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Feedback-induced counterintuitive correlations of gene expression noise with bursting kinetics
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Previous studies showed that a higher frequency of bursting results in lower expression noise whereas a larger
size of bursting leads to higher expression noise. Here, we show counterintuitive correlations of expression
noise with bursting kinetics due to the effect of feedback. Specifically, in the case of increasing the negative
feedback strength but keeping the mean expression fixed, both the mean burst frequency and the mean burst size
are invariant if the off-switching rate decreases, but expression noise is reduced; or the mean burst frequency
is invariant and the burst size decreases if the transcription rate increases, but expression noise is amplified.
Similarly, in the case of increasing the positive feedback strength but keeping the mean expression fixed, both
the mean burst frequency and the mean burst size are invariant if the on-switching rate decreases; or the mean
burst frequency increases and the mean burst size is invariant if the leakage rate decreases, but expression noise
is amplified. In addition, we find that the previous conclusion that a larger burst size results in the lower noise
in burst size needs to be modified in the case of feedback. Our results not only clarify the confusing relationship
between feedback and expression noise but also imply that the mRNA or protein noise is no longer a simple sum
of the internal noise and the promoter noise as shown in the case of no feedback.
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I. INTRODUCTION

Gene expression involves complex biochemical processes,
such as transcription, translation, degradation, transitioning
between promoter activity states, and recruitment of tran-
scription factors and polymerases [1–6]. These biochemical
processes are essentially single-molecule events and thus
stochastic, resulting in fluctuations in mRNA and protein
levels. This inherent stochasticity of gene expression is
essential for many cell functions. In fact, it has been shown
that the molecular noise can have not only a negative effect on,
e.g., the functioning of a synthetic genetic oscillator [7], but
also a positive effect on, e.g., stochastic focusing in a signaling
system [8] and noise-induced cellular communication through
stochastic synchronization in a multicell system [9]. In
addition, gene expression noise has been identified as a major
source underlying the observed phenotypic heterogeneity
of genetically identical cells in homogeneous environments
[10,11]. An important task in the post–genome era is to
understand how different regulatory mechanisms of gene
expression control variations in mRNA and protein levels
across a population of cells. Quantifying the contributions
of different sources of noise using stochastic models of
gene expression is an important step towards understanding
fundamental intracellular processes as well as cell-to-cell
variability critical for cellular survival.

There have been two kinds of gene models: the so-
called single-state gene model where mRNAs or proteins are
synthesized in stochastic and uncorrelated events [12,13] and
the so-called two-state gene model [14–17] where mRNAs or
proteins are generated in a manner of high activity followed
by a long refractory period [18–20]. In this article, we
consider only the latter. For this model, it has been shown
that the higher the burst frequency is, the lower is the gene
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expression noise, whereas the larger the burst size is, the
higher is the noise [21–23]. On the other hand, feedback,
as a ubiquitous mechanism of controlling signals, has been
identified in various regulatory systems in prokaryotic or
eukaryotic cells. For example, over 40% of E. coli transcription
factors negatively regulate their own gene transcription [24].
Theories and experiments have verified that feedback has
important influences on gene expression, but there has also
existed conflicting evidence over the relationship between
expression noise and feedback. Paulsson showed by analyzing
a two-component system that positive feedback amplifies noise
whereas negative feedback reduces noise [25]. Subsequently,
Hornung and Barkai demonstrated that negative feedback
in fact amplifies rather than reduces noise when system
parameters are chosen to preserve system sensitivity, while
positive feedback reduces noise when susceptibility (i.e.,
steady-state sensitivity) is controlled [26]. In contrast, we [17]
found that when system sensitivity is maintained, either there
exists a biologically feasible feedback strength such that the
output noise intensity reaches the minimum, or the output
noise intensity is a monotonic function of feedback strength
bounded by biological and dynamical constraints. Several
elegant studies showed that in the case that the mean protein
level is not fixed, increasing the negative feedback strength can
lead to the protein noise decreasing [27], increasing [26,28], or
appearing at a U-shaped structure [17,21]. In the case that the
mean protein level is fixed, however, increasing the negative
feedback strength leads to the protein noise decreasing
[16,25,29,30] or increasing [31]. In addition, there are some
studies focusing on the relationship between positive feedback
and expression noise but different assumption conditions result
in different results [26,27]. Giving this conflicting evidence, it
is not clear which relationship between feedback and noise is
reasonable or just a highlighted exception.

All the above-mentioned feedback-noise relationships are
obtained under the condition that promoter kinetics is fast.
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However, the rates of transition between the states of promoter
occupancy and accessibility (implying slow promoter kinetics)
are critical in determining the magnitude of gene expression,
and have been implicated as a cause of gene expression vari-
ability (see Ref. [32] wherein an extensive review is provided).
Indeed, a series of experimental works [33–35] have suggested
that variation in the rates of transition between different states
of promoter activity may play an important role in determining
the level of stochasticity in gene expression in S. cerevisiae.
A variety of factors including self-regulation are important
in mediating rates of transition between active and inactive
promoter complexes, many of which are promoter specific
[36]. Of these factors, the TATA box-binding protein is the
most critical one, as it is highly conserved among eukaryotes
and may be required for transcription of almost yeast genes
[37–39]. When both self-regulation and slow promoter kinetics
are considered simultaneously, several issues naturally arise:
Do the previously obtained results on the noise-feedback
relationship still hold? What is the exact relationship between
noise and feedback? How is the mRNA or protein noise
correlated with burst frequency, burst size, or burst size noise?
In what manner does the promoter noise arising from stochastic
switching between the promoter activity states contribute to
expression noise? This paper will address these questions.

