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Molecular-scale simulation of cross-flow migration in polymer melts
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The first ever molecular-scale simulation of cross-flow migration effects in dense polymer melts is presented;
simulations for both unentangled and entangled chains are presented. At quiescence a small depletion next to the
wall for the segmental densities of longer chains is present, a corresponding excess exists about one-half a radii
of gyration away from the wall, and uniform values are observed further from the wall. In shear flow the melts
exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length
based migration. In contradistinction, parabolic flow (where gradients in shear rate are present) causes profound
migration for both unentangled and entangled melts. Mapping onto polyethylene and calculating stress shows
the system is far below the stress required to break chains. Accordingly, our findings are consistent with flow
induced migration mechanisms predominating over competing chain degradation mechanisms thus resolving a
40 year old controversy.
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I. INTRODUCTION

Chain-length dependent migration effects due to shear rate
(or stress) gradients are of fundamental scientific interest.
Technologically, the phenomenon is important in polymer
processing [1,2], flow in porous media [3], and next generation
DNA sequencing technologies [4–6]. Cross flow migration
is thought to be influenced by many factors ranging from
chain stiffness and enthalpic interactions to geometric effects,
the type of flow field, and wall-slip phenomena. Despite the
importance of the phenomenon, it is difficult to obtain in situ
measurements of length-based migration. The combined fun-
damental interest, technological importance, and experimental
difficulties provide a strong motivation for studying the issue
using molecular-scale simulations.

To date, molecular simulations have focused on migration
effects in dilute polymer solutions with an emphasis on
DNA [7–11] These studies present differing results—showing
migration towards the center of the channel or the wall
depending on the potentials adopted and simulation technique
used. Dissipative particle dynamics have predicted migration
towards the walls [7] while Brownian dynamics and some
molecular dynamics treatments find migration to the midplane
[9–11]. Khare et al. [11] attempted to clear up some of
the confusion in the literature on solutions by attributing
migration to three different mechanisms: wall interactions,
thermal diffusion, and gradients in chain mobility. There
are just a few simulation studies of segregation effects in
dense polymer melts and these are limited to bidisperse
melts at reduced densities [12,13]; only one of these studies
incorporates flow effects [13]. Similarly, while theoretical
developments have progressed for dilute solutions [14–16],
results are sparse for melts [17,18]. Despite the fundamental
interest and technological importance, no simulation studies on
polydisperse melts have appeared in the literature, presumably
due to the computational complexity.
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While relatively little attention has been paid to migration
behavior in polymer melts in recent years, there is a long
history regarding the phenomena. Busse [19,20] noted the
possibility and proposed that shear rate gradients create
an entropic driving force that leads to segregation of high
molecular weights away from the walls. Early experiments
by Segre and Silverberg on two phase flow [21] were
followed by investigation of melts by Schreiber, Storey, and
Bagley [22,23]. Molecular weight measurements on linear
polyethylene samples extruded through dies of differing
lengths showed that the extrudate skin was of lower molecular
weight than the core. In contradistinction, Whitlock and
Porter [24,25] performed experiments on polystyrene and
only observed a low molecular weight skin at high shear
rates and elevated temperatures leading them to conclude
that the lower molecular weight at the interface is a result of
thermomechanical degradation. Subsequently, Lee and White
[26,27] used a capillary rheometer to show that in mixtures of
high and low density polyethylene, the higher viscosity HDPE
migrates to the core. In addition, for miscible mixtures of low
and high molecular weight polystyrene these same researchers
found an excess of low molecular weight material on their
extrudate exteriors. In a much more recent study Musil and
Zatloukal [28] study die “drool” during polymer extrusion;
the die drool phenomena corresponds to an accumulation of
polymer material at the die face (i.e., at the “lip”). These
authors also report that the die drool material possesses a
lower molecular weight than the rest of the extrudate and that
its formation directly precedes flow instabilities. Likewise Inn
has reported migration effects in bimodal molecular weight
distributions of metallocene-based polyethylenes in capillary
rheology [29]. In summary, despite its fundamental nature and
technological importance, the experimental literature is not
conclusive regarding the role of length-based migration versus
chain degradation.

