authors [8–10] and
arguments rest on the assumption of negligible interaction
between the two leaflets that compose the bilayer. Recent
studies, however, indicate that this might be too strong a
hypothesis [4]. Thus the question of equivalence is still
controversial, and deserves further investigation.

Most of the well-established ideas on bilayer phase transi-
tions refer to neutral lipid solutions. However, cell membrane
lipids are often charged. Investigation of the behavior of
charged lipid dispersions had a later start [11,12]. Charged lipid
bilayers display a range of special properties. In particular, the
main transition may develop into a broad transition, spanning
several degrees of temperature, depending on chain length
and ionic strength of the solution. The broad transition is
accompanied by increased turbidity, viscosity, and conductiv-
ity [12]. Charge surface distribution undoubtedly plays a role
[13,14], but interpretation of the thermal, electrical, viscous,
and optical properties in terms of a molecular model is still
lacking [11,12,15].

In this study, we investigate two features related to the
molecular interpretation of chain order-disorder transition of
lipid layers: (i) the statistical description of surface density
fluctuations, which are essential in the analysis of charge
surface density, as in the case of dissociating lipid, and (ii) the
equivalence between monolayers and bilayers. Our approach is
based on the proposal and investigation of a minimal statistical
model which is a lattice solution version of a model introduced
by Doniach [16] a few decades ago.

Computational facilities developed in the last decade or
two allow the investigation of lipid layers through atomic
detail model simulations [17–21] and also through mesoscopic
models [22–26], which are nearer to a molecular description
of the lipid systems, and yield a rich picture on the system
macroscopic behavior. Nonetheless, the huge number of
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degrees of freedom of simulations for molecules with atomic
detail, or even the reduced number of degrees of freedom, in the
case of mesoscopic models, generally limit simulations to short
times and to specific sets of model parameters. Alternatively,
minimal models constitute an important instrument for probing
ideas on the essential features behind macroscopic behavior,
since results for any range of parameters, as well as the
corresponding full phase diagrams, are achieved at very low
computational cost. The latter features justify our focus on
statistical models in the present study.

Different two-state and multistate models for lipid bilayers
were proposed in the 1970s–1980s [16,27–29], inspired by
the success of the two-state Ising model for magnetic systems
[30]. The main ingredients considered by many authors were
the different possible states for the lipid chains, associated
with the ordered and disordered macroscopic phases, and
the corresponding areas occupied by the lipid headgroups
on the bilayer surface. A different approach rested on the
analogy between the orientational order of lipid chains along
the bilayer normal and the orientational order of nematic
liquid crystals. Marcelja [7] proposed that chain kinks could
be treated in terms of a nematiclike order parameter along
the chain, subject to an effective field due to the density
of extended chains. Area per lipid headgroup was taken as
linearly dependent on the inverse of lipid chain length, from
molecular volume conservation. On the other hand, the large
enthalpy attributed to chain melting suggested that there could
be an essentially entropic mechanism for the transition. Nagle
[5] showed that an exact calculation of chain entropy could
be achieved by complete enumeration of chain configurations
through mapping on a dimer counting problem. However,
the much simpler treatment of chain entropy in terms of an
average degeneracy of the two-state model came to dominate
the literature.

Caille and collaborators [27] considered a lattice of two-
state lipid particles, corresponding to the two possibilities of
ordered and disordered chains. Intramolecular chain entropy
was attributed to a disordered lipid chain which would occupy
a number of lattice sites. Doniach [16] simplified the two-state
model of [27] by associating to each state a different area
parameter, in an ad hoc fashion. This yielded the possibility
of treating the resulting model exactly, through mapping on
the seminal two-dimensional Ising model. Doniach’s approach
yielded the most successful statistical model for the main tran-
sition of neutral lipid layers. It serves as the basis for the study
of different systems and properties involving neutral lipid sys-
tems: multicomponent lipid membranes, diffusive properties,
or the effect of protein or cholesterol insertion [31–33].

Doniach’s model describes the main transition in terms
of the two states: an ordered extended chain and an average
disordered chain. Surface area per lipid is taken as linearly
dependent on the chain order parameter. The model is thus
unable to describe local independent density fluctuations. This
feature represents an important limitation of the two-state
model, if one wishes to interpret the behavior of ionic lipid
layers [12–15]. For dissociating lipids, electrostatic repulsion
between lipid headgroups competes with attraction between
lipid hydrocarbonic chains, due to the hydrophobic effect. Dis-
sociation thus depends strongly on headgroup surface density,
which must be described appropriately. A precise description

of the local lipid surface density seems to be essential in order
to rationalize thermal, electrical, and structural properties of
the experimental system [15,34].

In this study, we consider a modified version of Doniach’s
model. Our purpose is twofold: (i) we introduce vacancies, in
order to probe statistical surface density fluctuations, essential
for the investigation of charged bilayers, and (ii) we insert
water particles in the vacant sites, so that differences between
monolayer and bilayer properties may be rationalized. We thus
develop a lattice solution [35] version of Doniach’s model, in
which lattice sites may be occupied either by lipid or by water
particles. The local surface density results from the equilibrium
occupation of the lattice and the area per lipid is obtained from
the statistics of the model. As a by-product of this approach, a
“gas” phase is added to the original ordered and disordered
“liquid” phases of Doniach’s model. The new phases and
new coexistence lines may be interpreted in terms of the
transitions displayed by monolayers. Analysis of the behavior
of the model system under pressure allows examination of the
hypothesis of equivalence between monolayers and bilayers.

In Sec. II, we define the statistical model. In Sec. III,
we present our mean-field approach. Results for the thermal
behavior of density upon the order-disorder transition, as
well as the model possible phase diagrams are displayed in
Sec. IV. Physical interpretation in terms of the two systems of
interest, monolayers and bilayers, is discussed in Sec. V. Final
comments are given in Sec. VI.

II. DEFINITION OF THE STATISTICAL MODEL

We revise the seminal model proposed by Doniach a
few decades ago [3,16,28] for the phospholipid bilayer main
transition, in order to set notation. In Doniach’s lattice model,
lipid particles fill the plane lattice and are considered to
visit two different particle states, an ordered chain state o
[Fig. 1(a)], corresponding to an extended chain, and a highly
degenerate disordered chain state d, meant to represent an
average shortened chain [Fig. 1(b)]. Headgroup properties are
assumed to play no role in relation to the bilayer transition.