Here, we systematically analyze a gene autoregulatory
model, where the promoter is assumed to have one active state
and one inactive state and there are bidirectional transitions
between them with constant transition rates. For simplicity
and without loss of generality, we integrate both transcription
and translation as a single step [21]. Different from previous
studies, our model also considers the effect of promoter
leakage (meaning that gene inactivity is not absolutely inactive
but there is a small transcription rate compared with the one
at the active state) [1,40,41]. First, we derive the analytical
distribution for the number of gene products, which in turn
can be used to analyze effects of feedback on expression
noise as well as on bursting kinetics. Second, we find that
there are only four possible kinds of qualitative relationships
between feedback and noise, depending on transition rates
between promoter activity states as well as on transcriptional
rates. Third, in each kind of relationship, burst frequency, burst
size, and burst size noise may exhibit different characteristics
mainly due to the effect of feedback. Fourth, the mean burst
size impacts the burst size noise not in a monotonic manner
(i.e., the greater the burst size is, the lower is the burst size
noise) but in a multimode manner, depending on the size of
feedback strength. Fifth, expression noise is no longer a simple
sum of the internal noise and the promoter noise as shown in the
case of no feedback. Our results clarify confusing relationships
between feedback and noise as well as vague correlations of
expression noise with bursting kinetics.

II. METHOD

We introduce a simple model of gene expression to
investigate effects of feedback on expression noise and
bursting kinetics, where by expression noise we mean that
it is quantified by the ratio of the variance over the square
of the mean of a gene product of interest (i.e., mRNA or
protein). Assume that the gene promoter has two activity states:

FIG. 1. (Color online) Schematic diagram for a two-state gene
model with self-regulation: the promoter transitions between the on
state where the transcription efficiency is very high and the off state
where the transcription efficiency is very low, and the gene product
self-represses or activates the expression level as a regulator.

one active (on) state where transcription is very efficient and
one inactive (off) state where transcription is inefficient (more
precisely, the transcription efficiency at the off state is much
lower than that at the on state), implying that the promoter has
a leakage [1,40]). There are bidirectional transitions between
on and off states. Also, we assume that the gene product
self-represses or activates the gene activity as a regulator,
forming a negative or positive feedback loop. Refer to Fig. 1.
The reasons for introducing such a gene model are as follows:
(1) This genetic circuit is a motif of more complex gene
regulatory networks in prokaryotic and eukaryotic cells; (2) the
effect of promoter leakage has not been considered in previous
studies; (3) analytical results are easily derived to well interpret
how the interaction between feedback and promoter leakage
impacts expression noise and bursting kinetics; (4) the results
can clarify the confusing noise-feedback relationships and the
vague correlations of expression noise with burst kinetics.

Let A1 and A0 represent two activity states of the gene
promoter and P represent a repressor or an activator. The tran-
scription process is in general much faster than the translation
process [15], so we can integrate these two processes into a
single-step process. In the following, we always view the gene
product as protein. Thus, chemical kinetics of the protein in
the gene model schematized in Fig. 1 can be described by the
following biochemical reactions:

A0
λ−→ A1, A1

γ−→ A0, A1 + P
a−→ A0 + P,

A1
μ1−→ A1 + P, A0

μ0−→ A0 + P, P
δ−→ Ø,

(1)

where λ and γ are transition rates between the promoter
activity states; a represents the regulation strength; δ is the
degradation rate; μ1 and μ0 represent transcription rates. Note
that in the case of negative feedback, A1 represents the on
state whereas A0 represents the off state; in the case of positive
feedback, A0 represents the on state whereas A1 represents the
off state. Thus, we can analyze the gene autoactivating and
autorepressing models in a unified framework. In addition, it
is reasonably assumed that μ1 � μ0 in the case of negative
feedback whereas μ1 � μ0 in the case of positive feedback.
We point that this gene model is an extended version of not only
the common on-off model where the effect of promoter leakage
is not considered [14–17] but also the gene self-regulatory
model where the effect of promoter leakage is neglected
[17,22,26]. In our model, transcriptional regulation is modeled
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by a single reaction of the form A1 + P
a−→ A0 + P . Such

simplification was also made in a previous study [42].
In order to better trace the time evolution of the probability

distribution for reactive species P, we introduce two factorial
probability distributions, P0(n,t) and P1(n,t), which represent
that this species has n molecules at time t when the gene is at
the A0 and A1 states, respectively. Then, the chemical master
equation corresponding to the reaction network described by
Eq. (1) takes the form

∂P0(n,t)

∂t
= −λP0(n,t) + γP1(n,t) + anP1(n,t)

+μ0[P0(n − 1,t) − P0(n,t)]

+ δ[(n + 1)P0(n+1,t) − nP0(n,t)],
(2)

∂P1(n,t)

∂t
= λP0(n,t) − γP1(n,t) − anP1(n,t)

+μ1[P1(n − 1,t) − P1(n,t)]

+ δ[(n + 1)P1(n+1,t) − nP1(n,t)].

In general, solving a probability master equation like Eq. (2)
is not easy. In this paper, we will take the probability-
generating function method to solve Eq. (2). In this method,
it is needed to introduce two factorial probability-generating
functions for factorial probabilities P0(n,t) and P1(n,t):
Gi (z) = ∑∞

n=0 Pi (n) zn with i = 0, 1. Thus, Eq. (2) can be
transformed into the following partial differential equations:

∂

∂t
G0 = −λG0 + γG1 + az

∂

∂z
G1

+μ0(z − 1)G0 − (z − 1)
∂

∂z
G0,

(3)
∂

∂t
G0 = λG0 − γG1 − az

∂

∂z
G1

+μ1(z − 1)G1 − (z − 1)
∂

∂z
G1.

If the solution of Eq. (3) is analytically found, then the total
probability function P = P0 + P1 is also analytically given.
The next section will give the main steps for solving Eq. (3)
and the Appendix of this paper will provide more details.

To quantify the noise in the protein P, we introduce an
index called the noise intensity, which is defined as the ratio
of the variance over the square of the mean. Using the total
probability-generating function G = G0 + G1, we can give
the formal formulas for calculating the mean (〈n〉) and the
variance (σ 2

n ) as well as the noise intensity (η2
n) for P. That is,

〈n〉 = G′(1), σ 2
n = G′′(1) + G′(1) − [G′(1)]2, (4)

η2
n = σ 2

n

〈n〉2
= G′′(1) + G′(1) − [G′(1)]2

[G′(1)]2 , (5)

where the derivatives are with respect to z. These formulas are
exact if the total generating function G is exactly found. In
the next section, we will give the analytical expression of this
function.