II. METHODOLOGY

The present study investigates dense polydisperse polymer
melts on a lattice using the COMOFLO algorithm [30,31]
which is a variant of the COMOTION algorithm of Pakula
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[32]. This highly efficient technique enables the simulation of
coarse grained polymer melts on a face-centered-cubic lattice
at full density (volume fraction, ϕ = 1.0). In the present study
the chains are held between two hard walls (surface interaction
parameter, χs = 0). Algorithmic moves are designed to mimic
the conformational rearrangements of polymer chains. The
implementation of polydispersity [33], shear flow [30], and
parabolic flow [31] have been successfully demonstrated. In
addition, the algorithm accurately captures polymer dynamics
[30] and wall-slip phenomena [34].

A. Mapping of the lattice to real space and time

The COMOFLO algorithm running on a face-centered-
cubic lattice can be mapped onto any real polymer melt.
Here the physical system adopted is polyethylene due to its
prevalence and the large amount of available literature data.
From a first principles perspective, it is important to understand
that the lattice beads do not have an inherent mass so the
usual MLt (mass, length, time) system of dimensions is not
usually used but the perfectly equivalent FLt (force, length,
time) system is naturally suited for polymeric systems. In
addition, as shown below it is possible to assign a mass to
each bead when this is desired (for example when calculating
the Reynolds number).

1. Length scale matching—the end-to-end vector

In order to map the simulation length scale (that is, the
lattice spacing) to real polymer length scales, the end-to-end
vector connecting the first and last segment of a polymer chain
is utilized. For the model applied to monodisperse linear chains
it is found that the equilibrium ensemble averaged root mean
squared end-to-end vector [32], 〈R2〉1/2, scales as: [35]

〈R2〉1/2 1.58N0.5, (1)

where N is the total number of chain segments and the length
is measure in lattice units (mcs - Monte Carlo sites). The
r.m.s. end-to-end vector can be measured for any real polymer;
for polyethylene the ratio of the mean squared radius of
gyration (〈s2〉) divided by the molecular weight is relatively
independent of temperature [36] and this result can be recast
into the expression for the end-to-end vector given by Eq. (2):

〈R2〉1/2 5.76N0.5. (2)

In Eq. (2), the units of length are Angstroms and the number
of segments N is the number of repeating ethylene groups.
By equating Eqs. (1) and (2), the length of a lattice unit
is determined. In this case, where the mapping is onto
polyethylene, each lattice site is equivalent to 3.65 Å. The
mapping of the end-to-end vector establishes a real physical
length scale in Angstroms.

As mentioned, this length matching associates each lattice
site with an ethylene repeat unit. Using this same association of
an ethylene group per lattice site and matching an experimental
value for the melt density of polyethylene of 0.866 g/cm3 at
140 °C gives a similar value of 3.77 Å. Accordingly while the
matching is imperfect, it is reasonable and fully consistent with
a lattice spacing corresponding to 3.71 +/− 0.06 Å/mcs and a
segmental mass corresponding to polyethylene (28.06 g/mol).

2. Time scales—from Rouse to reptation dynamics

To calculate velocity profiles and the dynamic correlation
functions, a fundamental time step must be assigned. Time
steps are assigned to algorithmic moves that mimic confor-
mation isomerization of polymer chains. Following Mansfield
and Theodorou [37] the fundamental time step, tu, is defined
as,

tu = 1/NTotal Segments, (3)

where NTotal Segments is the total number of segments on the
lattice (the number of chains times the segments per chain,
N). If nmoves is the number of Monte Carlo moves, when
tu ∗ nmoves = 1 then on average each segment in the box has
experienced an attempted displacement. (In molecular dynam-
ics simulations each particle also experiences an “attempted
move” as a result of the forces imposed). Time is incremented
by tu for each local movement completed. These local moves
include end bond rotations, crankshaft-like motions around
two bonds, kink straightening or formation and displacement
of a few segments along the chain contour. Full details of these
elementary moves is outlined in the sixth chapter of Ref. [38].