The system consists of N particles distributed over the
square lattice of L2 = No + Nd sites. Its configurational
energy may be written as

EDoniach = −εooNoo − εddNdd − εodNod, (1)

oo

(c)
od

(d)
dd

(e)

(a)

, , , , , , , ...,

Ω

(b)

FIG. 1. (a) Simplified representation of a lipid with extended hy-
drocarbon chains. (b) Disordered chain configurations are represented
through a single average disordered state of degeneracy �. (c)–(e)
Interaction between pairs of lipids in different states.
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where Nxy is the number of contacts between two particles in
states x and y, and Nx is the number of lipids in state x, where
x = {o,d} and y = {o,d}. Interaction parameters εxy should all
be taken as positive, since they represent effective attraction
between particles. At the main transition, there is a sharp
variation of the lipid chain states. A chain order parameter

m = No − Nd

L2
(2)

describes chain order.
The model incorporates a second feature. Disordering of

the chains is intimately related physically to loosening of the
packing of lipid headgroups, as indicated by experiments. It
seemed natural to make lipid area dependent on lipid chain
state. Thus in Doniach’s proposal a lipid particle in the ordered
state could be associated with surface particle area ao, while
a lipid molecule in one of the disordered states would be
given area ad, with ad > ao. As a consequence, lattice and
model areas have no correspondence, with A � L2ao, while
Nlip = L2. This approach implies that the area per particle
aDoniach is defined as

aDoniach = Noao + Ndad

L2
. (3)

As can be seen, chain order parameter m and area per particle
aDoniach are not independent thermodynamic variables, since

aDoniach(m) = 1
2m(ao − ad) + 1

2 (ao + ad). (4)

The model simplicity allows mapping on a modified form
of the two-state Ising magnetic model, whose thermodynamic
properties are very well established [30]. Lateral pressure, con-
jugate to “area,” acts as an effective field favoring the ordered
phases. Together with temperature, this field controls the lipid
system phases. Chains are ordered at large lateral pressures and
low temperatures, as expected. At fixed temperatures, chains
order discontinuously under increasing lateral pressure. As
temperature increases, the transition disappears at a critical
temperature.

Doniach’s lattice solution model—DLG

As announced previously, we introduce vacancies which
are filled with water particles, and write Doniach’s model as a
lattice solution with explicit water particles.

Lipids are amphiphilic molecules constituted of hydropho-
bic hydrocarbonic chains and hydrophilic polar heads. Thus
lipid chains avoid contact with water by turning to the air phase
in the case of monolayers, while in the case of bilayers they
turn towards the bilayer core.

In our model, interaction between lipid and water par-
ticles is described through a “van der Waals”-like short-
range potential εw,lip, while water particles interact via a
first-neighbor interaction εww, with εww > εw,lip, in order to
represent the strong preference for water particles to bond
between themselves, which is the basis of the hydrophobic
effect.

In this proposal, the fixed relation between area per particle,
a, and chain parameter m, Eq. (4), is abandoned, since in
the new model chain order parameter and lipid density vary

(a) (b)

FIG. 2. (a) Illustration of Doniach’s model. Lipid states define
area per lipid, which is independent of lattice spacings. (b) A lattice
gas version of Doniach’s model (DLG). Sites are occupied either
by lipid or water particles. Area per lipid is obtained from model
statistics.

independently. Figure 2 illustrates pictorially our proposal, as
compared to the original Doniach description.

Let us consider a square lattice which may be occupied
by lipids or by water. The lipid particle chains may be either
in the ordered or disordered state. Interactions between lipid
particles are the same as those of Eq. (1), to which lipid-water
and water-water interactions are added. Model energy reads

E = EDoniach + Elip-water

= −εooNoo − εodNod − εddNdd

− εowNow − εdwNdw − εwwNww, (5)

where indices x,y = o,d,w are associated with lipids in the
ordered state o, lipids in disordered state d, and water particles
w. Accordingly, Nxy is the number of contacts between sites
occupied by lipids o, by lipids d, or by water particles w.
As in Doniach’s model, the disordered states are multiply
degenerate, the degeneracy � corresponding to the high
entropy of the disordered hydrocarbon chains of a single lipid.
Note that the number of lipid particles Nlip = No + Nd is not
fixed, Nlip �= L2.

In order to give our model a statistical treatment, it is
convenient to rewrite energy [Eq. (5)] in terms of statistical
variables. A direct representation of Eq. (5) would be

E =
∑

x

∑
y

−εxy

∑
(ij )

ηx
i η

y

j , (6)

where ηx
i = 1, if site i is occupied by particle x, or ηx

i = 0, if
site i is occupied by particle y �= x.

∑
(ij ) is the sum over pairs

of nearest neighbors i and j .
A simpler expression of energy [Eq. (5)] in terms of mathe-

matical manipulations may be written, if we attribute variables
σ to lattice sites as in Table I. Under this representation, we
obtain

E = Eint + Ehydr + E0

= −J
∑
(ij )

σiσj − �
∑
(ij )

σiσj (σi + σj )

−K
∑
(ij )

σ 2
i σ 2

j + I
∑

i

σ 2
i − 2εwwL2, (7)
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TABLE I. Particle states and statistical variables.

Particle Occupation Mapping
variable σ → η

σ ηx(σ )

Ordered chain lipid (o) 1 ηo = 1
2 σ 2(1 + σ )

Disordered chain lipid (d) −1 ηd = 1
2 σ 2(1 − σ )

Water (w) 0 ηo = 1 − σ 2

where, for simplicity, new interaction parameters are defined
as

J = εoo + εdd − 2εod

4
, (8)

� = εoo − εdd − 2εow + 2εdw

4
, (9)

K = εoo + εdd + 2εod + 4εww − 4εow − 4εdw

4
, (10)

and

I = 2(2εww − εow − εdw). (11)

Note that the first three terms constitute lipid-lipid inter-
action terms, represented as Eint, the fourth term represents a
hydrophobic “field” term Ehydr, while the last term is a constant
E0.

The only term present in Doniach’s model is the first term,
which means that entirely new behavior might emerge from the
added degrees of freedom. The two new lipid interaction terms,
of coefficients � and K , arise as a result of the introduction
of vacancies. J > 0 governs the lipid-lipid interactions, and
favors lipid neighboring pairs in the same state. � > 0 governs
the stability of the ordered state. K > 0 favors both site
occupation by lipids and lipid-lipid contacts, independently
of lipid state. The introduction of water particles yields the
“field” term, and I > 0 favors water occupation of sites.