Note that burst kinetics are quantified often by burst
size and burst frequency. Since both the burst size and
burst frequency are stochastic variables, we can calculate the
statistical quantities in light of the above definitions. By the

burst size noise we mean that it is quantified by the ratio of
the variance over the square of the mean of the burst size. In
addition, the mean burst frequency and the mean burst size are
calculated according, respectively, to [19]

〈BF〉 = 1

τOFF
, 〈BS〉 = ktranscriptionτON, (6)

where τOFF and τON represent the mean times that the gene
dwells at off and on states (i.e., the mean off time and the
mean on time), respectively, and ktranscription represents the
mean transcription rate when the gene is at the on state.

The above equations and explicit formulas provide method-
ology for analyzing effects of the interaction of feedback
and promoter leakage on both expression noise and bursting
kinetics.

III. RESULTS

Stochastic transitions between promoter activity states can
result in the bursty generation of mRNA or protein. In general,
the bursting kinetics are characterized by the frequency and the
size of bursting as well as the burst size noise. Previous studies
showed that in the case of no feedback, a larger burst frequency
results in the lower expression noise whereas a larger burst
size leads to the higher expression noise. Here, we will
show that feedback can induce counterintuitive correlations
of expression noise with bursting kinetics. Specifically, in the
case of negative feedback, increasing the negative feedback
strength can lead to (1) the invariance of the mean burst
frequency and the reduction of both the mean burst size and
the burst size noise, but the increase of the expression noise
due to the change of one transcription rate; (2) the invariance
of both the mean burst frequency and the mean burst size as
well as the reduction of the burst size noise, but the decrease
of the expression noise due to the change of one transition
rate. See the shadowed part in Table I. Similarly, increasing
the positive feedback strength can lead to (1) the increase of
the mean burst frequency and the invariance of both the mean
burst size and its noise, but the increase of the expression noise
due to the change of one transcription rate; (2) the invariance
of the mean burst frequency, the mean burst size, and the burst
size noise, but the increase of the expression noise due to
the change of one transition rate. See the shadowed part in
Table III. In addition, we will derive an analytical steady-state
distribution for the protein [see Eq. (13) in Sec. III A] and give
two modified formulas for the effects of feedback on the burst
size noise [see Eq. (19) in Sec. III B] and on the expression
noise [see Eq. (20) in Sec. III B], respectively.

A. Analytical steady-state distribution

To find the analytical distribution for reactive species P, we
mainly solve Eq. (3) at steady state. Note that this steady-state
equation can be rewritten as the following ordinary differential
equations (ODEs):

−λG0 + γG1 + azG′
1 + μ0 (z − 1) G0 − (z − 1) G′

0 = 0,

λG0 − γG1 − azG′
1 + μ1 (z − 1) G1 − (z − 1) G′

1 = 0,

(7)

where all parameters have been normalized by δ, that is,
λ/δ → λ, γ /δ → γ , a/δ → a, μ0/δ → μ0, μ1/δ → μ1, and
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thus they are all dimensionless. With loss of generality, we set
δ = 1.

In order to solve Eq. (7), we introduce two new functions
H0 (z) and H1 (z), which are associated, respectively, with two
factorial probability-generating functions G0 (z) and G1 (z) by

G0 (z) = eμ0zH0(z), G1(z) = eμ1zH1(z). (8)

It is not difficult to show that H1 (z) satisfies the following
second-order ODE (see the Appendix):

B (z) H ′′
1 (z) + D (z) H ′

1(z) + F (z) H1(z) = 0, (9)

where coefficients B(z)=(a + 1)z − 1, D(z)=(a	μ+ 	μ +
aμ1)z + γ + λ + a + 1 − 	μ, and F (z) = (aμ1	μ)z +
γ	μ + aμ1 with 	μ = μ1 − μ0 are all linear functions of
variable z. From the Appendix, we know that Eq. (9) has the
solution of the following form:

H1(z) = Ae−(	μ)z
1F1

{
α; β; [(a + 1) z − 1]

	μ − aμ0

(a + 1)2

}
,

(10)

where two parameters, α = 1 + (λ	μ/R) and β =
1 + [(	μ + γ + λ)/(a + 1)] − R/(a + 1)2, with R = 	μ −
aμ0, are all constants depending only on the reaction rates,
and 1F1(α; β; w) is a confluent hypergeometric function
[43]. Using Eq. (9) and the relationship between probability
distribution and generating function, we thus obtain analytical
expressions for two steady-state factorial probability distribu-
tions as

P0(n) = A

n!

n∑
m=0

(
n

m

)
(μ0)n−m[(a + 1)Q]m

×
[
C

(α − 1)m
(β − 1)m

1F1 (α + m − 1; β + m − 1; −Q)

− (α)m
(β)m

1F1 (α + m; β + m; −Q)

]
, (11)

and

P1(n) = A

n!

n∑
m=0

(
n

m

)
(μ0)n−m[(a + 1)Q]m

(α)m
(β)m

1F1

× (α + m; β + m; −Q), (12)

where three constants, A = e−μ0 [C1F1(α − 1; β − 1; aQ)]−1,
C = 	μ+γ+λ

λ
− R

λ(a+1) , and Q = 	μ−aμ0

(a+1)2 , all depend only on
the reaction rates. Thus, the total steady-state probability
distribution is analytically expressed as

P (n) = AC

n!

n∑
m=0

(
n

m

)
(μ0)n−m[(a + 1)Q]m

(α − 1)m
(β − 1)m

1F1

× (α + m − 1; β + m − 1; −Q) . (13)

In Eqs. (11)–(13), (n

m) represents the common binomial
coefficient and (c)n is the Pochhammer symbol defined as
(c)n = � (c + n)/� (c).

The above analytical results indicate that each of three
distributions, P0 (n), P1 (n), and P (n), is a linear combination
of confluent hypergeometric functions. In particular, if a = 0
(i.e., no feedback) and μ0 = 0 (i.e., no promoter leakage),

which corresponds to the common two-state gene model,
then the resulting Eq. (13) can reproduce previous distribu-
tions [20,44]. In fact, our numerical simulation has verified
correctness of the above analytical distribution, referring to
Fig. 3(e).