Using the above time scheme, the COMOFLO algorithm is
capable of reproducing proper dynamics of polymer melts.
Dynamics are probed by calculating a set of correlation
functions that monitor the movement of specific segments in
the polymer chain as a function of time. In these correlation
functions the position of the ith segment is monitored as a
function of time (ri(t)). Some of the correlation function are
monitored relative to the position of the center of mass, rcm(t).
The first correlation function, g1(t), monitors the displacement
of the central segment and is given by

g1(t) = 〈[ri(t) − ri(t = 0)]2〉 for i = N

2
. (4)

The g2(t) correlation function monitors the displacement of
the central segment relative to the center of mass and is given
by

g2(t) = 〈{[ri(t) − rcm(t)]

− [ri(t = 0) − rcm(t = 0)]}2〉 for i = N

0
. (5)

The g3(t) correlation function monitors the displacement
of the center of mass and is given by

g3(t) = 〈[rcm(t) − rcm(t = 0)]2〉. (6)

The g4(t) correlation function monitors the displacement
of the chain ends (first and last segment) and is given by

g4(t) = 〈[ri(t) − ri(t = 0)]2〉 for i= 1 and N. (7)

Finally the g5(t) correlation function monitors the displace-
ment of the chain ends relative to the first center of mass and
is given by

g5(t) = 〈{[ri(t) − rcm(t)] − [ri(t = 0) − rcm(t = 0)]}2〉
for i = 1 and N. (8)

Polymer chains below the critical molecular weight for
entanglement follow Rouse dynamics. For Rouse dynamics
the g1, g2, g4, and g5 correlation functions scale as t1 at short
times and as t1/2 at intermediate times. At long times the g1
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FIG. 1. (Color online) The five correlation functions for an Nw = 128 (left) and Nw = 384 (right) monodisperse system (PDI = 1.0). The
hallmark t1/4 scaling is present in the entangled melt.

and g4 correlation functions scale as t1 and the g2 and g4 scale
as t0. Figure 1 demonstrates these different scaling regimes for
a monodisperse N = 128 system.

The transition from Rouse to reptationlike dynamics indi-
cates the transition from unentangled to entangled polymer
melts. For reptation dynamics the g1, g2, g4, and g5 the corre-
lation function scales as t1/2 for times below the entanglement
time, τe. The hallmark scaling of reptation dynamics occurs
at short time between the entanglement and Rouse time, τR,
and the g1, g2, g4, and g5 correlation functions scale as t1/4.
Above the Rouse time and between the disengagement times,
the g1, g2, g4, and g5 the correlation function scales as t1/2.
Finally, at long times, above disengagement time, the g1 and
g4 correlation functions scale as t1 and the g2 and g5 scale as
t0. An example of the reptationlike dynamic signature is also
provided in Fig. 1.

In previous work [30,33], the present algorithm has
demonstrated its ability to capture the crossover from Rouse
dynamics to reptationlike dynamics just by increasing chain
length for both monodisperse and polydisperse polymer melts.
This crossover occurs at a critical chain length of Nc of
approximately 100 segments.

It is also important to note that the g3(t) correlation function
scales as 6Dt at long times. This provides the method for
matching time scales between the simulation and real polymer
systems. An example of this long time behavior is provided
in Fig. 2. The measured self-diffusivities of polyethylene [39]
provide a means to map mct to real time.