In the case of our model, equilibrium properties are more
easily calculated in the grand-canonical ensemble. The grand-
partition function reads

�(T ,μlip,μw) =
∑
{σ }

�Nde−β(E−μlipNlip−μwNw), (12)

where μlip and μw are the lipid and water chemical potentials,
respectively, and β = 1

kT
. The total number of lipid particles

Nlip, the number of water particles Nw, and the number of
disordered chain lipids Nd are given respectively by

Nlip =
∑

i

σ 2
i , (13)

Nw = L2 − Nlip, (14)

and

Nd =
∑

i

σ 2
i (1 − σi)/2. (15)

It is interesting, at this point, to note that the linear
“hydrophobic” energy term in the energy expression [Eq. (7)]
competes with the chemical potential factor, so we rewrite the

grand-partition function as

�(T ,μ) = eβ(μw+2εww)L2
∑
{σ }

�Nd (σ )e−β[Eint({σ })−μNlip({σ }],

(16)

where we define an “effective” chemical potential μ, given by

μ ≡ μlip − μw − I. (17)

III. MEAN-FIELD APPROACH

The model equilibrium properties may be obtained from a
Curie-Weiss mean-field approach [36], which yields analytical
expressions for the system’s equations of state. Under this
approach, interactions are made independent of distance, with
the replacement

∑
(i,j )

XiXj → 2

A

∑
i

Xi

∑
j

Xj , (18)

for the square lattice, where Xi are interaction variables. The
model energy interaction term is written as

Eint, MF = 2

L2

(−JM2 − 2�MNlip − KN2
lip

)
, (19)

where Nlip, defined by Eq. (13), is the number of lipid particles
for a given microstate, and M is defined as

M =
∑

i

σi . (20)

The mean-field energy interaction term, Eq. (19), replaces
the original interaction term [see Eq. (7)] in the Boltzmann
factor of the grand-partition function, Eq. (16). Then, lin-
earization of quadratic terms in M and Nlip which appear in
the Boltzmann weights may be achieved through two Gaussian
transformations such as

ey2
1,2 = 1√

π

∫ ∞

−∞
e−x2

1,2+2y1,2x1,2dx. (21)

Summation over statistical variables σ becomes straightfor-
ward. After summation, integrals in variables x introduced by
the Gaussian transformations must be solved by the steepest
descent method. For large systems the main contribution
comes from extrema of the exponential factor which yield
the system’s grand potential. We obtain the following grand
potential 
(T ,A,μ,H ):


(T ,A,μ,H ; m,n)

L2
= 2(Jm2 + Kn2 + 2�nm)

− 2εww − μw − 1

β
ln(1 + φ+). (22)

The functions φ+ are defined as[
φ+
φ−

]
= eβ(4�m+4Kn+μ− 1

2 I )

×
(

eβ(4Jm+4�n)

[+
−

]
�e−β(4Jm+4�n)

)
. (23)

m and n correspond to the integration variables xi , i = 1,2
at the conditions for the extrema of the arguments of the
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exponentials in the Gaussian integrals [Eq. (21)], and are given
by the set of coupled equations[

m

n

]
(T ,μ; m,n) =

[
φ−
φ+

]
1

1 + φ+
. (24)

From thermodynamics, m and n are identified, respectively,
as the chain order parameter m, given by

m = 〈M〉
L2

= No − Nd

L2
= Nlip − 2Nd

L2
(25)

from Eqs. (2), (13), and (15), and the lipid surface density n,
defined as n = 〈Nlip〉/L2 [see Eq. (13)].

Equation (24) may be solved numerically for any set of
model parameters. Possible solutions and the associated lipid
system phases are presented and discussed in the following
section.

IV. SURFACE DENSITY AND PHASE DIAGRAM

Model properties are investigated through inspection of the
solutions for chain order parameter m(T ,μ) and lipid density
n(T ,μ) [Eqs. (23) and (24)]. Given the stable solutions, we
construct the overall phase diagrams.

For simplicity, all our results are given in terms of
dimensionless variables and parameters, defined below:

t = kBT /J, (26)

μ = μ

J
, (27)

K = K

J
, (28)

and

� = �

J
, (29)

with J , K , �, and μ given by Eqs. (8), (9), (10) and (17),
respectively.

Depending on the thermodynamic parameters, μ and t ,
several solutions may be found for m(T ,μ) and n(T ,μ)
[Eqs. (23) and (24)], and the equilibrium physical solution
is obtained from inspection of the global minimum of the
grand-potential 
 [Eq. (23)]. Figures 3(a)–3(d) illustrate this
procedure. m and n present different numbers of solutions
under temperature variation at fixed chemical potential,
as can be seen, respectively, in Figs. 3(a) and 3(b). Dashed lines
represent unstable solutions; solid lines represent the solutions
of minimum thermodynamic potential [see Fig. 3(d)]. Note
that the disordering transition of the chains, signaled by the
abrupt discontinuity in chain parameter m, is accompanied by
a small discontinuous transition in density n, shown in detail
in Fig. 3(c). We shall return to this point later.

A possible overall phase diagram is displayed in Fig. 4, for a
specific set of parameters. Three phases are present: a gas phase
(Gas), characterized by very low density (n ≈ 0); a liquid of
ordered chains (Ord), of density n ≈ 1, with chain parameter
m ≈ 1; and a liquid of disordered chains (Dis), of density n ≈
1, with chain parameter m ≈ −1. The gas phase is present at
low chemical potentials. At low fixed temperature, a Gas-Ord
transition takes place as chemical potential is increased. For
higher chemical potentials, as one increases temperature, a

−7

−5

−3

−1

1

0 0.2 0.4 0.6 0.8 1.0 1.2
t

φ

(d)

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2
t

n

(b)

0 0.2 0.4 0.6 0.8 1.0 1.2
0.998

1.000

t

n
(c)

−1

−0.5

0

0.5

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2
t

m

(a)

FIG. 3. Chain order parameter m (a), lipid surface density n (b),
from Eq. (24), and thermodynamic potential � (d), from Eq. (23)
vs reduced temperature t . A detail of the discontinuity in density is
displayed in (c). Continuous lines indicate stable solutions. � = 0.5,
K = 1, μ = −4, and � = 1000.

discontinuous Ord-Dis transition occurs, with a small density
gap in density n accompanying a sharp transition in chain
order parameter m, from 1 to −1. For a range of intermediate
chemical potentials, raising temperature produces a Gas-Dis
discontinuous transition in density n, which ends at at a critical
point. The three phases coexist at a triple point.

