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Anisotropy of electrostatic interaction in smectic-C∗ liquid crystals
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The contribution to the free energy of distortion of the ferroelectric smectic-C∗ due to the electrostatic
interaction of polarization charges is calculated. These calculations are performed by accounting for the anisotropy
of the permittivity, which is essential for smectic-C∗. Fluctuations of the c director in an external electric field are
considered. It is shown that the anisotropy of the permittivity strongly affects the interaction of the polarization
charges, the spectrum orientation fluctuations, and the angular dependence of the light scattering intensity.
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I. INTRODUCTION

For many years smectic-C∗ (Sm-C∗) has attracted con-
siderable attention due to its unusual physical properties and
its various practical applications [1]. These unique properties
are caused by the fact that Sm-C∗ is formed by chiral
molecules that lead to the formation of the spontaneous
polarization P in the plane of the smectic layers. In each
smectic layer the polarization vector P is constant, but it
can rotate from layer to layer, preserving its absolute value.
It leads to the existence of various types of Sm-C∗ such as
ferroelectrics, antiferroelectrics, and ferrielectrics [2]. When
the temperature changes, phase transitions may occur between
different types of Sm-C∗, for example, between ferroelectric
and antiferroelectric [3,4]. The period of the orientational
structure in Sm-C∗ can vary from five or six to thousands
of smectic layers [5–8]. The uniform orientational structure
can be organized by the bounding surfaces or by the external
electric field.

The presence of spontaneous polarization P allows one to
operate the orientational structure of Sm-C∗. Weak external
fields can rotate the vector director n around the normal to
the smectic layers. In smectic-A∗ the strong electric field can
cause deviations of the optical axis from the normal [9], and in
Sm-C∗ it can cause the transition from the helical to the planar
smectic structure [10,11].

The presence of bounding surfaces and thermal fluctuations
in systems with spontaneous polarization leads to the emer-
gence of polarization charges with density − div P. The effect
of the electrostatic interaction of these charges is essential
both for the equilibrium structure of Sm-C∗ and for orientation
fluctuations in the external fields. Most often the long-range
electrostatic interactions are considered to be totally [1] or
partially [12] screened by impurity charges. The experimental
data obtained for the texture of islands [12] and for periodic
stripe patterns [13] in free-standing Sm-C∗ films are consistent
with the theoretical conclusions proposed in Ref. [12], that
the screened Coulomb interaction in two-dimensional systems
leads to renormalization of the bend elastic modulus.

The interaction between islands on freely suspended Sm-C∗
films was experimentally studied [14] by using optical
tweezers. The results were compared with the numerical
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calculations [15] where only the elastic energy was taken
into account. It was pointed out that it is necessary to
consider the spontaneous polarization in order to account,
in detail, for the interactions of chiral islands. The effect
of spontaneous polarization on the structural defects and
orientation dynamics was investigated in Ref. [16]. In this
work it was shown that spontaneous polarization results in an
increase of the orientation rigidity and orientation viscosity.
Also, the relaxation dynamics in Sm-C∗ was studied in
Ref. [17], where the multistage nature of the orientation
relaxation process was found.

Sm-C∗ can be uniaxial or biaxial and the dielectric
anisotropy can be positive or negative [10,18]. The properties
of Sm-C∗ are dependent on the anisotropy of the permittivity
since it is not small. In particular, the description of the unusual
electro-optic response in systems with essential molecular
biaxiality and a large slope of the molecular axes, up to 45◦,
become possible only when the biaxial permittivity tensor is
taken into account [19].

The contribution of unscreened electrostatic interactions
of the polarization charges to the intensity of the scattered
light was observed in experiments with well cleaned sam-
ples [20–24]. At small wave numbers, i.e., for long-wavelength
fluctuations, the role of the electrostatic interaction due to
spontaneous polarization increases. As a rule, when calculat-
ing the spectrum of the fluctuation orientation, the interactions
of polarization charges are considered by introducing an
averaged permittivity [1], i.e., without accounting for the
dielectric anisotropy of the medium. However, the anisotropy
of the permittivity is essential for a quantitative comparison
between theory and experiment [19]. It is well established from
the description of the light scattering in liquid crystals, studies
of the Freedericksz effect, investigation of the flexoelectric
effect, etc.