Center of mass motion simulation data (from the g3
correlation function) for a N = 128 fully periodic system
(without walls) versus time is analyzed. A linear data fit
between 105 and 6 × 105 Monte Carlo time (mct) steps
has a slope of 5.78 × 10−3 (mcs2/mct) (with a regression
coefficient of 0.999). Using the lattice spacing determined
above, this value becomes 7.7 × 10−18 (cm2/mct). This slope
is set equal to six times the self-diffusion coefficient for
an oligomeric polyethylene having a molecular weight

of M = NMo = 128 (segments) × 28 [(g/mol)/segment] =
3584 g/mol. To find the self-diffusivity of the real molecule,
the experimental result summarized by Eq. (9) is used, [39],

Dself = 18.7

M2.3

(
cm2

s

)
. (9)

Equation (9) is valid for a reference temperature of
140 °C and gives a value of 1.25 × 10−7 (cm2/s) for M =
3584 (g/mol); six times this value is 7.50 × 10−7 (cm2/s).
Equating this later value with the simulation value of 7.7 ×
10−18 (cm2/mct) provides 1.0 × 10−11 (s/mct). If the analysis
is repeated for different N values (from 16 upwards) this same
order of magnitude is always found.

( )

(
)

FIG. 2. (Color online) An example of the long time behavior of
the g3 correlation function for the N = 128 case showing linear
behavior at long times. The slope of the long time behavior, m, is
equal to 6 times the self-diffusion coefficient.
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The simulations are able to access shear rates of
10−7 (1/mct) and still reliably extract viscosities meaning
simulations corresponding to real shear rates as low as
10−4 (1/s) are possible; this is one order of magnitude
lower than the best coarse grained molecular dynamics (MD)
simulations and 10 to 11 orders of magnitude lower than the
typical MD simulations on slip and other flow phenomena
presented in the literature.

3. Mapping viscosity and stress

In the simulations a dimensionless stress tensor σ is utilized
and is calculated according to Eq. (10),

σ

2νkT
= 3r r

2〈R2〉0
, (10)

where k is Boltzmann’s constant, T is temperature, ν is the
number of strands per unit volume, 〈R2〉0 is the mean squared
end-to-end vector under unperturbed conditions, and 〈r r〉 is
the dyadic product of the bond vectors.

Stress can be assigned physical values by matching values
of the zero shear viscosity to experimental systems. In the
simulations, entangled polymer melts of chain length N =
256 possess a zero shear viscosity of 3.1 (� mct) where
� indicates dimensionless stress units. Given the previous
mapping, the corresponding molecular weight is calculated as
7.2 kg/mol, which is above the critical molecular weight for
entanglement of polyethylene (Mc = 3.8 kg/mol). Regardless
of polydispersity, entangled polymer melts possessing the
same weight average molecular weight possess the same
zero shear viscosity. It is also known that the zero shear
viscosity scales as the weight average molecular weight to the
3.4 power (η0 ∼ N3.4). Using the experimental data provided
in Jordens et al. [40] and extrapolating to a molecular weight
of 7.2 kg/mol (corresponding to the N = 256 case) results in
a zero shear viscosity of 0.543 Pa s. Equating the experimental
value to the simulation value gives a viscosity conversion
factor of 0.175 (Pa s)/(� mct). Applying the conversion
factor between mct and real time of 1.0 × 10−11 (s/mct)
gives 1.75 × 1010 Pa/�. Equivalently, shear stress σxy can be
expressed as the product of the shear viscosity η and shear
rate γ̇ ,

σxy = ηγ̇ . (11)

By dividing the real shear stress σxy,real by the simulation
shear stress σxy,sim one arrives at the following relationship:

σxy,real

σxy,sim
= ηreal

ηsim

γ̇real

γ̇sim
. (12)

The simulation shear rate can be expressed in terms of the
real shear rate, using the previous time scale conversion as

γ̇sim

(
1

mct

)
= γ̇real

(
1

s

)
tconversion

(
s

mct

)
= 10−11γ̇real.

(13)

Substituting Eq. (12) into Eq. (11) and using the viscosity
conversion, the shear stress conversion is again

σxy,real

σxy,sim
= ηreal

ηsim

γ̇real

γ̇real × 10−11 = 1.75 × 1010 Pa/�. (14)

TABLE I. Summary of conversion for polyethylene melts.