Reentrant behavior is displayed near the triple point, as one
raises temperature, in a small range of fixed chemical potentials
μ. This is shown in the inset of Fig 4: As the temperature is
increased, the ordered chains give rise to a gas phase, and
as temperature is increased further, the gas phase presents
coexistence with a disordered chains liquid.
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FIG. 4. Temperature t vs chemical potential μ phase diagram.
Continuous lines are coexistence lines. The open circle indicates the
triple point and the solid circle indicates the critical point. m and
n behavior along the dashed lines are illustrated in Figs. 5 and 6.
� = 0.6, K = 1, and � = 1000.

The different phases across the phase diagram are illustrated
in Figs. 5 and 6, in terms of the behaviors of surface density
n(T ,μ) and chain order parameter m(T ,μ).

Figure 5 displays the behavior patterns for m and n under
temperature variations, at different fixed chemical potentials.
At higher μ, the Ord-Dis chain transition, with m going from
+1 to −1, is accompanied by a density gap in n, which yields
a discontinuity in the area per lipid at the transition. Nearer
to the triple point, discontinuity in density at the Ord-Dis
transition increases [compare Figs. 5(d) and 5(e)]. Reentrant
behavior takes place beyond the triple point, Figs. 5(c) and 5(f),
with an Ord-Gas transition following a Gas-Dis transition, as
temperature is raised. The different phase transitions of Fig. 5
develop along the vertical dashed lines in the phase diagram
of Fig. 4.

Figures 6(a)–6(f) display the behavior of chain parameter
m and lipid density n as the chemical potential is raised, at
fixed temperature. The Gas-Ord transition at low temperatures,
below the triple point, is signaled by a discontinuity in m from
0 to 1, with a density jump from ≈0.1 to 1 [Figs. 6(a) and 6(d)].
At the intermediate temperature, just below the triple point, the
Gas-Dis transition is followed by a Dis-Ord transition, with
two discontinuities in density [Figs. 6(b) and 6(d)]. Finally, at
higher temperature, above the triple point, a Gas-Dis transition
is accompanied by a density jump between densities 0.2 and
0.8 [Figs. 6(c) and 6(e)]. The horizontal dashed lines of Fig. 4
indicate the different phase transitions of Fig. 6.

At this point, it is interesting to underline one of the results
we sought: a description of surface density n independent
of the chain order parameter m. In the original model by
Doniach for lipid bilayers, the two parameters were linearly
coupled through Eq. (4). An inspection of Figs. 3(c), 5(b),
and 5(e) shows that in our DLG model n and m are decoupled,
since �n ≈ 0.001, �n ≈ 0.01, and �n ≈ 0.1, respectively,
whereas �m ≈ 2. As for Doniach’s model, the latter value for
�m would yield �n ≈ 0.3, for all three cases, if a reasonable
value for ad/ao, around 1.2 is adopted [15].
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FIG. 5. Chain order parameter m [(a)–(c)] and lipid surface
density n [(d) and (e)] vs t , for fixed μ = −5, −6.2, and −6.39,
shown as dashed vertical lines in the phase diagram of Fig. 4.

What is the effect of varying model parameters upon the
phase diagram? Figure 7(a) illustrates the effect of variation
of parameter � at fixed K , while Fig. 7(b) illustrates the effect
of varying K at fixed �.

In Fig. 7(a) we see that the gas-order line moves to higher
chemical potentials and the critical point disappears as K is
lowered. Figure 7(b) shows that increasing � dislocates both
the gas-ordered chains coexistence line as well as the order-
disorder line, while the critical point disappears.

An inspection of the role of the interaction parameters
in the expression for energy [Eq. (7)] explains some of the
features displayed by the different phase diagrams. Parameter
K favors states σ = +1 and σ = −1 and thus the filling of the
lattice by lipids, at low temperatures. This explains why the
gas-ordered liquid transition, at low temperatures, is moved
towards a lower chemical potential μ, as K is increased. On
the other hand, parameter � favors particle state σ = +1,
and thus stabilizes the ordered chains liquid state, moving
the low temperature gas-liquid transition to lower chemical
potential μ and the ordered chain liquid–disordered chain
liquid transition to higher temperature T . Dislocation of the
coexistence lines might yield the disappearance of the Gas-Dis
line, and therefore of the triple and critical points. This is the
case both for K = 0.8 (� = 0.6) in Fig. 7(a) and for � = 0.7
(K = 1) in Fig. 7(b).
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FIG. 6. (a) Isothermal m and n transitions vsμ for t = 0.65
[(a) and (d)], 0.684 [(b) and (e)], and 0.71 [(c) and (f)]. The three
temperatures are indicated as dashed lines in the phase diagram of
Fig. 4.

Note that the two coexistence lines, gas liquid and ordered-
disordered liquid may either merge continuously or meet at
a triple point. But why does the coexistence line between
the gas and the disordered chain liquid disappear, as � is
increased at fixed K or as K is lowered at fixed �? In fact,
the presence of the three phases and of the transitions between
them may be rationalized from analysis of the three limiting
models which are combined in the Doniach lattice solution we
propose: a lattice-gas model, a degenerate lattice-gas model,
and Doniach’s model. Analysis of the phase diagrams of Fig. 7
in terms of the limiting models is given in the Appendix.
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FIG. 7. Model phase diagrams depend on model parameters. In
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FIG. 8. Monte Carlo vs mean-field phase diagram for � = 0.6.
Continuous lines correspond to mean-field results and points are
results of simulations: (a) K = 2.5; (b) K = 1.0, � = 1000,L = 32
in MC simulations. Error bars in (b) are the size of the symbols.