In this paper the free energy of the distortion of Sm-C∗ in
the external electric field is obtained by taking into account the
Coulomb interactions of polarization charges in an anisotropic
medium. The spectra of the c-director thermal fluctuations and
of the angular dependence of the scattered light intensity are
calculated. It is shown that the anisotropy of the permittivity
has a significant influence on the obtained results.

II. THE DISTORTION ENERGY OF Sm-C∗ IN EXTERNAL
ELECTRIC FIELD

Let us consider ferroelectric Sm-C∗ in the case when the
helix of the director rotation is unwound. We assume that the
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electric field is directed parallel to the smectic layers and that
the field is not too strong, so that in the free energy we can take
into account the interaction of the field with the spontaneous
polarization P only. The distortion free energy can be presented
as the sum of three contributions,

F = FFr + FP + FC. (2.1)

The first contribution, FFr , describes the energy of the
elastic distortion of the director field n, and in the unwound
Sm-C∗ it has the form

FFr = 1

2

∫
dr[K11(div n)2 + K22(n · rot n)2

+K33(n × rot n)2]. (2.2)

Here K11,K22, and K33 are Frank modules.
The second term, FP , describes the interaction of the

external electric field E with the spontaneous polarization P,

FP = −
∫

dr(P · E). (2.3)

The third contribution, FC , describes the Coulomb in-
teraction of polarization charges, which in inhomogeneous
ferroelectric Sm-C∗ has a density

ρ = − div P. (2.4)

It is possible to get an explicit form for this contribution by
using the expression for the field of the pointlike charge e in
a homogeneous anisotropic medium. The induction D obeys
the equation

div D = 4πeδ(r), (2.5)

where

Di = εikEk = −εik

∂φ

∂xk

, (2.6)

and εik is the tensor of permittivity. For the potential φ we
have the equation

εik

∂2φ

∂xi∂xk

= −4πeδ(r). (2.7)

This equation is reduced to the Poisson equation for the
pointlike charge e/

√
det ε̂ by the linear transformation of the

coordinates. Here det ε̂ is the determinant of the permittivity
tensor. The solution of Eq. (2.7) for the potential has the
form [25]

φ = e√
det ε̂ ε−1

ik xixk

, (2.8)

where ε̂−1 is the inverse of the permittivity tensor. Thus
the contribution of the Coulomb interaction of polarization
charges to the free energy can be presented in the form

FC = 1

2

∫
dr

∫
dr′ div P(r) div′ P(r′)√

det ε̂ ε−1
ik (r − r′)i(r − r′)k

. (2.9)

When writing F we mean the thermodynamic potential which
should be minimized in a fixed external field [1].

In equilibrium the polarization vector P is directed along
the external electric field E and the vector director n is in the

plane perpendicular to the field. Let us introduce the coordinate
frame with the z axis perpendicular to the smectic layers which
are supposed to be plane and parallel. The external electric field
is directed along the y axis and the projection of the vector
director n on the plane xy is directed along the x axis in the
equilibrium. The temperature of the Sm-C∗ liquid crystal is
supposed to be constant. Therefore the angle θ between the
director n and the normal to the smectic layers N = (0,0,1) is
kept constant.

By introducing the notations ε1,ε2,ε3 for the permittivities
along the principal axes it is possible to parametrize the
permittivity tensor in the form

εik = ε1δik + (ε3 − ε1)n0in0k + (ε2 − ε1)p0ip0k. (2.10)

Here we used the notations

n0 = (sin θ,0, cos θ ), c0 = (1,0,0),
(2.11)

p0 = [N × c0] = (0,1,0),

where n0 is the equilibrium vector director, c0 is the equi-
librium c director, and p0 is the unit vector directed in the
equilibrium along the vector of the spontaneous polarization
P.