Unit Conversion

Length 3.77 Ȧ/mcs
Time 1.0 × 10−11 s/mct
Mass 28.06 g/(mol segments)
Velocity 37.7 (m/s)/(mcs/mct)
Viscosity 0.175 Pa s/� mct
Stress 1.75 × 1010 Pa/�

Table I provides a summary of the conversion factors for
mapping the fcc lattice model onto polyethylene chains in real
space and time.

4. Reynolds and Weissenberg numbers

In order to calculate the Reynolds number all units are
converted from the simulation units into real world units.
Recall that the Reynolds number, Re, is defined as

Re = ρ〈v〉L
η

. (15)

Consistent with the mapping of real space, ρ = 886 kg/m3

is used for the density, L is the plate spacing, 〈v〉 is the
average velocity across the grap, and η is the viscosity. By
using the previously outlined conversions, three decades in
the Reynolds number are obtained, ranging 10−5−10−2, for
the systems studied. Such values are physically reasonable for
typical polymer melt processes.

In the context of this model the Weissenberg number Wi is
defined as

Wi = γ́ λ, (16)

where γ́ , is taken to be the wall shear rate in the simulations,
and λ is the longest relaxation time. In this case the ensemble
averaged τR is determined from the scaling of the correlation
function. In these simulations the dimensionless Weissenberg
number spans three decades from 0.1 to 10.

B. Variables used to characterize segregation

Different metrics can be used to describe chain segregation.
The segmental density ρseg,i(x) is averaged for each chain
length i as a function of box position and is defined as

ρseg,i(x) = nsi(x)

nsi,T /L
, (17)

where nsi(x) is the number of segments in an x plane belonging
to chain i and nsi,T is the total number of segments belonging to
chains of type i in the simulation. L is the spacing between the
hard walls so that when segments are uniformly distributed,
the defined density is unity. An excess gives a value higher
than 1 and depletion corresponds to values less than 1. To
demonstrate the enhancement of segmental densities under
flow conditions, the ratio defined by Eq. (18) is used,

ρ̃seg,i(x) = ρseg,i(x)[Flow]

ρseg,i(x)[No Flow]
. (18)
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The apparent wall shear rate γ̇A is determined from the flow
rate Q̇ through the channel following the usual rheological
protocol [41] by utilizing Eq. (19),

γ̇A = 6Q̇

WL2
, (19)

where W is the width in the transverse direction.

III. RESULTS AND DISCUSSION

Results for both unentangled and entangled chains are
reported. Unentangled polymer melts with Nw = 64 and
Nn = 44 (consisting of 313 chains: 86 of N = 16, 91 of N =
32, 127 of N = 64, 7 of N = 129, and 2 of N = 256) were
simulated at a plate spacing of 48 segments. In the entangled
case, results for a five chain system with corresponding weight
average chain length with Nw = 256 segments (analogous to
the weight average molecular weight, Mw). Entanglement in
the model begins at about N = 100 and is evident for N = 128
for a monodisperse system [30]. The plates are spaced at 128
lattice units apart corresponding to about ten radii of gyration
for the average chain length. Periodic boundary conditions are
applied in the other directions. The total number of chains is
1520; 469 of N = 64, 471 of N = 128, 496 of N = 496, 80 of
N = 512, and 4 of N = 1024. Details of equilibration and flow
implementation are available in earlier references [30,31,35].
Results for the unentangled case closely parallel the results
for the entangled case; one distinction is that for entangled
chains wall slip provides a slight shear rate gradient near the
wall which is absent in the unentangled case (see velocity
profiles).

