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Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory
and no local hot spots
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We present results from direct, large-scale molecular dynamics simulations of homogeneous bubble (liquid-
to-vapor) nucleation. The simulations contain half a billion Lennard-Jones atoms and cover up to 56 million
time steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of
many bubbles per run in simple direct micro-canonical simulations while the ambient pressure and temperature
remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous,
smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble
nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of
CNT predictions; only at very low temperatures does CNT underestimate the nucleation rate significantly.
Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our
recent vapor-to-liquid nucleation simulations. The critical bubbles sizes derived with the nucleation theorem
agree well with the CNT predictions at all temperatures. Local hot spots reported in the literature are not seen:
Regions where a bubble nucleation event will occur are not above the average temperature, and no correlation of
temperature fluctuations with subsequent bubble formation is seen.
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I. INTRODUCTION

Bubble nucleation happens in boiling and cavitation pro-
cesses in a wide range of contexts and disciplines [1], e.g.,
the electroweak [2,3] and QCD [4] phase transitions in
cosmology, direct dark matter detection experiments [5–7],
vulcanism [8] and hydrodynamic cavitation erosion [9], and
sonochemistry [10]. Despite its fundamental importance, the
detailed mechanism of bubble nucleation remains unclear [11],
and accurate predictions of bubble nucleation rates are still not
yet possible [11,12].

In pure liquids, vapor bubbles must form via homogeneous
nucleation, which is often suppressed by a large free energy
barrier. For this reason it is possible to heat up pure liquids
to a superheated, metastable state before stable bubbles form
(boiling). Similarly, reducing the pressure below the saturation
pressure leads to a metastable, stretched liquid and eventually
to its rupture (cavitation) [1,9,13].

The most widely used model to predict bubble nucleation
rates is the classical nucleation theory (CNT) [9,13–16].
More recently density functional theory (DFT) [12,17], square
gradient theory [18] and some modifications of the classical
theory [19,20] have been employed to model the bubble
nucleation process. Measuring bubble nucleation rates in a
perfectly homogeneous liquid is very challenging in laboratory
experiments [21], but can be achieved in principle in computer
simulations, both with the Monte Carlo method [22] and with
molecular dynamics (MD) [11,23–33]. One main conclusion
of most of the MD simulations was that CNT generally
underestimates bubble nucleation rates by very large factors.
However, most of the existing simulations use only around
10 000 or fewer atoms and could be affected by their
small simulation volumes [30,31,34] and by errors from
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applying methods like forward flux sampling (FFS) to the
bubble nucleation process (see Ref. [35] for a discussion of
possible problems). Up to now, most molecular dynamics
simulations were only able to accommodate one bubble
nucleation event [36], and with a large number of simulations
they can constrain the mean first passage times (MFPT) [37].
However, due to unknown initial lag times and the early
transient nucleation phase, the relation between MFPT and the
true steady-state nucleation rate is more complex than usually
assumed [38], and steady-state nucleation rate estimates based
on MFPT can disagree by several orders of magnitude [39].
Here we present the first direct MD simulations which are
large enough to resolve several bubble nucleation events in the
steady-state nucleation phase and allow direct measurements
of the bubble nucleation rates for the first time.

Section II provides a summary of the CNT, Sec. III
describes our MD simulations and analysis methods. In
Secs. IV, V, VI, and VII we present the results for the
nucleation rates, critical sizes, size distributions, and our
investigation into local hot spots preceding bubble formation.
Finally, Sec. VIII concludes the paper by summarizing our
findings.

II. CLASSICAL NUCLEATION THEORY

Classical nucleation theory (CNT) [9,13–16] estimates the
work required to form a spherical vapor bubble of radius r

under the assumption of mechanical equilibrium,

�G(r) = 4πr2γ − 4π

3
r3(Peq − PL)δ, (1)

where γ refers to the planar surface tension, and PL is the
ambient pressure in the liquid. The vapor pressure in the bubble
PV is expected to be slightly smaller than the equilibrium vapor
pressure at saturation Peq, and the reduced pressure difference
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TABLE I. Simulation properties: initial temperature T , number
of atoms N , periodic cube size L, atom number density n, and total
run time.

T L n tend

Run ID [ε/k] N [σ ] [σ−3] [τ ]

T85r1 0.855 536 870 912 987.0 0.558365 562.5
T85r2 0.855 536 870 912 984.0 0.563488 750.0
T85r3 0.855 536 870 912 981.0 0.568673 2885.0
T85r4 0.855 536 870 912 978.0 0.573923 3250.0
T85r2h 0.855 67 108 864 492.0 0.563488 1500.0
T85r2q 0.855 8 388 608 246.0 0.563488 4162.5
T8r1 0.80 536 870 912 957.0 0.612537 300.0
T8r2 0.80 536 870 912 954.0 0.618336 437.5
T8r3 0.80 536 870 912 951.0 0.624207 2375.0
T7r1 0.70 536 870 912 921.0 0.687212 1375.0
T7r2 0.70 536 870 912 920.5 0.688333 1300.0
T7r3 0.70 536 870 912 919.5 0.690581 667.5
T7r4 0.70 536 870 912 918.0 0.693972 1212.5
T6r1 0.60 536 870 912 898.0 0.741380 300.0
T6r2 0.60 536 870 912 897.0 0.743862 328.0
T6r3 0.60 536 870 912 896.0 0.746356 600.0

is approximated with the Poynting correction factor δ:

�P = PV − PL � (Peq − PL)δ, (2)

and δ is given by [14]

δ � 1 −
(

ρV

ρL

)
+ 1

2

(
ρV

ρL

)2

. (3)

A common assumption is that the pressure in the bubble equals
the equilibrium vapor pressure Peq, i.e., the Poynting correc-
tion is neglected (δ = 1). Far below the critical temperature,
the effect of the Poynting correction becomes very small (see
Table I). In this paper we consider both cases: values assuming
δ = 1 will be labeled CNT, and those with δ < 1 from Eq. (3)
will be called PCNT.