In general, the free energy of deformation in smectics
contains the contributions due to the displacement of smectic
layers from the equilibrium position:

FSm = 1

2

∫
dr

{
B

(
∂u

∂z

)2

+ K(	⊥u)2

}
. (2.12)

Here u is the displacement of the smectic layers along the
z axis, and B and K are the layer compression and layer bend
elastic constant, respectively. In free-standing Sm-C∗ films the
free energy of deformation also contains the surface term

FSf = γ

2

∫
dr⊥{(∇⊥u1)2 + (∇⊥uN )2}. (2.13)

Here γ is the surface tension, and the displacements of the
two free surfaces of the film are denoted by u1 and uN . In
what follows we will be interested in the distortions of the
c-director field, and in this case we will neglect deviations
of the normal to the smectic layers from the z axis, as it is
usually done [12,16,20–24]. So, the fluctuations of the director
orientation are considered in the film consisting of flat layers.
Due to the thermal fluctuations, the director can rotate around
the z axis and then transit from one layer to another while
maintaining the angle θ . In this approximation, the free energy
of orientation deformation can be written as (2.1).

III. C-DIRECTOR FLUCTUATIONS

Random deviations of the c director from the x axis can
emerge due to thermal fluctuations. In this case,

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), c = (cos ϕ, sin ϕ,0),
(3.1)

p = (−sin ϕ, cos ϕ,0) = [N × c], P = P p,

where P is the spontaneous polarization, and ϕ is the angle
between the c director and the x axis. The directions of vectors
P, n, c are shown in Fig. 1. Supposing that the fluctuations are
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FIG. 1. Positions of the vectors n, c, and P in smectic-C∗. The
external electric field E is directed along the y axis.

small, we have

n ≈
[(

1 − ϕ2

2

)
sin θ,ϕ sin θ, cos θ

]
, c ≈

(
1 − ϕ2

2
,ϕ,0

)
,

(3.2)

P ≈ P

(
−ϕ,1 − ϕ2

2
,0

)
.

The contribution of the c-director fluctuations to the
distortion of the free energy has the following form in a
Gaussian approximation:

δF = 1

2

∫
dr

[
K11 sin2 θ

(
∂ϕ

∂y

)2

+K22 sin2 θ

(
cos θ

∂ϕ

∂x
− sin θ

∂ϕ

∂z

)2

+K33 sin2 θ

(
sin θ0

∂ϕ

∂x
+ cos θ

∂ϕ

∂z

)2

+ PEϕ2

+P 2
∫

dr′
∂ϕ(r′)
∂x ′

∂ϕ(r)
∂x√

det ε̂(ε̂−1)ik(r − r′)i(r − r′)k

]
. (3.3)

Determining the Fourier transformation as

ϕq =
∫

dr ϕ(r)e−iq·r, ϕ(r) = 1

V

∑
q

ϕqe
iq·r, (3.4)

where V is the system volume, we get

δF = 1

2V

∑
q

[
K11q

2
y sin2 θ+K22 sin2 θ (qx cos θ − qz sin θ )2

+K33 sin2 θ (qx cos θ + qz sin θ )2 + PE + P 2q2
x G−q

]
×|ϕq|2, (3.5)

where

G−q =
∫

dreiq·r 1√
det ε̂(ε̂−1)ikrirk

. (3.6)

The radicand in (3.6) has the form

det ε̂ (ε̂−1)ikrirk = ε1ε2ε3
[
(αrx − βrz)2 + γ 2r2

y + r2
z

]
ε(θ )

,

(3.7)
where

ε(θ ) = ε1 sin2 θ + ε3 cos2 θ, α = ε(θ )√
ε1ε3

,

(3.8)

β = (ε3 − ε1) sin θ cos θ√
ε1ε3

, γ =
√

ε(θ )

ε2
.