A. Velocity profiles

Data for both unentangled and entangled systems are
presented including the velocity profiles associated with the
steady-state flows. Details of the flow biasing methodology
have been presented in earlier publications [30,31]. When no
biasing is applied, the system is quiescent whereas spatially
dependent biasing can produce either plane shear (Couette) or
parabolic (Poiseulle) flow. Briefly, to simulate flow in the y

direction, the random walk of segmental displacements must
be biased. To accomplish this biasing, a position in the box,
x div, is defined as

xdiv = x

nx + 1
− 1

2
, (20)

where nx is the number of lattice segments between the hard
walls in the x direction. This coordinate gives x div as −1/2
at the left wall, 1/2 at the right, and zero at the middle. To
implement shear flow, the probabilities of taking a step in the
forward, p+y , and backward direction, p−y , respectively are

p+y = pzero − pmaxxdiv, (21)

p−y = pzero + pmaxxdiv, (22)

py = pzero, (23)

where pzero is the probability of making a move in any direction
with no biasing present (i.e., pzero = 1/3) and pmax is the
biasing parameter that sets the flow strength. The sum of the

(
)

FIG. 3. (Color online) Velocity profiles for unentangled melt in
shear flow. Unlike entangled melts, even at higher Re numbers, slip
is not present so there is no shear rate gradient.

probabilities for motion is unity as they include py = pzero

corresponding to lateral motion. To implement parabolic flow,
Eqs. (24)–(26) are implemented,

p+y = pzero + pmax[1 − (2xdiv)2], (24)

p−y = pzero − pmax[1 − (2xdiv)2], (25)

py = pzero. (26)

In either case, when pmax is zero then p+y = p−y = py =
pzero = 1/3 is recovered and no flow occurs.

Figure 3 presents velocity profiles for the unentangled
Nw = 64 melt in shear flow. Unlike entangled melts, even
at high Re numbers, slip is not present so there is no shear
rate gradient in the near wall region. In contrast, Fig. 4
provides velocity profiles for the same unentangled melt
undergoing parabolic flow; at the higher Re numbers studied,
significant wall slip is present. A layer having a thickness of
approximately the average radius of gyration is pulled along
the wall by the flowing melt.

Figures 5 and 6 present analogous velocity profiles for the
higher molecular weight, NW = 256, melt. Figure 5 shows
the shear flow result; compared to the unentangled melt, slip
is clearly present at a Reynolds number which is an order
of magnitude lower. Such a finding is consistent with the
broad consensus that slip is prevalent in high molecular weight
systems [42,43].

B. Segmental distributions

Even in the absence of flow, the introduction of hard walls
creates deviations from a uniform distribution of segmental
densities. Figures 7 and 8 present the segmental densities
as a function of spacing for no flow conditions; there is a
near-wall depletion of segments from the longer chains and
slight near-wall enhancement of segments belonging to shorter
chains. Near the center of the box, segmental densities are
nearly uniform but show some effects of confinement due to
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(
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FIG. 4. (Color online) Velocity profiles for unentangled
parabolic flow. Unlike shear flow, at high Re numbers, significant
slip is present. Even when the slip velocity is modest, migration is
profound as shown in Fig. 13.

the width of the box being only 10 average radii of gyrations.
These simulation results agree with field theories based on
entropic arguments [44,45]—chain ends are preferred near the
reflecting walls because the perturbation of equilibrium chain
conformations are minimized.

Under simple shear flow (linear velocity field) the segmen-
tal density distributions are very similar to the quiescent case.
This is shown in Figs. 9 and 10. In Figure 9, unentangled
data is presented at a shear rate of 2.5 × 10−4 mct−1 which
corresponds to a physical shear rate of 2.5 × 107 (1/s). These
simulations are at high shear rates and yet almost no additional
migration other than that caused by the walls is evident. At

(
)

FIG. 5. (Color online) Velocity profiles for entangled shear flow.
At Re numbers of 10−5, wall slip is present which provides a shear
rate gradient. This small shear rate gradient explains the deviation
from no flow conditions in the segmental densities with increasing
Re shown in Fig. 14.