In order to check the mean-field (MF) analysis, which
might, in some cases, even yield wrong predictions with
respect to the presence of criticality [37,38], which might be
relevant for the lipid order-disorder transition [39], we have
done some exploratory Monte Carlo (MC) simulations [40].
In Fig. 8 we compare mean-field and Monte Carlo results
for the model phase diagram for the two sets of interaction
parameters. The differences to be noted are (i) the Gas-Dis
line is present for both values of K in the mean-field approach,
whereas in the case of Monte Carlo results this line is present
only for the larger value of K; (ii) Monte Carlo and mean-field
results for the two other coexistence lines coincide except in
the region of the triple point. Both features are easily explained:
Because the mean-field approach does not take into account
correlations it always yields higher critical temperatures than
exact calculations [30]. Thus, the critical temperature at the
end of the Gas-Dis line is significantly smaller in the case
of Monte Carlo simulations, as compared with the case of
mean-field calculations. The critical point may even become
unstable, falling inside the Ord phase, with effects on the
nearby coexistence lines, as is the case in Fig. 8(b). Note in
Fig. 7(a) that the MF critical temperature of the Gas-Dis line
goes up as K is increased at fixed �, but collapses onto the
order-gas line at small K . Thus, for � = 0.6, the MF approach
predicts a critical point for K > 0.8, while in the MC approach
this critical point appears only for K > 1.4 (see Appendix for
details). In conclusion, MC results confirm our predictions
for the model phase diagram, with divergent numerical results
only near the critical point, which is not itself the focus of our
study.

Finally, in order to be able to discuss relevance with
respect to the experimental systems, we obtain the model
pressure-temperature phase diagram. From thermodynamics,
lateral pressure plat, conjugate to area A, is given by

plat = − 1

A

(T ,A,μ,H ). (30)

For our model, the thermodynamic grand potential 
 is given
by Eq. (23).

Figure 9 displays the lateral pressure plat versus temperature
t phase diagram, for the same model parameters as in Fig. 4,
in terms of reduced pressure, defined by

 = aordplat

J
. (31)
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FIG. 9. Reduced lateral pressure  vs temperature t . t3 and tc
indicate the temperatures of the triple and critical points, respectively
(see Fig 4). The dashed line indicates the high density limit of the
order-disorder transition, temperature t0. Parameters are the same as
Fig 4.

The gas phase is present at low pressure and higher
temperatures, as for usual fluids. At higher pressures, the
two fluid phases are separated by a coexistence line,  with
the liquid of ordered chains (Ord) at lower temperatures,
and the liquid of disordered chains (Dis) at higher temper-
atures. The coexistence pressure ord-dis between the two
liquid phases rises steeply as temperature is increased. The
asymptotic value of the corresponding transition temperature,
tord-dis, is indicated as t0. At low pressure, chain disordering
is accompanied by a density gap, which goes exponentially to
zero as pressure is increased.

Interpretation of the  vs t phase diagram in terms of
physical parameters for the lipid systems is discussed in the
following section.

V. PHYSICAL INTERPRETATION: MONOLAYERS
VS BILAYERS

In order to interpret our findings in terms of the two
systems of interest, monolayers and bilayers, we must analyze
the differences between interparticle interactions in the two
systems, as well as the difference between the physical
boundary conditions involved.

The anisotropic organization of the phospholipid molecules
in layers is a consequence of the fact that those are amphiphilic
molecules, with a hydrophylic polar headgroup which mixes
with water and a hydrophobic hydrocarbonic tail which would
phase separate were it not attached to the polar headgroup. The
nematiclike structure, in which chains order perpendicularly
to the layer surface, is common to bilayers and monolayers.
However, there are specific aspects of the interactions between
lipids and water which make them different physical systems.
While lipid headgroups are in contact with water in both
systems, the same is not true for hydrocarbonic tails. In the
case of monolayers, the hydrophobic lipid chains turn to the air
subphase and have no contact with water, independently of the
distance between lipids. As to bilayers, hydrophobic chains
turn to the hydrophobic bilayer core, but water penetration
increases as lipid molecules move apart. Thus, if the average

bilayer surface density decreases, lipid tails get in contact with
water, which does not occur with lipids in the monolayer. A
relevant consequence of these facts, in relation to comparison
to experiments, is that interaction constants εlip,w of the model
we propose will not be the same for both systems.

A second feature which must be distinguished between the
two experimental systems is the range of thermodynamic space
available for each system. Monolayers may be manipulated
both through direct compression, as well as through heating,
implying a line of disordering transitions in the pressure-
temperature plane. Bilayer behavior is probed through tem-
perature variations only, and the disordering transition occurs
at a single temperature and “internal pressure.”

In the following sections we analyze the differences pointed
out above and the relation between the two physical systems
and our model.

A. Monolayers

A monolayer is constituted of lipid particles, whose chains
suffer van der Waals attraction. Lipid headgroups rest on the
water surface, and lipid chains do not get in contact with water
molecules, which allows us to take lipid-water interactions
independent of the lipid chain state, εlip,w = εow = εdw. On the
other hand, water-water “bonds” are surface bonds, from now
on labeled as εsurf

ww . When lipid molecules become dispersed,
water molecules attract strongly between themselves yielding
large surface tension. At very low temperature and very low
pressure, one expects the model system to go into a “gas”
lipid phase, since water-water interactions are dominant over
lipid-lipid interactions.

Much of the experimental investigation of monolayers is
given in terms of Langmuir pressure-area isotherms, which
present two coexistence plateaus, one between the gas and
the expanded liquid, at lower pressure, and the second one
between the expanded and the condensed liquid phases [1,2],
for which the discontinuity in area per molecule is an order of
magnitude lower. If compression is further increased, collapse
of the monolayer comes about [41].

Our model pressure-temperature isotherms are displayed
in Fig. 10. It can be seen that they compare well qualitatively
to experimental plots [42]. Both transitions are present, at
different orders of magnitude, both for pressure and area
per molecule. Isotherm temperatures are referred to the high
density limit of the order-disorder transition, t0 (see Fig. 9), and
are given as (t − t0) × 1000. Inspection of Fig. 9 shows that
two plateaus on the same isotherm should be expected only in
the interval t3 < t < t0. The order-disorder plateau [Fig. 10(a)]
is present for t3 < t < t0 and the area gap is limited to ≈20%
upon the transition. The gas-liquid plateau [Fig. 10(b)] remains
present beyond the asymptotic temperature t0 up to the critical
temperature tc, at much smaller pressures. In the latter case,
pressures are an order of magnitude lower, and area may vary
by a factor of 10. The lattice, of course, limits the minimum
area, so that isotherms increase steeply at the lower limit,
differently from the experimental system, which, besides, may
expand into a third dimension [41].