To provide integration in Eq. (3.6) it is convenient to
introduce the new variables Rx,Ry,Rz:

rx = 1

α
Rx + β

α
Rz, ry = 1

γ
Ry, rz = Rz. (3.9)

For the function G−q we get

G−q = 1

ε(θ )

∫
dR

eiQ·R

R
= 1

ε(θ )

4π

Q2
, (3.10)

where

Q =
(

qx

α
,
qy

γ
,qz + β

α
qx

)
. (3.11)

Thus we have

G−q = 4πε(θ )

ε1ε3 q2
x + ε2ε(θ )q2

y + [qx(ε3 − ε1) sin θ cos θ + qzε(θ )]2
. (3.12)

Substituting Eq. (3.12) into Eq. (3.5) we obtain the following expression for the distortion free energy of the Sm-C∗:

δF = 1

2V

∑
q

M(q)|ϕq|2. (3.13)

Here

M(q) =
{
K11q

2
y sin2 θ + K22 sin2 θ (qx cos θ − qz sin θ )2 + K33 sin2 θ (qx cos θ + qz sin θ )2 + PE

+ 4πP 2q2
xε(θ )

ε1ε3 q2
x + ε2ε(θ )q2

y + [qx (ε3 − ε1) sin θ cos θ + qzε(θ )]2

}
. (3.14)
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Note that the last term in the curly brackets is positive for any
relation between the principal values of the permittivity tensor.

For the c-director fluctuations we have

〈|ϕq|2〉 = kT V

M(q)
, (3.15)

where T is the temperature and k is the Boltzmann constant.

IV. LIGHT SCATTERING BY C-DIRECTOR
FLUCTUATIONS

It has been shown that accounting for the anisotropy of the
permittivity in the Coulomb interaction of polarization charges
alters the correlation function of the c-director fluctuations.
It is of interest to find out how it affects the angular
dependence of the light scattering intensity caused by the
c-director fluctuations. The intensity of the scattered light can
be expressed as [26–28]

I = V I0k
4
0

(4πR)2
e(s)
α e

(s)
β Wανβμ(qsc)e(i)

ν e(i)
μ , (4.1)

where I is the intensity of the scattered light, I0 is the
intensity of the incident radiation, k0 is the wave number of
the incident and scattered light, R is the distance between
the scattered volume and the observation point, e(i) and e(s)

are the polarization vectors of the incident and the scattered
light, respectively, qsc = ks − ki is the scattering vector, and
ki and ks are the wave vectors of the incident and the scattered
light, respectively. The description of the light scattering is
provided in the Born approximation for the isotropic medium.
The function Wανβμ(qsc) in Eq. (4.1) is the Fourier image
of the correlation function of the permittivity fluctuations ε̃

at the optical frequency. The notation ε̃ is introduced in order to
distinguish it from the static permittivity which was included in
the previous sections. In the coordinate representation Wανβμ

has the form

Wανβμ(r1,r2) = 〈δε̃αν(r1)δε̃βμ(r2)〉, (4.2)

and in the homogeneous medium it depends on the difference
r1 − r2. The brackets 〈· · · 〉 correspond to the statistical
averaging. The fluctuation of the permittivity tensor ε̃αβ =
ε̃1δαβ + (ε̃3 − ε̃1)nαnβ + (ε̃2 − ε̃1)pαpβ in the case of small
deviation angles ϕ has the form

δε̃αβ =
[
	ε̃

(
∂nα

∂ϕ
nβ+nα

∂nβ

∂ϕ

)
+ δε̃

(
∂pα

∂ϕ
pβ+pα

∂pβ

∂ϕ

)]
ϕ,

(4.3)

where 	ε̃ = ε̃3 − ε̃1 and δε̃ = ε̃2 − ε̃1. Variables in the ex-
pression in square brackets are calculated for ϕ = 0. In explicit
form the fluctuation contribution to the permittivity tensor is
presented as

δε̃ =
⎛
⎝ 0 	ε̃ sin2 θ − δε̃ 0

	ε̃ sin2 θ − δε̃ 0 	ε̃ sin θ cos θ

0 	ε̃ sin θ cos θ 0

⎞
⎠ϕ.