(
)

FIG. 6. (Color online) Velocity profiles for entangled parabolic
flow. As with shear flow, at high Re numbers, slip is present. However,
even for cases of minimal wall slip, migration is profound as shown
in Fig. 14.

even higher shear rates when slip and cohesive failure are
present [34], additional migration can occur but this is ac-
companied by velocity banding, that is, by an inhomogeneous
shear rate. The data of Figures 9 and 10 compared to that of
Figs. 7 and 8 enable the conclusion that simple homogeneous
shear does not lead to chain-length based migration in polymer
melts.

Poiseulle flow (where there is a parabolic velocity field
across the gap) is very different from simple shear with
respect to chain migration effects. When gradients in shear
rate are present, polymer melts exhibit strong flow migration
phenomena. For unentangled chains, Fig. 11 demonstrates
that at a wall shear rate comparable to the shear flow of
Fig. 9, migration is clearly present. Equivalently for entangled

FIG. 7. (Color online) Segmental densities for the unentangled
polydisperse system under quiescence.
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FIG. 8. (Color online) Segmental densities for the entangled
polydisperse systems under quiescence.

chains, comparison of Fig. 12 with Fig. 10 demonstrates
the same strong migration effects. The longest chains in the
simulations migrate to the midplane where the shear rate is
lowest. The shorter chains are highly preferred near the wall.
Unlike quiescence or shear flow, there is no recovery to a
uniform distribution away from the wall near the center of the
simulation box for the longest chains.

It is also observed that the excess of the longest chains at
the midplane is proportional to the strength of the flow field.
Figures 13 and 14 provide the normalized segmental density
for the longest chains right next to the wall and at the midplane.
As the wall shear rate is increased (equivalent to the flow rate or
Reynolds number increasing), the excess of the longest chain
segments at the midplane increases while those at the wall
decrease. The difference in these two diverges as the Reynolds

FIG. 9. (Color online) Segmental densities for the unentangled
polydisperse system under shear flow; segmental distributions are
very similar to the quiescent case (compare Fig. 7).

FIG. 10. (Color online) Segmental densities for the entangled
polydisperse system under shear flow; segmental distributions are
again very similar to the quiescent case (compare Fig. 8).

number increases. In contrast, values for the shear flow case
correspond to the quiescent case up to the onset of wall slip
(see velocity profiles in Figs. 3–6 ).

The simulations demonstrate that cross-flow migration
effects are dominated by gradients in shear rate. The walls
are nonenergetic and the system is at full occupancy meaning
compressibility (free volume) does not play a role in these
simulations (however, it is anticipated that in real polymer sys-
tems vacancies should migrate under flow). Under quiescent
and simple shear conditions, shorter chains are preferentially
located near the walls while the longer chains reside slightly
away from the wall; further away from the walls, chains
are nearly evenly distributed. This uniform distribution is
approximated by the center of the simulation box for both

FIG. 11. (Color online) Segmental densities for the parabolic
flow of an unentangled melt. Migration phenomena are clearly present
upon comparison with Figs. 7 and 9 (note change in ordinate scale).
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FIG. 12. (Color online) Segmental densities for the polydisperse
entangled system under parabolic flow; length-based migration
phenomenon is clearly present in comparison to Figs. 8 and 10 (note
change in ordinate scale).

quiescence and shear flow. In contrast, when subjected to
parabolic flow, very strong migration phenomena are present
at all flow rates. The longest chains in the melt migrate to
the midplane where the shear rate is lowest. Similarly, the
shortest chains migrate to the wall where the shear rate is
highest. The excess of longest chain segments at the midplane
compared to the wall is proportional to the Reynolds number
(equivalent to flow rate or wall shear rate). Since all simulations
are conducted in the athermal limit, the migration phenomena
are based purely on entropic factors.

FIG. 13. (Color online) Normalized segmental densities for the
unentangled case. Parabolic flow shows dramatic segregation whereas
shear flow mimics quiescent conditions. It is the curvature of the
deformation gradient that drives migration.