B. Feedback-induced additional contributions to both
expression noise and burst kinetics: Two modified formulas

First, we give an analytical, exact formula for the relation-
ship between expression noise and feedback. Note that the
square of the noise intensity for protein P can be calculated
according to formula (5), where

G′(1) = Aeμ0 [Cμ01F1(α − 1; β − 1; aQ) + μ1F1(α; β; aQ)],

(14)

G′′(1) = Aeμ0 [C(μ0)2
1F1(α − 1; β − 1; aQ)

+ 2μ0	μ1F1(α; β; aQ)

+D1F1(α + 1; β + 1; aQ)], (15)

with D = [	μ(	μλ + R)(a + 1)]/[(a + 1)(	μ + λ + γ +
a + 1) − R]. One main advantage of this analytical expression
is that it can help us show how feedback both quantitatively
and qualitatively affects expression noise in the presence of
promoter leakage. The detailed discussions are here omitted
due to tedious mathematics but some numerical results
based on the analytical formula will be later demonstrated.
It should be pointed out that previous studies gave only
approximate results for the relationship between expression
noise and feedback [45,46]. In particular, if neither feedback
nor promoter leakage is considered, i.e., a = 0 and μ0 = 0,
then the analytical formula for calculating the protein noise
intensity is reduced to

η2
n = 1

〈n〉 + η2
promoter with

(16)

η2
promoter = τ 2

OFF

τON+τOFF + τONτOFF
,

where 〈n〉 = b/(τOFF + τON) with τOFF = 1/λ (the mean time
that the gene dwells at off state), τON = 1/γ (the mean time
that the gene dwells at on state), and b = ktranscription/γ = μ1/γ

(the mean burst size). In Eq. (16), η2
promoter represents the size of

relative fluctuations in the promoter (i.e., the promoter noise),
η2

n represents the expression noise intensity, and 〈n〉 represents
the mean expression level.

Then, we give approximate formulas for bursting kinetics
and expression noise in the case of no feedback. Note that
τOFF = 1/kON and τON = 1/kOFF, where kON and kOFF are
transition rates from off to on states and from on to off states,
respectively. For our model without feedback (i.e., a = 0),
if μ1 � μ0, then we have the approximations 〈BF〉 = λ and
〈BS〉 = μ1/γ due to kON = λ, kOFF = γ , and ktranscription =
μ1. In addition, the burst size noise intensity is calculated
according to the following approximate formula [47]:

σ 2
BS ≈ 1 + 1

〈BS〉 = 1 + γ

μ1
, (17)
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which implies that a larger mean burst size results in the lower
burst size noise. At the same time, the protein noise intensity
is calculated according to the following approximate formula
[22]:

η2
n ≈ 1 + 〈BS〉

〈n〉 = 1

〈n〉 + 1

〈BF〉 with 〈n〉 ≈ 〈BF〉 〈BS〉 .

(18)

From Eq. (18), we see that a higher mean burst frequency
results in the lower noise and a higher mean burst size leads to
the higher noise if the mean expression level is fixed.

Third, we discuss how to calculate expression noise in
the case of feedback. Note that in this case, kON or kOFF

(implying τOFF or τON) is no longer a constant but is a
variable, depending on the type of feedback. Specifically, in
the case of negative feedback, kOFF (implying τON) depends
on the number of proteins but kON (implying τOFF) is still
a constant. Thus, Eq. (16) no longer holds, and τON has
no analytical expression but can be given by the Gillespie
stochastic simulation algorithm [48]. Similarly in the case of
positive feedback, kON (implying τOFF) depends on the number
of proteins but kOFF (implying τON) is still a constant. In this
case, Eq. (16) no longer holds, and τOFF has no analytical
expression but can be given only by the numerical method.

We emphasize that the above formulas (16)–(18) are
efficient only in the case of no feedback. A natural question
is whether they still hold in the case of feedback. The answer
is negative. In fact, numerical results shown in Fig. 2 indicate
that feedback can induce additional contributions to the protein
noise and the burst size noise. Therefore, formulas (16)–(18)
need to be modified. Specifically, formula Eq. (17) should be
modified as

σ̃ 2
BS = σ 2

BS+fcorrection, (19)

where σ 2
BS is calculated by Eq. (17), and fcorrection represents

a corrected term due to the effect of feedback, which may
be positive and negative, depending on the type of feedback
(positive or negative). Note that in general, fcorrection is a
function of both feedback strength a and mean burst size 〈BS〉,
and is not equal to zero unless a = 0. Similarly, Eq. (16) or
(18) should be modified as

η2
exact = η2

classic + gcorrection, (20)

where the function gcorrection represents the feedback-induced
correlation between the internal noise in the gene product
and the promoter noise, and is equal to zero if a = 0
(i.e., no feedback). In Eq. (20), η2

classic = η2
internal + η2

promoter,
where η2

internal representing the internal noise is calculated by
η2

internal = 1/〈n〉, and η2
promoter representing the promoter noise

is calculated by the second formula in Eq. (16).
Formula (20) indicates that the expression noise is not a

simple sum of the internal noise of the gene product (mRNA or
protein) and the promoter noise as in the case of no feedback
but needs to add an extra, nonzero term generated from the
correlation between the internal noise and the promoter noise.
Moreover, the sign of this additional term depends on the type
of feedback. Figure 2 justifies formula (20), where Figs. 2(a)
and 2(b) correspond to negative feedback whereas Figs. 2(c)
and 2(d) correspond to positive feedback. The sign of function

(a) (b)

(c) (d)

FIG. 2. (Color online) Feedback-induced additional contribu-
tions to gene expression noise: (a), (b) negative feedback; (c), (d)
positive feedback. The solid line represents the exact noise calculated
by Eq. (5) with Eqs. (14) and (15), the dash-dotted line represents the
noise calculated by Eq. (16), the dashed line represents the additional
noise induced by feedback, and the shadowed areas represent the area
bounded by the curve gcorrection and by two coordinate axes. (a) and
(b) are plotted using the parameter values corresponding to the first
and second subfigures of Fig. 3(a) from left to right, respectively; (c)
and (d) are plotted using the parameter values corresponding to the
third and fourth subfigures of Fig. 5(a) from left to right, respectively.

gcorrection is clearly indicated in the shadowed parts of this
figure. In the next two sections we will give more explanations
for Fig. 2 and analyze the mechanism of how these additional
terms are generated.