(4.4)

Let us consider the intensity of scattered light in the
geometry shown in Fig. 2 when the incident light is directed
along the normal to the smectic layers, i.e., ki = k0(0,0,1).

FIG. 2. Positions of the vectors n, c, and P in smectic-C∗. External
electric field E is directed along the y axis.

For definiteness we assume that the incident light polarization
vector is directed perpendicular both to the normal of the
smectic layers and to the external electric field, i.e., along the
x axis, e(i) = (1,0,0). The scattered radiation is determined by
the wave vector ks = k0(sin θsc cos ϕsc, sin θsc sin ϕsc, cos θsc),
where θsc and ϕsc are the polar and the azimuthal angles,
respectively. We consider the case when the polarization
vector e(s) is parallel to the smectic layers, i.e., e(s) =
(−sin ϕsc, cos ϕsc,0).

The angular dependence of the scattered light intensity in
this case is given by

I ∼ cos2 ϕsc(	ε̃ sin2 θ − δε̃)2〈|ϕq|2〉. (4.5)

The calculations are performed according to Eq. (4.5) for
two geometries. In the first case the intensity of light scattering
in the xz plane was analyzed. In another geometry the depen-
dence of the scattering intensity on the azimuthal angle ϕsc was
studied. In the calculations for Sm-C∗, the following values
of the parameters were used: K11 = K33 = 1.2 × 10−11 N,
K22 = 0.6 × 10−11 N, ε̃1 = 2.25, ε̃2 = 2.56, ε̃3 = 2.89, θ =
15◦, k0 = 107 m−1. We assumed that the system is in a uni-
form external electric field E = 0.3 statvolt/cm = 8994 V/m
directed along the y axis. The results of the calculations in
these geometries are presented in Fig. 3. As far as, according
to Eqs. (4.1)–(4.3), the scattering intensity I for any geometry
contains the quantity 〈|ϕq|2〉, we also present its angular
dependence, which is shown in Fig. 4. The calculations were
performed with the same parameters of the liquid crystal as
in Fig. 3.

Note that all panels of Fig. 3 illustrate the angular depen-
dence of the scattered light intensity for three systems with
the same mean value of the permittivity ε = (ε1 + ε2 + ε3)/3
but with different principal values of the permittivity tensor.
The systems considered, isotropic, uniaxial and biaxial, differ
from each other only by the term describing the Coulomb
interaction of the polarization charges. From this figure one can
see that the maximum difference in the angular dependence of
the scattered light intensity is observed in the region of small
angles for θsc and for small angles and angles close to 180◦
for ϕsc. The calculations are completed for not too large values
of polarization P . Nevertheless, in the region of small θsc and
ϕsc the calculated scattered light intensity for the anisotropic
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FIG. 3. (Color online) Angular dependence of the light scattering
intensity. (a) and (b) show the dependencies of the scattered light
intensity on the polar angle θsc for fixed azimuth angles φsc.
(c) and (d) show the dependence of the scattered light intensity on
the azimuth angle φsc for the fixed polar angle θsc = 20◦. In (a) and
(c) the polarization P = 5 statcoulomb/cm2 = 1.67 × 104 nC/m2.
In (b) and (d) the polarization P = 20 statcoulomb/cm2 = 6.67 ×
104 nC/m2. In all panels the scattering intensity is presented for three
different combinations of the principal values of the static permittivity
tensor. The solid red lines correspond to ε1 = ε2 = ε3 = 5, the dashed
black lines are for the uniaxial system with ε1 = ε2 = 4 and ε3 = 7,
and the dotted blue lines are for the biaxial system with ε1 = 3,
ε2 = 7, and ε3 = 5.

model systems may differ by more than half as much compared
with the isotropic system. This is due to the difference in the
form of the correlation function of the orientation fluctuations,
whose angular dependencies are shown in Fig. 4.

V. DISCUSSION

The importance of the Coulomb interaction of polarization
charges in Sm-C∗ manifests itself in many studies. This
interaction affects the equilibrium texture and dynamics in
Sm-C∗ films [12–14,16,17], as well as fluctuations in the
orientation and the scattering of light on them [20–24]. It was
found that the presence of a large spontaneous polarization
leads to an increase of the effective rigidity of the orientation
of the director field [12,16,20–24] and to an increase in the
effective viscosity of the orientation [16,20–24].