FIG. 14. (Color online) Normalized segmental density of the
longest chains (N = 1024) in the entangled system for a wide range
of Re numbers in shear and parabolic flow up to the point of cohesive
failure. Before the onset of cohesive failure, there is no migration
in shear flow, however, migration is present at all Re numbers in
parabolic flow.

1. Maximum stresses

In the implementation of this Dynamic Monte Carlo
technique the shear stresses range from 10−5 to 10−3 �.
This converts to a real stresses in the range 105−107 Pa. This
stress is less than the stress required to break a carbon-carbon
bond. Spectra, a commercial grade ultrahigh molecular weight
polyethylene fiber, has an ultimate tensile strength of 3.7 GPa.
This value is expected to be some fraction of the strength
of the actual chemical bonds and yet far exceeds (by two
orders of magnitude) the stresses reached in our simulations.
Accordingly, the critical stress required to break a carbon-
carbon bond is not obtained.

Similarly, a simple thought experiment can also be con-
ducted in order to arrive at an estimate for the shear stress to
break a bond. The work required to break the chemical bond
is related to the energy of the bond. The equivalence of energy
E and work W gives

E = W = Fd, (27)

where F is the force required to stretch the bond a distance d.
The energy of a CH2-CH2 bond is 88 kcal/mol [46]. The length
of a carbon-carbon bond is approximately 1.54 Å. To break the
bond we assume that it must be displaced by a distance of 1 Å.
Using Eq. (14) and solving for force a value of 5 × 10−9 N is
obtained. In order to get the stress, the force must be divided
by a cross sectional area. In this example, for a single bond,
the cross sectional area can be taken to be a circle of radius r ,
where the radius is twice the length of a carbon hydrogen bond.

This results in a cross sectional area of 12.5 Å
2

and a stress of
37.1 GPa. This simple calculation suggests that spectra fibers
achieve about 10% of the theoretically possible stress which
is a reasonable gross approximation.
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It can be concluded that the stresses achieved in the
simulations are far lower than the stress required to break
a carbon-carbon bond. Thus all results pertaining to slip,
migration, and rheology are representative of systems in which
stress-induced polymer degradation is not present. There is no
need to invoke thermomechanical degradation to explain low
molecular weight fractions on extrudate surfaces.

IV. CONCLUSIONS

All of the results presented in this study are consistent
with ideas regarding the physical mechanisms governing
nonequilibrium steady states. Namely, the system adopts the
state of lowest free energy, or correspondingly, the system
adopts a configuration in which the entropy generation
is minimized [47]. Viscous dissipation per unit volume is
calculated as the product of the shear rate with the shear
stress or, given that the shear stress is the viscosity times
the shear rate, as the viscosity times the shear rate squared.
In parabolic flow, the shear rate is highest at the wall so
if the system can arrange itself in a manner where lower
viscosity components reside in the regions of highest shear
rate, entropy generation is minimized. While it has been
known for decades that in the capillary flow of high polymers
shorter chains are found on the exterior of the extrudate,
there has been controversy as to the mechanism being flow

migration [22,23,26,27] or thermomechanical degradation
[24,25]. The present simulations resolve this ambiguity by
clearly demonstrating that cross-flow migration occurs in both
unentangled and entangled polymer melts.

While chain length migration phenomena have been
known for decades, the complexity involved has led to
little theoretical consideration [14,17,18]. Incorporation of
constitutive equations accounting for chain migration into
computational fluids dynamics packages awaits implementa-
tion and poses significant challenges. Accordingly, while the
present approach is limited to rather simplistic flow fields,
the quantitative nature of the simulations holds significant
promise for developing the detailed understanding needed for
many potential technologies. Among the most prominent is
next-generation DNA sequencing technologies [6]. Clearly
the present simulations show that a melt of polymer chains
can be fractionated according to molecular weight by dividing
a pressure driven flow into smaller channels. Repeated division
provides, in principle, arbitrary resolution in the precision of
separation. While presented for polydisperse melts, the same
cross-flow phenomenon is expected to hold for concentrated
solutions of DNA of varying lengths.
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