C. Negative feedback can induce counterintuitive correlations
of expression noise with bursting kinetics

To make comparisons with previous results, we always
keep the mean expression level fixed. Similar assumptions
were previously made, in particular when analyzing design
principles of nature systems [16,29–31]. Some authors studied
influences of transition rates between promoter activity states
on expression noise [33–35,44] and other authors investigated
effects of mRNA synthesis rate on expression levels [49].
Here, we are interested mainly in the effects of five system
parameters: λ, γ , a, μ1, and μ0, on both bursting kinetics and
expression noise. Note that if the negative feedback strength
increases, then this will lead to only one of the following
four cases taking place: (1) increasing λ, (2) decreasing γ , (3)
increasing μ1, and (4) increasing μ0, due to the assumption that
the mean expression level is fixed. Here, the other parameters
must be fixed in each case.

First, we use Table I to conclude our qualitative results,
which do not depend on the choice of system parameter values.
This table shows that there are actually four distinct kinds of
relationships between negative feedback and expression noise
in terms of bursting kinetics: case 1 and case 4 correspond
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TABLE I. Qualitative effects of negative feedback on both bursting kinetics and expression noise in the case that the mean expression level
is fixed, where the shadowed part represents that feedback induces counterintuitive correlations of expression noise with bursting kinetics.

Negative Some Mean burst Mean burst Burst size Expression
feedback parameters frequency size noise noise

(1) Increasing λ Increase Decrease Increase Decrease
(2) Increasing μ1 No change Decrease Decrease Increase

Increasing a
(3) Decreasing γ No change No change Decrease Decrease
(4) Increasing μ0 No change Decrease Increase Decrease

to the results obtained in the common gene model without
feedback (i.e., a higher mean burst frequency or a smaller
mean burst size results in the lower expression noise), and the
other two cases (i.e., case 2 and case 3) indicate that negative
feedback induces counterintuitive correlations of expression
noise with bursting kinetics. Interestingly, we find that there
are three same cases where increasing the negative feedback
strength leads to reduction of the expression noise, but bursting
kinetics exhibits different characteristics in each case. In the
next two subsections, we will elucidate the mechanism of how
negative feedback induces counterintuitive correlations.

Then, we use Fig. 3 to demonstrate detailed numerical
results, where some parameter values are listed in Table II.
From Fig. 3(a), we observe that negative feedback may amplify
or reduce the expression noise, depending on the change of one
of the four parameters λ, γ , μ1, and μ0. This subfigure implies
that the influence of negative feedback on expression noise
does not take a single mode as shown in previous studies.
For several representative points in Fig. 3(a), Figs. 3(b)–3(e)
demonstrate the main characteristics of promoter-state activity,
the time evolution of the gene product number, burst size, and
probability distribution, respectively. All these subfigures can
be used to verify the correctness of the qualitative results
concluded in Table I. The next two subsections will give
more interpretations for the numerical results shown in Fig. 3,
including analyzing the mechanisms of how negative feedback
induces the counterintuitive correlation of expression noise
with bursting kinetics.

1. Effects of negative feedback on expression noise

Note that if the negative feedback strength increases and the
mean expression level is kept at a fixed value (we set 〈n〉 = 20
in simulation), then one of the following four cases will take
place: (1) increasing the transition rate from off to on states
(λ); (2) increasing the transcription rate (μ1); (3) decreasing the
transition rate from on to off states (γ ); and (4) increasing the

TABLE II. Parameter values corresponding to several particular
points indicated in Fig. 3(a) (see arrows).

Parameter Description Point 1 Point 2 Point 3

a Negative feedback 0 1 1
strength

λ On-switching rate 0.1 20.1 0.1
γ Off-switching rate 0.1 0.1 0.1
μ1 Transcription rate 40 40 28904
μ0 Leakage rate 0 0 0

promoter leakage rate (μ0). Here, the other parameter values
must be fixed in each case (see Table II). Also note that in the
case of negative feedback (i.e., a 
= 0), the mean off time is
still equal to 1/λ but the mean on time τON is no longer equal
to 1/γ . In spite of this, the mean on time can be numerically
given.

The quantitative results on the relationship between ex-
pression noise and negative feedback strength are shown in
Fig. 3(a), where circles represent numerical results obtained
by the Gillespie stochastic simulation algorithm [48] and the
solid lines represent theoretical results obtained by the above
analytical formulas [e.g., Eq. (5) combined with Eqs. (14) and
(15)]. We observe that if the transition rate from off to on
states increases, or if the transition rate from on to off states
decreases, or if the leakage rate increases, then increasing
the negative feedback strength will reduce the expression
noise. If the transcription rate at the on state increases, then
increasing the negative feedback strength will amplify the
expression noise. Figure 3(b) shows that the promoter activity
exhibits different dynamic characteristics including different
burst frequencies in three cases: no feedback [i.e., point 1
indicated in Fig. 3(a)], strong feedback with a large transition
rate from off to on [i.e., point 2 indicated in Fig. 3(a)], and
strong feedback with a large transcription rate at the on state
[i.e., point 3 indicated in Fig. 3(a)]. From this subfigure, we
further observe that the resident time at the on or off state is
also different in each case. Similarly, Fig. 3(c) shows the time
evolution of the protein number with different characteristics.
Finally, we observe from Fig. 3(e) that the P probability
distribution is bimodal in the case of no feedback (a = 0)
[corresponding to point 1 in Fig. 3(a)], but unimodal in cases
of strong feedback (a = 1) [corresponding to points 2 and 3 in
Fig. 3(a)], where the peak exhibits different characteristics in
each case. These indicate that negative feedback has important
influences on the probability distribution of the gene product.

In addition, we observe from Figs. 2(a) and 2(b) that the
noise intensity calculated by the classic formula, i.e., Eq. (16),
is always larger than the exact noise calculated by Eq. (5) with
Eqs. (14) and (15) in the case of negative feedback, indicating
that the corrected term in Eq. (20), gcorrection, is always negative
[referring to the shadowed area in Figs. 2(a) and 2(b)]. This
implies that for a fixed negative feedback strength, the classic
method [i.e., Eq. (16)] overestimates the expression noise.