The free energy �G(r) has a maximum at the critical
radius rc,

rc = 2γ

�P
� 2γ

(Peq − PL)δ
, (4)

and the height of the free energy barrier equals

�G(rc) = 16π

3

γ 3

(�P )2
= 4πr2

c γ

3
= −4π/3 r3

c �P

2
, (5)

which is simply one third of the surface term from Eq. (1) at
rc or minus one half of the volume term at rc.

Small bubbles (r < rc) are understood to form as density
fluctuations in the liquid; they are short-lived and are found at
any time at a number density of

n(r) = nL exp

[
− �G(r)

kT

]
, (6)

where nL is the number density in the liquid phase.
The steady-state homogeneous nucleation rate J is pro-

portional to the abundance of critical bubbles times a kinetic

factor [9,14]:

J = nL

[
2γ

πm

]1/2

exp

[
− �G(rc)

kT

]
. (7)

The prefactors in Eqs. (6) and (7) have no rigorous justification,
and a range of other expressions are sometimes used. The
different prefactors only differ by factors of a few, which is
small compared to the large uncertainties in the exponential
factor (see Ref. [40] for an overview).

III. SIMULATION AND ANALYSIS METHODS

A. Simulation code, setup, and parameters

The simulations were performed with the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
code [41]. We use a truncated force-shifted Lennard-Jones
(TSF-LJ) potential

uTSF(r) = uLJ(r) − uLJ(rcut) − (r − rcut)
duLJ(rcut)

dr
, (8)

for r � rcut and uTSF(r) = 0 for r > rcut. uLJ(r) is the widely
used 12-6 Lennard-Jones (LJ) potential

uLJ(r)

4ε
=

(
σ

r

)12

−
(

σ

r

)6

. (9)

At the cutoff radius rcut = 2.5σ , both the truncated force-
shifted potential uTSF and its first derivative vanish contin-
uously. This interaction potential is the same as used in
two recent studies of bubble nucleation based on smaller
simulations with a few thousand atoms [11,31]. The properties
of the TSF-LJ fluid are given in Table II. Our simulations
contain N = 228 = 536 870 912 particles.

Four sets of simulations were performed, one to probe the
boiling regime at superheated conditions at T = 0.855ε/k

(same as in Refs. [11,31]), two in the cavitation regime at
T = 0.7ε/k (the same as in Ref. [31]) and at T = 0.6ε/k,
where negative pressures are required to trigger bubble
nucleation, and one in between at T = 0.80ε/k. The critical
temperature of the TSF-LJ potential with rcut = 2.5σ is
Tc = 0.935ε/k [11,42]. For typical simple fluids, the onset
of homogenous superheated boiling requires roughly T >

0.9ε/k [9]. Argon system units can be defined by matching
the critical temperature: for the full standard LJ potential

TABLE II. Equilibrium properties of the TFS-LJ fluid: Pressure
Peq, densities of vapor and liquid phase, ρv and ρl, Poynting correction
δ, and planar surface tension γ . Values in parentheses are 1σ errors
in the last given digit(s). These values were obtained from MD
simulations of a liquid slab in equilibrium with the vapor phase by
calculating the Kirkwood-Buff pressure tensor across the two planar
vapor-liquid interfaces; see Refs. [44,51] for details.

T Peq ρv ρl γ

ε/k [ε/σ 3] [m/σ 3] [m/σ 3] δ [ε/σ 2]

0.855 0.04610(8) 0.0833 0.595 0.870 0.0895(24)
0.8 0.03028(6) 0.0505 0.652 0.926 0.168(3)
0.7 0.01186(7) 0.0198 0.729 0.973 0.329(4)
0.6 0.00337(4) 0.00606 0.792 0.992 0.511(5)
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FIG. 1. (Color online) The temperature (dashed line) and pres-
sure (solid line) differences from the targets for the setup and
measurement phase of our shortest simulation, T6r1. In most runs the
measurement phase is far longer. In this case, the rapid growth of only
a few bubbles quickly leads to a significant pressure increase. Despite
this, we are able to measure accurate nucleation rates, shown in the
upper panel of Fig. 6. Size distributions and formation rates discussed
in this paper are taken only during the simulations’ “measurement”
phase, after the setup, yet before the pressure increase.

ε/k = 119.8 K, and for the TSF-LJ potential used here one
gets ε/k = 161.3 K, σ = 3.405 Å, m = 6.634 × 10−23 g, and
τ = σ

√
m/ε = 1.86 ps, when converting to SI units.

The simulation box is a fixed cubic volume with periodic
boundaries. We use the standard velocity-Verlet (also known
as leap-frog) integrator, and the time steps are set to �t =
0.0025τ � 4.65 fs. The liquid was first equilibrated in a stable
state at a fixed temperature (e.g., T = 0.95ε/k) for 10 000 time
steps. Then the temperature was reduced linearly to the target
temperature of (e.g., T = 0.855ε/k) over 15 000 time steps
and kept fixed at this temperature for another 10 000 steps.
During this entire setup phase the average temperature in the
entire simulation box was controlled by simply rescaling all the
particle velocities at every time step. After this setup period the
velocity rescaling was turned of,f and the runs were continued
as microcanonical simulations, i.e., with a constant number of
particles, constant volume, and constant total energy (NVE):
We simply and directly integrate the classical equation of
motion of the atoms. No artificial constraints like thermostats
or barostats are used during our simulations, and we are
able to avoid applying such methods developed for systems
near thermodynamic equilibrium to the highly nonequilibrium
process of bubble nucleation. Figure 1 illustrates the pressure
and temperature evolution over the simulation setup phase.