A critical point for the Ord-Dis transition is absent for the
parameters explored in this study. However, it may be present
for a different set of parameters, as explained in the Appendix.
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FIG. 10. Pressure vs lipid area isotherms. Temperatures are given
in terms of the relative temperature (t − t0) × 1000 (see Fig. 9).
(a) Isotherms present a plateau associated with the order-disorder
transition for t3 < t < t0. (b) Isotherms present a plateau associated
with the gas-(disordered)liquid transition for t3 < t < t0. See text for
details. Model parameters are as in Fig. 4.

B. Bilayers

In the case of a bilayer, the gas-liquid transition would
correspond to membrane disaggregation and some critical
micellar (or vesicular) parameter [43], which is not of interest
in the study of biomembranes. Thus the Gas-Dis line of Fig. 9
may be considered of no relevance in the case of bilayers.

As for the integral vesicle thermal phases, water-water and
water-lipid interactions are essential. Water-water bonds in
the bulk are “looser” than at the surface, and we thus label
them as εbulk

ww . More importantly, the competition between
both intermolecular interaction constants is the source of the
“hydrophobic” interaction, εhydroph ≡ εbulk

ww − εlip,w. The latter
is considered to guarantee the stability of the vesicle aggregate,
which, differently from monolayers, lacks the need for an
external “aggregating force.” Thus, bilayers are considered to
be in a tension-free state, which would correspond [9,10,44]
to a situation of zero lateral pressure . Yet, different authors
propose an equivalence between the pressure-free bilayer and
the monolayer at some specific lateral pressure [9,10]. The
equivalence between the two systems would allow utilization,
for bilayers, of data from the experimental investigation
of monolayers. Under the equivalence hypothesis, bilayers
should be represented by a single horizontal line above the
triple point, in the pressure-temperature phase diagram of
Fig. 9.

In the next section, we discuss a possible rationalization
of the restrictions to the proposed equivalence, which have
been suggested to exist [44], since one is unable to obtain
simultaneous correspondence of the transition temperature and
of the area gap, at the same lateral pressure.

C. Bilayers vs monolayers

How may we associate the model order-disorder transition
in the phase diagrams of Figs. 4 and 9, with that of physical
monolayers and bilayers?

A reasonable simplification is to take lipid-water interac-
tions independent of the lipid state, with εow = εdw = εlip,w, for
both systems. This assumption yields the following relations
between monolayer and bilayer parameters [see Eqs. (8)–(11)]:

J M = J B, (32)

�M = �B, (33)

KM = KB + (
εsurf

ww − εbulk
ww

) − 2
(
εsurf

lip,w − εbulk
lip,w

)
, (34)

and

IM = IB + 4
(
εsurf

ww − εbulk
ww

) − 4
(
εsurf

lip,w − εbulk
lip,w

)
. (35)

What are the implications of the difference in energy
parameters for the two systems?

We first note that different K parameters imply different
phase diagrams, as seen in Fig. 7(a). On the other hand,
different I parameters may be adjusted to yield the same
effective chemical potential μ [see Eq. (17)].

Let us first admit KM ≈ KB, and analyze the equivalence
hypothesis in relation to a single phase diagram, such as our
pressure-temperature phase diagram of Fig. 9 or corresponding
temperature-chemical potential phase diagram of Fig. 4. We
consider a particular thermodynamic state for the model
system, which corresponds to a point in the μ vs t phase
diagram (Fig. 4), and to the same order parameter values for
m and n [Eq. (24)], i.e., mB = mM and nB = nM. It is then
possible to establish a relation between the lateral pressures of
the two systems in terms of our lattice model.

Lateral pressure is related to the grand potential through
Eq. (30). From the definition of the grand potential [45],


 = 〈E〉 − T S − μlipNlip − μwNw)

= 〈Eint − T S − μNlip − (μw + 2εww)L2〉, (36)

where we have used the definitions of Eint and μ given by
Eqs. (7) and (17), respectively.

Under the hypothesis of equal interaction parameters for
both monolayers and bilayers, KM = KB, given a common
thermodynamic state of same energy, entropy, and lipid
density, the grand potential for the two systems will differ
only through the constant terms above. Thus,


B − 
M = −2
(
εbulk

ww − εsurf
ww

)
L2. (37)

Insertion of this result in Eq. (30), given A = L2aord, yields
the following simple relation between the lateral pressures of
the two systems:

aord
(
pM

lat − pB
lat

) = 2
(
εsurf

ww − εbulk
ww

)
. (38)

For the null pressure of the bilayer, corresponds a positive
lateral pressure on the monolayer,

pM
lataord = 2

(
εsurf

ww − εbulk
ww

)
, (39)

since εsurf
ww > εbulk

ww .
This result gives an interpretation to the equivalence hy-

pothesis [8–10] in terms of the statistical model. In particular,
it is also in line with a phenomenological analysis proposed by
Marsh [10], in which the monolayer pressure corresponding
to the membrane thermodynamic state at the main transition
would be numerically equal to the hydrophobic free energy
density. The origin of the difference in pressures would be the
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FIG. 11. Area per lipid as a function of temperature at fixed
pressure for the order-disorder transition. K/J = 1 and �/J = 0.6.
M = 0.1 or B = 0 (see text) for KM = KB and values of εlw/J are
as indicated. Density gap decreases as mixing with water is favored.

water surface tension, a consequence of “stronger” hydrogen
bonds on the surface, as compared to bulk water.

Figure 11 illustrates the behavior of the density gap for
different ratios of the lipid-water interaction to water surface
tension, at fixed pressure, under the artificial condition of
equivalence of identical interaction constants (KM = KB).
Increasing lipid-water interaction, with respect to water surface
tension, transition temperature is decreased, while the area
discontinuity increases.

Let us now analyze the effect of a possible difference
between parameters KM and KB. Interactions between water
molecules on the surface are more stable than between
molecules in the bulk, which implies εsurf

ww > εbulk
ww , while

interactions between water and lipid are more favorable for the
monolayer, with εsurf

lip,w > εbulk
lip,w. Since water-water interactions

involve larger energy values, it is to be expected that KM >

KB. In this case, data for the two systems cannot be mapped
onto the same phase diagram. We inspect Fig. 7(a) taking
into account this point. Variation of K has two simultaneous
effects. As it increases, (i) it displaces the gas-liquid line
to lower chemical potential, as should be expected, since it
favors lipid-lipid interactions; (ii) more importantly, it turns
the order-disorder coexistence line above and near the triple
point less dependent on temperature.