Table I shows the qualitative relationship between expres-
sion noise and negative feedback. We see that increasing the
negative strength can not only amplify but also reduce the
expression noise. However, this amplification or reduction is
mainly because of the change in feedback-induced bursting
kinetics.
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(a)

(b)
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FIG. 3. (Color online) Quantitative influences of negative feedback on expression noise and bursting kinetics, where the mean protein
number is fixed at 〈n〉 = 20: (a) the relationship between feedback and noise, where “analytical” represents the exact noise calculated by Eq. (5)
with Eqs. (14) and (15), and from left to right corresponds to changes of transition rate from off to on (λ), transcription rate at on state (μ1),
transition rate from on to off (γ ), and transcription rate at off state (μ0), respectively. Three representative points are indicated by symbols 1,
2, and 3 with arrows; (b)–(d) time evolutions of promoter activity, the protein number, and burst size, where from left to right corresponds,
respectively, to three representative points 1, 2, and 3 indicated in (a); and (e) protein distribution, where from left to right corresponds,
respectively, to three points indicated in (a) and “analytical” represents the exact distribution calculated by Eq. (13). The parameter values are
listed in Table II and all the variables are dimensionless.
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(a)

(b)

(c)

FIG. 4. (Color online) Quantitative effects of negative feedback strength on mean burst frequency, mean burst size, and burst size noise,
where four subfigures in each of (a)–(c) correspond, respectively, to four subfigures in Fig. 3(a) from left to right, and “analytical” represents
the exact mean burst frequency calculated by BF = λ Parameter values are the same as those used in Fig. 3(a) and all the variables are
dimensionless.

2. Effects of negative feedback on bursting kinetics

The qualitative results are concluded in Table I whereas the
quantitative results are demonstrated in Fig. 3. Here, we will
focus on some interpretations for Table I.

We numerically find that the change trend of burst size or
expression noise with negative feedback strength in case (1)
and case (4) of Table I is fundamentally in accord with the
prediction of the approximate formula (17) or (18), indicating
that the negative feedback-induced additional effect is not
remarkable in these two cases. This would be determined
by bursting kinetics of gene expression itself. The numerical
results shown in the first and fourth columns of Fig. 4 further
verify this change trend.

In the following, we will focus on case (2) and case
(3) in Table I, both showing the negative feedback-induced
counterintuitive correlation of expression noise with bursting
kinetics, and give some explanations of how this counterintu-
itive phenomenon is generated.

First, consider case (2) in Table I. Note that increasing
the negative feedback strength will decrease the time that the

gene dwells at the on state (i.e., the on time), thus increasing
the transcription rate at the on state due to the fixed mean
expression level. Also note that the decrease of the on time
will make burst size decrease. On the other hand, both the
decrease of the on time and a large transcription at the on state
will make the gene be expressed in a more remarkably bursty
mode [referring to the third subfigure in Fig. 3(d)], leading to
the expression noise appearing at an amplification trend. Our
numerical result also verifies this point, referring to the second
column in Fig. 4. A similar mechanism was also elucidated in
Ref. [50].

Then, consider case (3) in Table I. Note that increasing the
negative feedback strength can decrease the transition rate (γ )
from on to off states if the mean expression level is kept at
a fixed value. In this case, we can obtain that both the burst
size noise and the total noise are reduced. To give a reasonable
explanation for this conclusion, we borrow an important result
obtained in Ref. [51]: Negative feedback can result in the
negative correlation of the dwelling time interval between
on states, thus reducing the noise in the on time. Therefore,
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the promoter noise propagating to the downstream mRNA or
protein is reduced, leading to both the burst size and expression
noise decreasing. Refer to numerical results shown in the third
column of Fig. 4.

Next, we give a simple analysis for the phenomena
displayed in Fig. 4(c). For this, note that there are two
factors impacting the burst size noise: One is transcription
or translation, and the other is the on time. In general, the
transcription or translation process is Poissonian, so it has so
small a contribution to the burst size noise that it is neglectable.
Thus, the burst size noise is determined mainly by the on time
noise. However, the authors in Ref. [51] pointed out that a
negative correlation between interspikes can reduce noise. In
other words, the negative correlation between two switchings
can result in the decrease of the on time noise. On the other
hand, negative feedback always gives rise to such a negative
correlation. Therefore, negative feedback always plays a role
of attenuating the burst size noise, implying that the function
fcorrection is always negative.

According to the above analysis, we make the following
brief summary: In the case of negative feedback, (1) there
are four modes of the relationship between feedback and
expression noise, depending on transition rates between
promoter activity states as well as on transcription rates (see
Table I). This classification is based on different characteristics
of bursting kinetics in each mode; (2) one previous qualitative
conclusion (i.e., a higher mean burst frequency results in
the lower expression noise) and another previous qualitative
conclusion (i.e., a larger mean burst size leads to the higher
expression noise) both no longer hold in the case of negative
feedback. Negative feedback can induce counterintuitive
correlations of expression noise with bursting kinetics (see
the shadowed part in Table I); (3) the analytical formulas for
burst size noise and expression noise in the common on-off
model need to be modified [referring to Eqs. (19) and (20),
where fcorrection and gcorrection are always negative].

D. Effects of positive feedback on bursting kinetics
and expression noise

Note that, similar to the case of negative feedback, if the
positive feedback strength increases and the mean expression
is fixed, then only the one of the following four cases will take
place: (1) increasing the transition rate from on to off states
(λ); (2) decreasing the transcription rate (μ0); (3) decreasing
the transition rate from off to on states (γ ); and (4) decreasing
the promoter leakage rate (μ1). Here, the other parameters
must be fixed in each case.

Also similar to the case of negative feedback, we can
analyze effects of positive feedback on mean burst frequency,
mean burst size, burst size noise, and expression noise for each
of the above four cases. We emphasize that in this analysis,
the mean expression level is always kept at a fixed value.
The qualitative results are summarized in Table III, which
show how positive feedback impacts bursting kinetics and
expression noise.