Energy is conserved very accurately over long time scales:
in our longest run (T85r4), the total energy decreased over
1.3 million time steps, yet only by 1.7 × 10−7 times the initial
energy. For our low temperature T6 and T7 runs we use
larger time steps of �t = 0.004τ . The total energy is still
conserved within less than 2.6 × 10−5 times the initial energy
in all these runs. While no large, stable bubbles nucleate the

FIG. 2. (Color online) Projection through run T8r1 at t = 230τ .
Every pixel corresponds to a column of 319 cells of size (3σ )3. A
larger number of cells below the threshold density of 0.2 m/σ 3 results
in a lighter color (gray scale). This run contains about 120 large,
stable bubbles at this time; see Fig. 4. See Supplemental Material for
animations of such projections [46].

thermodynamic states of our systems remain constant: at the
end of run T85r4 the average temperature is T = 0.85510ε/k

and the average pressure increased by only 0.22%.

B. Bubble nucleation and growth

When bubbles nucleate and surpass the critical size, they
quickly reach a linear growth regime, where their radius grows
at a constant, rather high speed: v � 0.03σ/τ at T = 0.855ε/k

and even faster, v � 0.3σ/τ , at T = 0.7ε/k. The quickly
growing bubbles will at some point start to occupy a significant
fraction of the total simulation volume, and the pressure in the
simulation box eventually increases. However, our simulation
volumes are large enough to allow the formation of many
critical size bubbles without a significant pressure increase in
most simulations. Due to the relatively large sizes of critical
bubbles and the fast growth of bubbles above the critical size,
direct NVE simulation of several bubble nucleation events at
constant pressure requires very large simulations and is just
becoming feasible with the particle numbers we use here. For
the nucleation rate analysis we only use the simulation period,
where the total pressure remains within a few percent of the
initial pressure. The tolerance could be set to less than 4%
for most runs, but for runs T85r1 and T7r2 it needed to be
increased to 10%. to get a long enough period containing
several bubble nucleation events. The end of this period is
indicated by vertical dashed lines in Figure 1 and Figs. 3 to 6,
and the average temperatures and pressures during the analysis
period are given in Table III.

Using a large number of smaller NVE simulations (with
up to 11.7 million particles) it is possible to measure the
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FIG. 3. (Color online) Number of bubbles above various thresh-
old volumes as a function of time for three runs at T = 0.855ε/k.

average time required to see one bubble nucleation event;
however, one cannot continue into the steady-state nucleation
regime, which affects the accuracy of the measured bubble
nucleation rates [30]. Direct NVE simulations of vapor-to-
liquid simulations on the other hand are a bit less demanding,
with similar particle numbers as here (N � 109) one can obtain
excellent liquid droplet statistics and very accurate nucleation
rate measurements in the steady-state regime [43–45].

After the “measurement” phase, when the volume occupied
by bubbles becomes larger, the average pressure increases
significantly (see Fig. 1). The potential energy becomes more
negative as the remaining liquid settles into a slightly denser,

FIG. 4. (Color online) Number of bubbles above various thresh-
old volumes as a function of time for two runs at T = 0.8ε/k.

energetically more favorable configuration. At the same time
the average temperature increases and the total energy is
conserved very accurately, even during this very dynamic
phase, far from thermodynamic equilibrium.

C. Void identification and bubble properties

Vapor bubbles are identified with the following algorithm
(adapted from Refs. [30,32,33]): The simulation volume is
covered with a grid of cubic cells of size (3σ )3. At regular
intervals (usually every 1000 time steps) the positions of
all cells, which have a number density smaller than 0.2σ−3

[i.e., less than six atoms within (3σ )3], are written out (see
Fig. 2). Since ρV � ρL at all temperatures simulated here, the
identification of vapor bubbles is simple and robust. It works
well for a range of threshold densities between ρV and ρL: We
confirmed that using other density thresholds (0.15σ−3 and
0.3σ−3) does not affect the resulting nucleation rates, which
was found also in Ref. [30]. Using different cell sizes ((2σ )3

and (4σ )3) does not affect the measured rates either.
Then low-density cells are linked together into individual

bubbles by iteratively checking for nearby low-density cells at
the 26 neighboring positions in the cubic grid. The resulting
bubble volumes are stored and used for the nucleation rate
measurements. We also analyzed run T855r2h using smaller
cells (2σ )3 and found the same nucleation rate.
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FIG. 5. (Color online) Number of bubbles above various thresh-
old volumes as a function of time for three runs at T = 0.7ε/k.

For a more detailed analysis of bubble properties some full
simulation snapshots are written out. Bubbles near and below
the critical size have significantly nonspherical, complicated
shapes (as described in Ref. [31]), while the larger bubbles
are roughly spherical. The vapor-liquid transitions are smooth
and wide, as found in DFT [17] and square gradient [18]
calculations. Comparisons with bubble density profiles show
that our volume estimates V based on the number of low-
density cells are reliable: The resulting spherical radii rMD =
(3V/4π )1/3 lie only slightly below the equimolar radii, which
would be the radius of a constant density bubble with a sharp
interface (where the density jumps from the central value ρV

to the bulk liquid value ρL) and the same integrated mass [13].

FIG. 6. (Color online) Number of bubbles above various thresh-
old volumes as a function of time for three runs at T = 0.6ε/k.

The differences depend on temperature, but not on bubble
size: At T = 0.855ε/k the equimolar radii are 0.56 σ larger
than rMD, and at T = 0.8ε/k the difference is 0.35 σ . We
add these differences to our measurements of rMD when we
compare to the size distribution predicted by classical models
in Sec. VI. Detailed bubble properties are presented in a
subsequent work [47].

D. Nucleation rate measurements

Our large-scale direct nucleation simulations resolve sev-
eral nucleation events during the steady-state nucleation
regime at a nearly constant thermodynamic state. This allows
us to determine the nucleation rates J accurately with the
Yasuoka-Matsumoto method [43,48] (also referred to as the
“threshold method”), where J is simply given by the slope of
a linear fit to the number of bubbles N (>V,t) larger than some
threshold volume V .

Here we use a nonlinear function for N (>V,t) which
takes into account the time dependence of the nucleation
rate before the steady state regime is reached [13,15,49,50].
It takes some time after the simulation setup until the first
bubble nucleation event occurs (called “incubation time” in
Ref. [50]) and even longer to reach the steady-state nucleation
regime (related to a “relaxation time”; see Ref. [50]). For large
times (t > t0) the number of stable bubbles grows linearly:
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N (>V,t) = JMD(t − t0)L3. We find that the function from
Ref. [50] fits our measured N (>V,t) curves very well, and that
the transition time scales (i.e., incubation and relaxation time)
are quite long and strongly dependent on liquid temperature
and pressure (see Figs. 3 to 6).