The latter effect has implications on the area discontinuity
upon the order-disorder transition. As pointed out in the
previous section, in relation to Figs. 5(b) and 5(e), the density
gap diminishes as one goes away from the triple point, or,
equivalently, as the Ord-Did coexistence line becomes more
horizontal in the t-μ plane (see Fig. 4). Thus, if one focuses
on the transition at some specific temperature t , inspection
of Fig. 7(a) shows that the discontinuity in area is smaller
for larger K . This means that adopting the same transition
temperature at the Ord-Dis coexistence line for systems of
different interaction constant K (which may be the case for
monolayers and bilayers) implies obtaining different area per
lipid in the disordered phase, with a smaller area gap for
the monolayer with respect to the bilayer (if KM > KB).
Alternatively, if one chooses to fix the density gap, and
thus a specific slope of the transition line, monolayers would
yield a lower transition temperature with respect to bilayers.

Interestingly, this is what happens with the experimental
systems: If one looks for the equivalence at the same transition
temperature, areas are different [44], with a smaller gap for
monolayers. If, on the other hand, equivalence is sought
from the same area gap, the two transitions are found at
different temperatures, with a lower disordering temperature
for monolayers.

D. Theory vs experiment

In order to discuss the adequacy of our model to describe
real lipid chain transitions in vesicles and monolayers, we
analyze some of our results in terms of available experimental
data both on water hydrogen bond energies and on lipid layer
parameters.

Precise values of hydrogen bond energies are still being
investigated, and we adopt some of the recent results [46–49],
in order to check our Eq. (39) which relates equivalent lateral
pressure to hydrogen bond strength.

As to lipid systems, let us look at data for monolayers
[50] and bilayers [44] of a specific neutral (zwitterionic) lipid,
DMPC: (i) Bilayers of DMPC present the main order-disorder

transition at 21 ◦C, with area per lipid 50 Å
2

in the ordered
phase [34,51]; (ii) DMPC monolayers present order-disorder
transitions between 7.5 ◦C and 17.5 ◦C, approximately [50], at
lateral pressures between 10 and 37 mN/m, with minimum

area per lipid 47 Å
2

in the ordered phase at the lowest
temperature 7.5 ◦C. These data are presented in Table II. Equiv-
alence between monolayers and bilayers has been proposed by
different authors at plat ranging from 35 [10] to 50 mN/m [44].

We examine our results in the light of these data: (i) Is
our Eq. (39), relating equivalent monolayer-bilayer pressure
to water hydrogen-bond energies, consistent with these data?
(ii) Where do we find monolayer and bilayer behavior in our
phase diagrams, written in terms of dimensionless variables,
particularly Fig. 10(a)?

Bilayer-monolayer equivalence. We first look at our very
simple result for the monolayer lateral pressure which makes
the monolayer equivalent to the tension-free bilayer, Eq .(39).
This lateral pressure would depend solely on the difference
between surface and bulk water bonds. We take bulk water-
water bonds εsurf

ww and surface water-water bonds εbulk
ww as

approximately 23 and 27 kJ/mol, as suggested by the work of

[46–49]. Then, for aord = 50 Å
2

(see Table II), Eq. (39) yields
lateral pressure of plat = 30 mN/m, which is in very good
agreement with results in the literature, which range from 30
to 50 mN/m [10,44].

Order-disorder transitions in the pressure-temperature
phase diagram. Our pressure-temperature phase diagrams are

TABLE II. Monolayer vs bilayer data for DPPC.

Ord-Dis transition Area per lipid in Lateral
temperature ordered phase pressure

( ◦C) (Å
2
) (mN/m)

Bilayer [52] 21 50 0 (50a)
Monolayer [50] 7.5–17.5 47–45 –

aEquivalent pressure for monolayers [44].
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given in terms of dimensionless temperature and pressure,
Eqs. (26) and (31). In Fig. 9, which represents the mean-field
model phase diagram for a particular set of parameters, it can
be seen that the order-disorder transition reduced temperature,
tord-dis, ranges from 0.68 to 0.7, while the order-disorder
transition pressure is above 0.1. Which region of the theoretical
phase diagram may correspond to experimental points? Let us
consider comparison of model and experimental data, first
for bilayers, then for monolayers. (i) For the bilayer, there
would be a single transition reduced temperature tord-dis, and a
correponding single transition monolayer equivalent reduced
pressure ord-dis. For a dimensionless transition temperature
tord-dis ≈ 0.7, Eq. (26) yields a value for the interaction constant
J of ≈6 × 10−21 at T = 298 K (see Table II). In Eq. (31),
together with the monolayer equivalent value for plat, and for

aord ≈ 50 Å
2
, this yields  ≈ 4.2. Thus, if data for DPPC

bilayers are used, the bilayer transition point, tBord-dis,
B
ord-dis is

at 0.7,4.2. This point is present in our model phase diagram
of Fig. 9, well above the triple point. According to Figs. 4
and 5(b), the corresponding area gap is below 1%.

(ii) For the monolayer, the order-disorder transition takes
place between temperatures 7.5 and 17.5. The value of J must
be the same for mono- and bilayers, since it depends on lipid-
lipid interactions [Eq. (8)]. Thus, for J ≈ 6 × 10−21 J/mol,
we obtain for the dimensionless temperature t the interval
tord-dis ≈0.645–0.668. Calculations for the reduced pressure
of Eq. (31), based on the data of Table II, yield a range
of transition pressures ord-dis in the approximate interval
0.75–2.9. While the pressure interval is present in the model
phase diagram of Fig. 9, the temperature interval is below
the triple point, and would thus be incompatible with the
order-disorder transition.

The last discussion indicates that for phosphatidylcholines
(PCs) we must take larger � values. Inspection of Fig. 10(a)
shows that the area gap, in the case we have investigated most
thoroughly (specific model parameters K and �), is too small,
compared to the 20% expected for bilayers [44]. In order to
make this gap nearer to the experimental values, one needs to
raise the limiting temperature t0. In the case of monolayers,
one must increase the distance in temperature between the
triple point and the limit for the order-disorder temperature,
t0. In both cases, this requires increasing parameter �, as can
be seen by inspection of Figs. 4, 5(b), 5(d), and 9. This result
must guide future application of the model to specific lipid
dispersions.