The relaxation of the director fields around a vortex of
strength +1 in free-standing Sm-C∗ films was studied experi-
mentally in Ref. [17] by means of polarizing microscopy. The
relaxation of the initial twisted configuration to equilibrium
was also studied. It was found that the relaxation dynamics is
highly nonlinear and contains two stages: a slow one when
the phase is pinned in the center and on the boundary of

FIG. 4. (Color online) Angular dependence of the Fourier image
of the c-director fluctuation correlation function. The parameters used
are the same as in Fig. 3.

the film, and a fast one when the c director flips by 180◦
in the center of the film, resulting in unwinding of the spiral
pattern. This phenomenon is the result of differences in the
elastic moduli Ks and Kb. In the theoretical analysis of the
spontaneous polarization this is completely neglected, since in
these systems it was small. At the same time it was pointed
out that in systems with a large polarization, an account of the
electrostatic interaction is needed.

In Ref. [13] the effect of spontaneous polarization on elastic
properties of free-standing Sm-C∗ films was studied experi-
mentally. It was pointed out that the influence of polarization
charges on elasticity had not been completely understood.
For a qualitative description of the elastic properties, the
one-constant approximation is sometimes used. It was pointed
out that this approximation simplifies the analysis, but it
is generally not justified by experiments in both polar and
nonpolar smectics [16,29]: Kb may essentially differ from Ks

and the elastic anisotropy Kb/Ks depends strongly on polarity.
The magnitude of the bare ratio Kb/Ks was determined in the
racemic mixture from the structure of periodic stripes and
2π walls in a magnetic field. Periodic stripe structures were
used to study the influence of polarization on elasticity.
Polarization dependent contributions to the elastic anisotropy
and to the bend elastic constant show a P 2 behavior, in
agreement with theoretical predictions [12].

The proposed theoretical models which consider the
Coulomb interaction in the presence of polarization charges
screening ionic impurities [12,23] show that a combination
of large spontaneous polarization and a low concentration of
screening ions produces the largest increase in the effective
bend elastic constant.

Obviously, the anisotropy of the material plays a crucial role
in the description of Sm-C∗ cells and films. The one-constant
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approximation in the elastic contributions to the free energy
allows one to only qualitatively describe the observed effects,
and not for all cases. It would be natural to expect that for a
quantitative description of the experimental data it is necessary
to consider the interaction of the polarization charges by
taking into account the anisotropic nature of the medium in
which these charges interact. In particular, it is of interest to
carry out the generalization of the theoretical models with
an averaged permittivity which was used to describe the
Coulomb interaction in two-dimensional films [1,12,20,21],
or in three-dimensional systems [23] using the real anisotropic
permittivity. In this paper we have shown that the inclusion
of the anisotropy of permittivity in the description of the
Coulomb interaction of the polarization charges in Sm-C∗
is not a difficult problem, and at the same time it leads
to noticeable effects. Our description was provided for the
simplest, but interesting, case where the helix of the director
rotation is unwound, because for this case we can obtain
the analytical expression for the correlation function of
the c-director orientation fluctuations in particular. As an
illustration, we have considered the angular dependence of

a scattered light intensity. From Figs. 3 and 4, which illustrate
our calculations, we can see a sufficient difference between
the angular dependencies of the light scattering intensity with
and without accounting for the anisotropy of the permittivity.

It will be interesting to provide a light scattering experiment
for Sm-C∗ films with sufficient and different anisotropies of
the permittivity, but with similar parameters. It is of interest to
take into account the anisotropy of permittivity in the Coulomb
interaction of polarization charges to describe the textures
in films of Sm-C∗ with spatial structural distortions arising
from the presence of impurities, islands, special boundary
conditions, external electric or magnetic fields, etc. But it
seems that for these cases appropriate calculations can be
provided only numerically.
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