We use a least-squares fitting algorithm and minimise the
absolute differences in the bubble counts above threshold. The
good statistics of some runs (T8r1 and T85r2 for example)
allow a nucleation rate measurement with a relative uncertainty
of around 10%, and the results are independent of the
exact value we choose for the threshold volume V . Most
runs produce fewer stable bubble and therefore have larger
uncertainties in JMD (see Table III). Run T8r3 only produced a
single stable bubble during the constant pressure epoch, which
leads to a large uncertainty in JMD, while runs T85r4 and T7r4
did not nucleate at all and only allowed us to set upper limits
on JMD (see Ref. [43] for details).

In general, using larger values for the threshold volumes
leads to longer lag times before the steady-state regime is
reached. We therefore use the smaller of the threshold values
plotted in Figs. 3 to 6 to derive the nucleation rate estimates
given in Table III.

Small simulations are only able to resolve one bubble
nucleation event, because the critical bubble volume is
comparable to the available simulation volume. With a large
number of small runs one can measure the mean first passage
time accurately [37]. But due to the unknown lag time it is
not possible to convert mean first passage times into accurate
steady-state nucleation rates [30,39]. For the case of water
vapor-to-liquid nucleation it was recently shown [39], that
the mean first passage time method underestimates the true
steady-state nucleation rates by about two orders of magnitude
(see also Ref. [38]).

E. Convergence tests

To assess the impact of our chosen simulation box sizes
on the measured nucleation rates we performed two additional
simulations with the same physical properties as run T85r2,
but using 8 and 64 times smaller simulation volumes. Run
T85r2h is just large enough to allow a relatively accurate
nucleation rate estimate: the total pressure in the box stays
within 4.5% of the initial value until t = 385τ , and during that
epoch we measure and average temperatures and pressures
of T = 0.08512ε/k and P = 0.01703ε/σ 3; we estimate a
nucleation rate of JMD = 2.6 ± 0.4 × 10−10.

In the full size run (T85r2) the pressure remains within
3.5% of the target pressure up to t = 510τ . The larger
sample of stable bubbles forming in that period results in
a tighter constraint on the steady-state nucleation rate of
JMD = 1.8 ± 0.2 × 10−10. The agreement in J between runs
T85r2 and T85r2h within 1.5 times the standard deviation
of the rate from T85r2h is quite good, especially when
the slightly higher average temperature and therefore larger
superheating and higher expected nucleation rate in run T85r2h
is taken into account. This shows that our simulations with
N = 536 870 912 are large enough and that our nucleation
rate estimates have converged. They are not affected by the
finite size effects reported by Meadley and Escobedo [31]
when comparing forward flux sampling (FFS) MD simulations
with N = 3 375 (the size used in Wang et al. [11]) and
N = 8000.

Run T85r2q with about 8 million atoms on the other hand
is too small to allow a reliable estimate of the steady-state
nucleation rate. The liquid pressure does increase significantly
shortly after the first bubble nucleation event. Reaching the
steady-state regime and resolving several bubble nucleation

TABLE III. Average liquid temperature T and pressure P during the NVE integration (up to the final pressure increase), pressure difference
�P (equilibrium pressure Peq minus measured pressure P ), critical bubble radius r∗, and nucleation rate J for each run. Our critical sizes r∗

c

were derived form the measured rates JMD using the nucleation theorem, Eq. (12). The r∗
c estimates from W08 [11] and ME12 [31] are based

on the FFS method. The nucleation rates were derived using CNT and PCNT and measured directly in the MD simulations. The error bars on
the model predictions come from the uncertainties in the surface tensions (see Table II).

T P �P r∗
c r∗

CNT r∗
PCNT JMD JCNT JPCNT

Run ID [ε/k] [ε/σ 3] [ε/σ 3] [σ ] [σ ] [σ ] [σ−3τ−1] [σ−3τ−1] [σ−3τ−1]

T85r1 0.8557 0.01438 0.03172 6.3 ± 0.2 5.64 6.49 2.8 ± 0.3×10−9 1.2 × 10−7±0.5 1.4 × 10−9±0.6

T85r2 0.8553 0.01701 0.02909 6.6 ± 0.1 6.15 7.07 1.8 ± 0.2×10−10 8.8 × 10−9±0.6 4.2 × 10−11±0.8

T85r3 0.8555 0.02004 0.02606 6.9 ± 0.2 6.87 7.90 2.9 ± 0.6×10−12 1.5 × 10−10±0.7 1.9 × 10−13±1.0

T85r4 0.8551 0.02383 0.02227 >5.1 8.04 9.24 <3.8×10−13 7.1 × 10−14±1.0 7.8 × 10−18±1.3

W08 0.8550 0.02600 0.0201 6.1 8.91 10.2 0.9×10−14±1 1.1 × 10−16±1.2 1.5 × 10−21±1.6

ME12a 0.8550 0.02600 0.0201 6.4(3) 8.91 10.2 2.6×10−14±1 1.1 × 10−16±1.2 1.5 × 10−21±1.6

ME12b 0.8550 0.02600 0.0201 7.2(5) 8.91 10.2 5.1×10−16±1 1.1 × 10−16±1.2 1.5 × 10−21±1.6

T8r1 0.8004 −0.04379 0.07407 4.9 ± 0.4 4.54 4.90 1.7 ± 0.3×10−9 2.9 × 10−9±0.4 1.4 × 10−10±0.5

T8r2 0.8001 −0.03713 0.06741 5.2 ± 0.3 4.98 5.39 4.2 ± 2.8×10−11 6.9 × 10−11±0.5 1.8 × 10−12±0.6