VI. FINAL COMMENTS

We have proposed a generalization of the two-state model
for lipid layers, which allows an exact description of local
density. This is essential for the investigation of the effect of
charges, in the case of dissociating lipids.

Inspection of model properties with respect to the relation
between density and chain order led to some additional
conclusions:

(i) For monolayers, the model describes both the liquid tran-
sitions (order-disorder or condensed liquid–expanded liquid),
in good qualitative agreement with experimental studies.

(ii) Analysis in terms of the different model interactions
between lipids and water for monolayers and bilayers yields

an explanation for the difficulty in establishing the equivalence
between the two experimental systems.

Further investigation of the model system in the presence
of charges, both for dissociating headgroups as well as for
dipolar headgroups, is under way.

ACKNOWLEDGMENTS

We thank Eduardo Henriques at Universidade Federal
de Pelotas for pointing out the possibility of adapting our
model to the study of monolayers and to Mario Tamashiro at
Universidade Estadual de Campinas for many conversations
on the theme of our work. This work is partly supported
by CNPq (Conselho Nacional de Desenvolvimento Cientıifico
and Tecnológico).

APPENDIX: LIMITING MODELS

Our model may be thought of as a composition of three
models: (i) the original Doniach model, of density 1, (ii) a
simple lattice gas, and (iii) a degenerate lattice gas. The three
limiting models are obtained if one of the three values for
site variables σ is discarded. Model (i) results from making
site variables σ equal to 1 or −1. Model (ii) results from
restricting site variables σ to 0 and +1. Model (iii) is obtained
if site variables σ are taken as 0 or −1. Under such restrictions,
each one of the three limiting models may be mapped on the
two-state Ising model, given by

EIsing = −J̃
∑
(ij )

sisj − H̃
∑

i

si , (A1)

where si = +or − 1. Model parameters J̃ and H̃ are different
for each model, and if given in terms of our Doniach lattice
solution parameters [Eqs. (8)–(10)], are as follows. For model
(i),

J̃i = J ; (A2)

H̃(i)(T ) = 4� − 1

2β
ln �. (A3)

For model (ii),

J̃(ii) = 1
4 (J + 2� + K), (A4)

H̃(ii)(μ) = J + 2� + K + 1
2μ. (A5)

Finally, for model (iii), we have

J̃(iii) = 1
4 (J − 2� + K) (A6)

and

H̃(iii)(T ,μ) = J + K − 2� + 1

2
μ + 1

2β
ln �. (A7)

The phase behavior of each of the three models may be
obtained by adapting well-known results for the magnetic Ising
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model [30]. The Ising model presents a coexistence line at
H̃ ∗

Ising = 0 which ends at a critical temperature tIsing, given by

t
Ising
C ≡ kBTC

J̃
. (A8)

Thus, the critical temperature for each of the limiting models,
tC,x [x = (i),(ii),(iii)], is obtained by replacing J̃ with J̃x from
Eqs. (A2), (A4) and (A6). The numerical value for the critical
Ising temperature depends on the approach taken: Mean-field
calculations overestimate it, with t

Ising
C,MF = 4, whereas the exact

solution, as well as Monte Carlo simulations for large systems,
yield t

Ising
C,MC = 2.27.

As a result, a coexistence line and a critical point exist
for each of the three limiting models. Model (i) displays a
coexistence line at fixed temperature

t∗(i) = 8�

ln �
(A9)

between the disordered (m = 1) and ordered chain (m = −1)
liquids. Model (ii) presents coexistence at fixed chemical
potential

μ∗
(ii) = −2J (1 + 2� + K), (A10)

between a gas (n = 0) and a simple liquid (n > 0), with a
critical point at

tC,(ii) = t
Ising
c

4

(
1 + 2� + K

)
. (A11)

Finally, for model (iii) a gas (n = 0) and a degenerate liquid
(n > 0) coexist at

μ∗
(iii)(t) = −2J

(
1 − 2� + K + t

2
ln �

)
, (A12)

with a critical point at

tC,(iii) = t
Ising
c

4

(
1 − 2� + K

)
. (A13)

In the following figures we compare phase coexistence
lines and critical points of our Doniach lattice solution [see
Figs. 7(b) and 8] with coexistence lines for the limiting models
(i)–(iii), at different values of � and K .

In Fig. 12 the mean-field phase diagram is shown for fixed
K and different �. The coexistence lines of the three limiting
models coincide with the coexistence lines of the DLG model
away from the triple point. The critical temperature for the
gas-disordered liquid line for the full model coincides with the

0.2

0.4

0.6

0.8

1.0

1.2

−12 −9 −6 −3 0

0.4

0.5

0.6

0.7

Dis

OrdGas

μ/J

t

FIG. 12. Mean-field coexistence lines for DLG (continuous lines)
vs coexistence lines for the limiting models (dashed lines). Doniach’s
model (horizontal dashed lines), lattice gas (vertical dashed lines),
and degenerate lattice gas (sloped dashed lines). Critical points for
the limiting models are seen only for the case of the degenerate lattice
gas. For the other two limiting systems, critical points are outside
the frame. For � = 0.7, the DLG presents no Gas-Dis line. Also,
the critical temperature gas-liquid line of the limiting degenerate
lattice gas model is below the temperature of the Ord-Dis of the
limiting Doniach model.

critical temperature of the limiting model tC,(iii), for smaller �.
The gas-disordered line disappears for � = 0.7.

In Fig. 8 points calculated from Monte Carlo simulations
for the full model are displayed together with the coexistence
lines and critical points of the limiting models, for � = 0.6
and different values of K . The gas-disordered coexistence line
disappears for the smaller value of K .

The crucial point is that the gas-disordered liquid coexis-
tence line of the DLG model disappears if the critical tempera-
ture of limiting model (iii) is lower than the temperature for the
chain order-disorder transition of model (i), i.e., if t∗i > tC,(iii),
or, from equation

� <
(1 + K)/2

1 + 16
t

Ising
C ln �

. (A14)

In the case of the mean-field results, this yields � < 0.63,
for K = 1, which explains the disappearance of the gas-
disorder line for � = 0.7 in Fig. 12. In the case of the Monte
Carlo results, this condition implies � < 0.49, for K = 1, and
� < 0.87, for K = 2.5, which explains the presence of the
Gas-Dis line only for the second case in Fig. 8.
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