From Table III, we observe that when positive feedback
intensity increases, the expression noise is sensitive to four
parameters: transition rate from on to off states (λ), promoter
leakage rate (μ1), transition rate from off to on states (γ ), and

transcription rate (μ0); the mean burst frequency is sensitive
to three parameters: λ, μ1, and μ0, but is irrelative to γ ;
both the mean burst size and its noise are sensitive to λ

and μ0, but are irrelative to μ1 and γ . Similar to the case of
negative feedback, positive feedback-induced counterintuitive
correlations of expression noise with bursting kinetics take
place at cases of decreasing μ1 and γ . Different from the
case of negative feedback, however, bursting kinetics exhibits
different characteristics in terms of mean burst frequency,
mean burst size, and burst size noise.

Next, we take several particular sets of parameter values
and keep the mean expression level fixed at 20, to perform
numerical calculation. The numerical results are shown in
Fig. 5. We observe from Fig. 5(a) that if the promoter leakage
rate (μ1) or the transition rate from off to on states (γ )
decreases, then increasing the positive feedback strength will
amplify the expression noise; if the transcription rate at the
on state (μ0) decreases or the transition rate from on to off
states (λ) increases, then increasing the positive feedback
strength will reduce the expression noise. Figure 5(b) shows
that promoter activity exhibits different characteristics in terms
of bursting kinetics in the three cases of feedback indicated in
Fig. 5(a) (i.e., points 1, 2, and 3, which represent no feedback,
strong positive feedback with a large transition rate from on to
off, and no feedback with a large transcription rate at the on
state, respectively). From this figure, we observe that the on
time or the off time is also different in each case. Similarly,
the time evolutions of both the protein number and the burst
size also exhibit different characteristics, referring to Figs. 5(c)
and 5(d), respectively. Finally, with the feedback strength at
point 2 (a = 1) indicated in Fig. 5(a), the protein distribution
is basically bimodal whereas with the feedback strength at
points 1 and 3 (a = 0) indicated in Fig. 5(a), the distribution is
unimodal but the peak exhibits different characteristics. Refer
to Fig. 5(e).

To verify correctness of qualitative results in Table III, we
also plot Fig. 6, where four subfigures in each row correspond,
respectively, to four subfigures of Fig. 5(a) from left to right.
Note that in the case of positive feedback (i.e., a 
= 0), the
mean on time is still equal to 1/γ , so, the exact mean burst
size solution is calculated by 〈BS〉 = μ0/λ, but the mean off
time τOFF is no longer equal to 1/λ. In spite of this, the mean
burst frequency can be numerically given [see Fig. 6(a)].

From Fig. 6(c), we observe that positive feedback has little
influence on the burst size noise [Fig. 6(c)]. In particular, we
find the above approximate formulas (19) are fundamentally
efficient by comparing lines with circles in Fig. 6(c).

Similar to the case of negative feedback, we make the
following brief summary for the above analysis. In the case
of positive feedback, there are four modes of relationships
between positive feedback and expression noise, depending
on transition rates between promoter activity states as well
as on transcription and leakage rates. This classification
is based on different characteristics of bursting kinetics in
each mode. Neither the qualitative conclusion that a higher
mean burst frequency leads to the lower expression noise
nor the qualitative conclusion that a larger mean burst size
results in the higher expression noise no longer holds in
the case of positive feedback. Positive feedback can induce
counterintuitive correlations of expression noise with bursting
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FIG. 5. (Color online) Quantitative influences of positive feedback on expression noise and bursting kinetics, where the mean protein
number is kept at 〈n〉 = 20: (A) the relationship between feedback and noise, where “analytical” represents the exact noise calculated by Eq. (5)
with Eqs. (14) and (15), and from left to right corresponds to changes of transition rate from on to off (λ), promoter leakage rate (μ1), transition
rate from off to on (γ ), and transcription rate at on state (μ0), respectively; (b)–(d) time evolutions of promoter activity, the protein number, and
burst size, where from left to right corresponds, respectively, to three representative points indicated in (a) (i.e., points 1, 2, and 3); (e) protein
distribution, from left to right corresponds, respectively, to three points indicated in (a) (i.e., points 1, 2, and 3), and “analytical” represents the
exact distribution calculated by Eq. (13). See Table IV for the parameter values used in simulation and all the variables are dimensionless.
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TABLE III. Qualitative influences of positive feedback on bursting kinetics and expression noise in the case that the mean expression level
is fixed, where the shadowed part represents that feedback induces counterintuitive correlations of expression noise with bursting kinetics.

Mean burst
Positive feedback Some parameters frequency Mean burst size Burst size noise Expression noise

(1) Increasing λ Increase Decrease Increase Decrease
(2) Decreasing μ1 Increase No change No change Increase

Increasing a
(3) Decreasing γ No change No change No change Increase
(4) Decreasing μ0 Increase Decrease Increase Decrease

kinetics (see the shadowed part in Table III). In addition, the
analytical formulas for expression noise in the common on-off
model need to be modified [refer to Eq. (20), where gcorrection is
always positive. Refer to Figs. 2(c) and 2(d)]. Thus, we obtain
a qualitative conclusion that in the case of positive feedback,
the classic method [i.e., Eq. (20)] underestimates expression
noise. However, since positive feedback does not affect mean
burst size and burst size noise, Eq. (17) is still valid [i.e.,
fcorrection = 0, referring to Fig. 6(c)]. In other words, positive
feedback effect on burst frequency does not affect burst size
nor burst size noise.

IV. CONCLUSION AND DISCUSSION

Gene expression noise is a lasting topic and has attracted
extensive attention. In this paper, we have analyzed a two-state
gene autoregulatory model with a fixed mean expression level.
In contrast to previous studies showing that in the case of
no feedback, the higher the burst frequency is, the lower
is the expression noise whereas the larger the burst size is,
the higher the expression noise, we have shown different
qualitative results depending on how feedback mediates burst
frequency, burst size, and the noise in burst size. Specifically,

(a)

(b)

(c)

FIG. 6. (Color online) Quantitative effects of positive feedback strength on mean burst frequency, mean burst size, and burst size noise,
where four subfigures in each of (a)–(c) correspond, respectively, to four subfigures in Fig. 5(a) from left to right, and “analytical” represents
the exact mean burst size calculated by 〈BS〉 = μ0/λ. Parameter values are the same as those used in Fig. 5(a) and all the variables are
dimensionless.
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TABLE IV. Parameter values corresponding to several particular
points indicated in Fig. 5(a) (see arrows).