T8r3 0.8004 −0.03202 0.06230 5.2 ± 1.0 5.39 5.83 1.5–22×10−13 1.6 × 10−12±0.6 2.3 × 10−14±0.7

T7r1 0.7040 −0.16627 0.17813 3.1 ± 1.0 3.69 3.80 4.3 ± 0.5×10−11 7.2 × 10−13±0.4 1.6 × 10−13±0.4

T7r2 0.7032 −0.16222 0.17408 3.0 ± 1.0 3.78 3.88 2.0 ± 1.1×10−11 2.0 × 10−13±0.4 4.2 × 10−14±0.5

T7r3 0.7002 −0.15808 0.16996 2.8 ± 0.8 3.87 3.98 1.6 ± 1.0×10−11 5.1 × 10−14±0.5 9.8 × 10−15±0.5

T7r4 0.7000 −0.14724 0.15910 >3.0 4.14 4.25 <1.6×10−12 7.9 × 10−16±0.5 1.2 × 10−16±0.6

ME12 0.7000 −0.15000 0.16186 3.1 4.06 4.18 3.9 ×10−11±1 2.5 × 10−15±0.5 4.0 × 10−16±0.5

T6r1 0.6090 −0.34779 0.35116 3.1 ± 0.4 2.91 2.93 2.9 ± 1.0×10−10 3.4 × 10−14±0.4 2.1 × 10−14±0.4

T6r2 0.6005 −0.33596 0.33933 2.9 ± 0.4 3.01 3.03 2.5 ± 1.2×10−11 4.0 × 10−15±0.4 2.4 × 10−15±0.4

T6r3 0.6025 −0.32375 0.32712 2.9+0.6
−2.9 3.12 3.15 0.9–14×10−12 3.4 × 10−16±0.4 2.0 × 10−16±0.4

052407-6



DIRECT SIMULATIONS OF HOMOGENEOUS BUBBLE . . . PHYSICAL REVIEW E 90, 052407 (2014)

events at roughly constant ambient pressure is not possible
with direct (NVE) simulations of this size.

F. Equilibrium simulations

Comparing the results of our bubble nucleation simulations
with theoretical models requires knowledge of the thermo-
dynamic properties of the TFS-LJ fluid, especially the vapor
and liquid densities at saturation (ρv and ρl), the pressure
at coexistence Peq, and the planar surface tension γ . Some
of these values can be found in the literature [11], but the
statistical uncertainties in γ are too large for our purposes.

To estimate these quantities we performed a series of
equilibrium MD simulations of liquid-vapor systems. At each
temperature one relatively large system (5 million atoms)
consisting of a liquid slab with vapor on both sides was set
up and equilibrated for a large number of time steps (typically
one million) at fixed temperature (NVT) and with periodic
boundaries (see Refs. [44,51] for details).

When the system has reached a perfectly stable equilibrium
state it is evolved for another one million NVT time steps.
At every time step the Kirkwood-Buff pressure tensor across
the two planar vapor-liquid interfaces is calculated, and the
time-averaged values stored every 50 000 steps, and converted
into estimates of ρv, ρl, Peq, and γ . This is done 20 times
to determine the average values and the 1σ scatter for these
quantities. The large simulation size and long time integration
leads to less statistical uncertainty compared to earlier smaller
and shorter simulations. We can then constrain the planar
surface tension γ within a relative one sigma error of 2.6% or
less, while earlier estimates have larger uncertainties of around
10%. However, even the remaining small uncertainties in the
surface tension lead to uncertainties of around one order of
magnitude in the theoretical nucleation rate predictions (see
Fig. 7 and Table III).

At T = 0.855ε/k we can compare our values to earlier
estimate for the same TFS-LJ fluid at the same temperature:
Wang et al. [11] found γ = 0.098 ± 0.008, which agrees well
with our estimate within their large statistical uncertainty. The
estimate from density functional theory (DFT) γ = 0.119 [52],
however, seems too high. Both estimates are higher than ours
and therefore lead to significantly lower model predictions for
the nucleation rate. The far better agreement with the classical
models we find here is caused not only to our lower measured
rates, but also by our lower surface tension estimates, which
increase the theoretical nucleation rate predictions by large
factors.

IV. NUCLEATION RATES

Figures 3 to 6 show the number of bubbles larger than
some threshold volume as a function of time. Using the
threshold method, these counts are used to derive nucleation
rate estimates as described in Sec. III D. The steady-state
bubble nucleation rates obtained from our direct NVE MD
simulations are given in Table III, and in the next two sections
we compare them to predictions from classical models and to
earlier estimates from smaller simulations.

A. Comparison with classical models

It is widely believed that classical models generally
underestimate bubble nucleation rates by very large fac-
tors [11,12,24,26,31] and that they perform significantly worse
than in the case of vapor-to-liquid nucleation [12]. However,
we do find very good agreement with the classical theory
(both with CNT and PCNT) at high temperatures (T = 0.8ε/k

and 0.855ε/k). The classical nucleation rate predictions match
quite well in the superheated boiling regime (T = 0.8ε/k) and
also for moderate cavitation cases (slightly negative pressures
and 0.8ε/k); see Fig. 7.

At lower temperatures the measured nucleation rates are
significantly higher than the CNT predictions, and the ratio
J/JCNT reaches values around 104 at T = 0.6ε/k. As in the
case of vapor-to-liquid condensation, CNT seems to predict
realistic rates at some intermediate or high temperature and to
underestimate the rates below that temperature [43]. And the
predicted temperature dependence is off by a similar amount:
decreasing the temperature by 10% increases the ratio J/JCNT

by about one order of magnitude in both the bubble nucleation
and the vapor-to-liquid case [43] in the nucleation rate regime
accessible to large-scale MD simulations.

B. Implications for the size dependence of the surface tension

The large ratios of measured-to-predicted nucleation rates
J/JPCNT at low temperatures may indicate that the surface
tension depends on bubble size. Bubbles near the critical scale
determine the nucleation rates, and this scale is smaller at
low temperatures. A suitable correction to the planar surface
tension [40,53], which results in a lower surface tension for
small bubbles would lead to a smaller energy barrier and higher
nucleation rates at low temperatures.

Assuming that the classical models are correct except for
the assumed size independent surface tension, one can use the
nucleation rates from the simulations for an indirect estimate
of the surface tension of critical size bubbles [40]. Using the
reconstructed free energy landscapes (Figs. 10 and 11) such
estimates can in principle be made for all sizes represented in
the simulated size distribution [45].

The correction introduced by Tolman [54] is

γT (r) = γ /(1 + 2δT /r) � γ (1 − 2δT /r). (10)

A small, positive Tolman length of δT = 0.25σ would lead
to perfect agreement at low temperatures (J/JPCNT � 1 at
T = 0.6ε/k and 0.7ε/k), and it would not spoil the good
agreement between the MD simulations and the classical
models at the higher temperatures (J/JPCNT � 0.1 at T =
0.8ε/k and 0.855ε/k); see Fig. 7. This agrees well with the
Tolman length of δT = 0.5r0 � 0.32σ derived from large-
scale vapor-to-liquid nucleation simulations [45], using the
somewhat different standard LJ potential with rcut = 5σ . Our
estimate of δT = 0.25σ is also consistent with the constraint
|δT | � 0.5σ obtained by Horsch et al. [55] for equilibrium
TFS-LJ droplets, with the practically constant γ found for
equilibrium LJ bubbles with r > 6σ by Matsumoto and
Tanaka [56], but not with the stronger size dependence reported
in Akbarzadeh et al. [57]. Note, however, that estimating
the surface tension of small equilibrium MD nanobubbles is
extremely challenging [58].
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FIG. 7. (Color online) Measured nucleation rates at kT /ε = 0.855 (a, b), 0.8 (c, d), 0.7 (e, f), and 0.6 (g, h) against ambient pressure (left
column) and against the inverse of the pressure difference squared (right column). Our MD results (diamonds, down arrows for upper limits) are
compared with the CNT (solid lines) and PCNT (dashed lines) predictions and to the MD FFS simulation results from Wang et al. [11] (circles)
and Meadley and Escobedo [31] (crosses). The shaded areas around the PCNT model predictions illustrate the effect of the 1σ uncertainty in
our planar surface tension estimates. The dotted lines are PCNT-like predictions with bubble size-dependent surface tensions: black (upper)
dotted lines show the Tolman correction with δT = 0.25σ , red (lower) dotted lines use the surface tension from Eq. (11).

By cutting out spherical voids of various sizes in molecular
dynamics simulations of a liquid under negative pressure, and
observing whether the resultant bubble is stable, Ref. [28]
estimates a Tolman length δT = 0.26 ± 0.01 σ at kT = 0.6.
This is very close to our estimate of δT = 0.25ε at kT = 0.6ε.

Baidakov and Bobrov [40] use a different approximation,
which is applicable to a wider range of bubble sizes,

γT (r) = γ /(1 + 2δB/r + l2/r2), (11)

and includes a second parameter l. With similar parameters
as in Ref. [40] (δB = −0.1σ and l = 1.0 σ 2) the predicted
nucleation rates at low temperatures are still too low by
two to three orders of magnitude. The correction is too
small at the critical sizes of 3 to 4 σ , which are relevant
for the nucleation rates in our low temperature runs (see
Fig. 8). The correction becomes large at the smaller critical
scales of 1 to 2σ relevant in the runs in Badiakov and
Bobrov [40] and may be specific to the regime of nucleation
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FIG. 8. (Color online) Surface tensions (solid lines) as a function
of bubble radius at T = 0.7ε/k: The planar surface tension (thin
solid), a small, positive Tolman length of δT = 0.25σ (red solid line,
lower one at large radii) and using Eq. (11) with δB = −0.1σ and
l = 1.0 σ 2 (gray solid line, upper one at large radii). Dashed lines
show the corresponding free energy curves for run T7r3 (see axis
label on the right): PCNT assumes the constant planar surface tension
(thin). The other two �G curves use a small, positive Tolman length
(red) and Eq. (11) (gray).

rates, temperatures, and interparticle potential probed in their
simulations.

These corrections likely depend on temperature. A small,
positive Tolman length of δT = 0.25σ fits the nucleation rates
well at all temperatures, but it would lead to worse fits to
the free energy landscapes reconstructed from the bubble size
distribution at higher temperatures (Figs. 10 and 11). A size-
independent surface tension (as found in Ref. [56]) actually
matches the results from our high-temperature runs better.

C. Comparisons with other simulations

Figure 9 shows the measured nucleation rates divided
by the PCNT estimate as a function of temperature relative
to the critical temperature. The relative temperature scale
makes comparisons between results from simulations which
use different intermolecular potentials possible: Our direct
MD results and the MD FFS simulation results from Wang
et al. [11] and Meadley and Escobedo [31] employed a TFS-LJ
intramolecular potential with a cutoff scale of rcut = 2.5σ ,
which results in a fluid with Tc = 0.935. The other studies
used standard LJ potential without a force shift and with cutoff
scale of from rcut = 2.5σ to rcut = 6.578σ , which gives rise to
critical temperatures from Tc = 1.19 to Tc = 1.31 [59].

For the comparison we calculated J/JCNT using the both
the J and the JPCNT (or JCNT, the differences are very small
at low temperature) values given in each paper. Only for
Refs. [11,31], which simulated the exact same TFS-LJ at the
same temperatures as this work, do we recalculate JPCNT. Note
the uncertainties in the JCNT and JPCNT are quite large, mostly
due to the uncertainties in the planar surface tension estimates
γ . Figure 9 does not show these errors. For the case of our

FIG. 9. (Color online) Measured nucleation rates divided by the
PCNT estimate against T/Tc for our simulations (green diamonds)
and bubble nucleation results from the literature.

JPCNT estimates, they are illustrated by the shaded regions in
Fig. 7.