Parameter Description Point 1 Point 2 Point 3

a Positive feedback 0 1 1
strength

λ Off-switching rate 0.1 16.0457 16.0457
γ On-switching rate 0.1 0.1 0.1
μ1 Leakage rate 0 0 19.8755
μ0 Transcription rate 40 40 40

increasing the negative feedback strength does not impact both
burst frequency and burst size if the transition rate from on
to off states decreases, but reduces the expression noise; or
increasing the negative feedback strength makes burst size
decrease without impacting burst frequency if the transcription
rate increases, but amplifies the expression noise. Refer to
Table I. Increasing the positive feedback strength will make
both burst frequency and burst size invariant if the transition
rate from off to on decreases, or will make burst frequency
increase and burst size invariant if the leakage rate decreases,
but amplifies the expression noise, referring to Table III. In
addition, we have also shown that the qualitative conclusion
that the larger the burst size is, the lower is the burst size
noise, no longer holds in the case of feedback but needs to be
modified (refer to Tables II and IV). These results not only
describe how feedback influences the expression noise as well
as bursting kinetics but also imply that the expression noise is
not a simple sum of the internal noise and the promoter noise
(refer to Fig. 2), under the hypothesis that the mean expression
level is fixed. Such plasticity of feedback-mediated bursting
kinetics would be useful when protein is taken as an input
signal of the downstream networks.

We point out that our results are obtained under the assump-
tion that the gene promoter has one active and one inactive
state. However, that the promoter has multiple activity states
is not an exception but is ubiquitous in particular in eukaryotic
cells [49,52]. For example, the PRM promoter of phage lambda
in E. coli is regulated by two different transcription factorss
binding to two sets of three operators that can be brought
together by looping out the intervening DNA. As a result,
the number of regulatory states of the PRM promoter is up
to 128 [53]. In contrast, eukaryotic promoter structures may
be more complex since they involve nucleosomes competing
with or being removed by transcription factors [54]. Except
for the conventional regulation by transcription factors, the
eukaryotic promoters can be also epigenetically regulated
via, e.g., histone modifications [55,56]. Such regulation may
lead to very intricate promoter structures [57]. For a gene
model with complex promoter structure, it remains to be
fully explored how feedback impacts bursting kinetics and
expression noise. In spite of this, we conjecture that qualitative
results obtained here still hold but quantitative results would
need to be modified.

Finally, our model did not consider effects of RNA nuclear
retention and alternative splicing. In fact, alternative splicing
is a fundamental process during gene expression and has
been found to be ubiquitous in eukaryotes [58,59]; RNA
nuclear retention is not an exceptional but is a ubiquitous

phenomenon occurring during the process of gene expression
[60,61]. However, it is unclear how these two processes impact
gene expression levels in the case of feedback. Thus, our next
task is to focus on investigating qualitative and quantitative
effects of alternative splicing and RNA nuclear retention on
bursting kinetics and expression noise.
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APPENDIX: DERIVATION OF MASTER EQUATIONS

Summing two equations in Eq. (7) in the main text yields
the following relation:

μ0G0 − G′
0 = −(μ1G1 − G′

1). (A1)

Under transformations (8) in the main text, Eq. (A1) can be
rewritten as

eμ1zH ′
1(z) = −eμ0zH ′

0(z). (A2)

In addition, Eq. (7) in the main text can be rewritten as

−λeμ0zH0(z) + γ eμ1zH1(z) + az[μ1e
μ1zH1(z) + eμ1zH ′

1(z)]

−(z − 1)eμ0zH ′
0(z) = 0,

λeμ0zH0(z) − γ eμ1zH1(z) − az[μ1e
μ1zH1(z) + eμ1zH ′

1(z)]

−(z − 1)eμ1zH ′
1(z) = 0. (A3)

Multiplying e−μ0z on both sides of the second equation in
Eq. (A3), we have

e(μ1−μ0)z [(a + 1)z − 1] H ′
1(z) + e(μ1−μ0)z(azμ1 + γ )H1(z)

= λH0(z). (A4)

Substituting Eq. (A4) into the first equation of Eq. (A3) will
yield Eq. (9) in the main text.

To solve Eq. (9) in the main text, we make another
transformation

H1(z) = e−(	μ)zf

{
[(a + 1) z − 1]

	μ − aμ0

(a + 1)2

}

≡ e−(	μ)zf (w) , (A5)

where the function f will be determined by substituting
Eq. (A5) into Eq. (9) in the main text. It is found that f (w)
satisfies the following standard confluent hypergeometric
equation [43]:

wf ′′(w) + (β − w) f ′(w) − αf (w) = 0, (A6)

where α and β are given in the main text. From the viewpoint of
mathematics, we know that Eq. (A6) admits two independent
solutions: the confluent hypergeometric function 1F1 (α; β; w)
[43] and the Tricomi function U (α; β; w) [43]. However, since
the condition P1(n) → 0 for n → ∞ is required and the mean
number of the gene product must be finite, we know that
H1 (z) takes only the form of Eq. (10) in the main text.
Thus, we obtain the analytical expression for the factorial
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probability-generating function G1 (z):

G1 (z) = eμ1zH1(z)

= Aeμ0z
1F1

{
α; β; [(a + 1) z − 1]

	μ − aμ0

(a + 1)2

}
.

(A7)

According to this expression and using the first relation
in Eq. (8) in the main text, we further obtain the following

analytical expression for G0 (z):

G0(z) = Aeμ0z[C1F1(α − 1; β − 1; aQ) − 1F1(α; β; aQ)],

(A8)

where α, β, C, Q, and A are given in the main text.
After having obtained the analytical expressions for G0(z)
and G1(z), we easily give the analytical expressions for
two factorial distributions P0(n) and P1(n) according to the
relationship between probability distribution and generating
function Pi(n) = (1/n!)∂nG/∂zn|z=0 with i = 0,1.
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