The majority of bubble nucleation studies find significantly
larger nucleation rates than predicted by CNT and PCNT, i.e.,
J/JCNT of 105 and larger. This seems to be in qualitative
agreement with the density functional calculation by Zeng
and Oxtoby [12], which predict a very large J/JCNT ∼ 1016.
Our simulations offer an way to cross-check these earlier
results, because they are quite different from all the previous
simulations and in many aspects more accurate and reliable:
We use simple and robust direct NVE MD simulations
which are more than a factor of 1000 times larger than
all previous bubble nucleation simulations (except for the
spinodal nucleation simulations of Ref. [30], which contain up
to 107 atoms). Our runs are the first which are demonstrably
not affected by finite size effects. We find very good agreement
with PCNT and only a relatively small increase in J/JCNT as
we go to lower temperatures. We do not find the large J/JCNT

values found in most earlier studies. Our results agree well with
the relatively small deviations from classical models found by
Wu and Pan [24], Watanabe et al. [30], and Novak et al. [25].

Some of the differences between the simulation results
shown in Fig. 9 may be due to the different intermolecular
potentials used. For example the standard LJ potential with
rcut = 6.578σ used in Baidakov and Bobrov [40] has a far
larger planar surface tension. Even after rescaling with the
corresponding critical temperature Tc, the differences remain
large: at 0.76 Tc for example, the γ value of the force-shifted
rcut = 2.5σ potential we use here is about a factor of two
smaller. A larger surface tension leads to smaller critical bubble
sizes, it is therefore plausible that the numerical experiments
in Baidakov and Bobrov [40] and similar studies probe a
different regime, where bubble curvature and atomistic effects
play a larger role and where classical models are therefore less
accurate. Their size-dependent fit to the bubble surface tension
actually leads to good fits to our nucleation rates (see
Sec. IV B), their larger J/JCNT values may therefore be due
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to the smaller critical bubbles in the regime probed in their
simulations.

Other studies [11,31] do use the exact same potential at very
similar thermodynamic states, and can be compared directly
with our results: Both find significantly larger J/JPCNT factors
than we do (see also Fig. 7). Meadley and Escobedo [31] show
that their results are affected by the size of the simulations,
their nucleation rates decrease when 8000 instead of 3375
atoms are used. J was likely overestimated due to the small
simulations sizes used in these studies [31] and perhaps also
due to artifacts in the FFS method [35].

V. CRITICAL SIZES FROM THE FIRST
NUCLEATION THEOREM

The first nucleation theorem can be used to calculate
the volume of critical bubbles from the nucleation rates
directly [13,60,61]. It does not rely on a specific model (like
CNT for example) and provides a useful independent estimate
of the critical bubble size. Wilemski [61] showed that the
critical volume is

Vc = ρL

ρL − ρV

(
∂ ln J

∂PL

)
T

. (12)

We estimate the derivative by taking the finite differences
to the next available nucleation rate at the same temperature.
If both a higher and a lower rate are available, these two rates
are used to calculate the slope. Uncertainties in the nucleation
rate estimates JMD are propagated into an error estimate on
the critical sizes by using the shallowest and steepest slopes
allowed by the 1σ errors on JMD. The resulting estimates of Vc

are converted into a spherical radius rc and listed in Table III.
We find that the critical bubble sizes from the nucleation

theorem are in very good agreement with the predictions from
both classical models, CNT and PCNT at all temperatures.
While the predicted nucleation rates agree with the simulations
only at the higher temperatures, the pressure dependence (i.e.,
the slopes in the left-hand panels of Fig. 7) of the nucleation
rates seems to be predicted accurately by the classical models
at all temperatures. Similar conclusions have been reached in
the case of vapor-to-liquid nucleation in Refs. [43,62–64].

VI. FREE ENERGY FOR BUBBLE FORMATION

If the free energy as a function of bubble size �G(r) is
known, one can calculate the equilibrium bubble size distribu-
tion directly with Eq. (6). During steady-state nucleation, this
distribution is only realized for small bubble sizes (r � rc).
The steady-state distribution turns out to be a factor of two
lower at rc and flat for larger bubble sizes [15]. Conversely,
one can measure the steady-state size distribution and the
nucleation rate in a large scale MD simulation and use them
to reconstruct the entire free energy function �G(r), even at
rc and above [45].

Figures 10 and 11 show the free energy for bubble
formation. The bubble size distributions were measured in
the MD simulations and time-averaged over the steady-state
nucleation phase at constant liquid pressure. Together with
our MD nucleation rate measurement [and assuming that the
empirical pre-exponential factor in Eq. (7) is correct] this
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FIG. 10. (Color online) Free energy for bubble formation at
kT /ε = 0.855. Reconstructed free energy curve from the MD bubble
size distribution in terms of rMD (circles) and in terms of the estimated
equimolar radius (rMD + 0.56σ ) (crosses). Model predictions are
shown with solid (CNT) and dashed (PCNT) lines.

allows the reconstruction of the full free energy function with
the method from Tanaka et al. [45]. The bubble sizes were
estimated by converting the volume of all cells below the
threshold density of 0.2 m/σ 3 into a spherical radius rMD.
Comparing these radii with the equimolar radii of a wide range
of large, stable bubble reveals that our rMD values are slightly
smaller, by an offset which depends on temperature, but not
on bubble size. In Figs. 10 and 11 we use both rMD as well as
the estimated equimolar radii.

The reconstructed free energy landscape agrees well with
CNT and PCNT at these high temperatures. At the lower
temperature the bubbles are too small to allow a detailed
comparison with this method. The peak position (rc) agrees
with PCNT at both temperatures. The peak height matches the
PCNT prediction perfectly at kT /ε = 0.855 and is slightly
lower than PCNT at kT /ε = 0.8. This is consistent with the
excellent agreement of the nucleation rates at kT /ε = 0.855,
and the slightly larger JMD versus JPCNT at kT /ε = 0.8 (Fig. 7).

The models assume mechanical equilibrium at all sizes,
as well as a sharp density transition from vapor to liquid,
while our simulated bubbles have transition regions which are
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FIG. 11. (Color online) Free energy for bubble formation at
kT /ε = 0.8. Reconstructed free energy curve from the MD bubble
size distribution in terms of rMD (circles) and in terms of the estimated
equimolar radius (rMD + 0.35σ ) (crosses). Model predictions are
shown with solid (CNT) and dashed (PCNT) lines.

several σ wide [47], and their exact radii are difficult to define.
For comparisons with classical models one often uses the
equimolar radius. Indeed, the curves shifted to larger radii to
approximate the equimolar radii match the predictions slightly
better. The agreement is surprisingly good, given the many
differences between the model assumptions and the actual
properties of our MD bubbles (wide interfaces, nonspherical
shapes, nonisothermal effects, etc. [47]).

VII. LOCAL HOT SPOTS

In a recent study Wang et al. [11] reported that in their MD
simulations the occurrence of local temperature fluctuations
(“hot spots”) correlates strongly with subsequent bubble
formation. This process is not present in the CNT and may
explain the far larger nucleation rates found in their MD
simulations in comparison to the CNT prediction. However, at
the same temperature as used in Wang et al. (T = 0.855ε/k)
we find far lower rates and relatively good agreement with
CNT (see Sec. IV). In this section we show that there are no
local hot spots preceding bubble nucleation in our simulations.
There only is a small amount of extra kinetic energy in
bubble-forming locations, which is perfectly consistent with
the amount of movement required to make room for the
bubbles within the liquid.

Local kinetic energies and densities were measured for
200 000 time steps during the steady-state nucleation regime
in run T85r2hs. Both quantities were measured in cells of size
(3σ )3 at every step, time-averaged over 500 steps and then
stored on disk. Cells with a density below 0.2 are identified as
bubble-forming cells, and the first time the density falls below

FIG. 12. (Color online) Average local temperature (top panel)
and density (bottom panel) in bubble-forming cells of size (3σ )3

as a function of time since the moment of bubble formation tbf (thick
solid lines). The upper and lower thick solid lines indicate the one
sigma cell-to-cell scatter, dotted lines the averages over the entire
simulation volume. The estimated effect of extra kinetic energy from
growing and shrinking bubbles is shown with a red thin solid line;
see text for details.

the threshold is stored as the moment of bubble formation
tbf . In this way 234 000 bubble-forming cells were found,
corresponding to 5.3% of the 4.4 million cells which cover the
entire simulation volume. For these cells we averaged the local
kinetic energies and densities at the same times relative to their
moment of bubble formation tbf and plot these averages as a
function of (t − tbf ); see Fig. 12.

Near the moment of bubble formation tbf , the average
kinetic energy in bubble-forming cells is indeed slightly higher
than in the entire simulation volume. The excess becomes as
large as 7% and is comparable to the hot spot signal reported in
Fig. 6 in Wang et al. [11]. However, the excess kinetic energy
does not precede bubble formation: it appears at the same
time as the averaged density drops, and it exactly matches
the amount of liquid movement required to obtain these lower
densities.

A simple model can match and explain this excess kinetic
energy: assuming a spherical vapor bubble with a sharp
interface, fully enclosed within the cubic cell. The vapor is
assumed to be at the equilibrium density (ρv = 0.0833m/σ 3)
and at a slightly lower temperature (T = 0.80ε/k), both in
agreement with the vapor properties we measure in large
bubbles [47]. The liquid is assumed to have the same average
density and temperature as the entire simulation. At each
time (t − tbf ) a bubble radius is calculated, so that the total
density in the cell matches the average density measured in
the simulation. Mass conservation implies by how much each
radial shell of the liquid around the bubble has to move as the
bubble radius changes with time. These velocities are added
to the thermal motion in the radial direction, the total kinetic
energy of the vapor and liquid in the cell is calculated and then
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FIG. 13. (Color online) Same as Fig. 12 but using larger cells of
size (6σ )3. The values in the central cells of four bubble nucleation
events are given with dotted lines (top panel) and thin solid lines
(bottom panel); see text for details.

converted into an average cell temperature (thin lines in the
top panels of Figs. 12 and 13).

Despite several unrealistic assumptions (sharp interface,
spherical shape, fully enclosed within cell), this simple model
reproduces the observed excess kinetic energy very well. We
conclude that bubble formation is not preceded by local hot
spots. Bubbles form out of an isothermal liquid, as assumed in
the CNT. The apparently higher local temperatures in bubble-
forming cells near tbf are simply caused by the inevitable
rearrangement of liquid as bubbles form (and disappear),
which introduces some extra kinetic energy into the liquid
phase around the bubbles.

Figure 12 shows the same analysis using larger cells of size
(6σ )3. Due to a smaller number of cells, the statistics are worse
and this figure is noisier than Fig. 13. However, the results are
the very similar: The kinetic energy in bubble-forming cells is
above the simulation average, but well matched by the extra
kinetic energy required to grow (or shrink) the cavities required
to fit the average local density decrease (or increase). Here only
306 out of 551 368 cells ever fall below the density threshold.
A significant fraction of those belong to long-lived or even
large, stable bubbles. Therefore the average density in these
cells increases quite slowly after tbf and remains below the
simulation average even long after tbf .

At t � tbf ± 2τ the average local temperatures lie below
the simulation average. In large stable bubbles we measure
an average vapor density of about T = 0.80ε/k, below the
simulation average of T = 0.855ε/k due to the latent heat used
during evaporation; see Ref. [47]. Simply assuming that these
cells contain a mixture of cooler vapor at T = 0.80ε/k and
isothermal liquid at T = 0.855ε/k, both at their equilibrium
densities, matches the observed drop in the average local
temperatures quite well.

Figures 12 and 13 also indicate that the one sigma cell-
to-cell scatter in the local densities and local kinetic energies

is quite large. These are real fluctuations, not just sampling
noise, since for example the local density in a (3σ )3 cell
averaged over 500 measurements has only about 1% sampling
error. Large local temperature fluctuations are present in the
entire simulation volume, but they do not correlate at all
with subsequent local bubble nucleation events. The excess
in the average kinetic energy right before (and also right
after) tbf is significantly smaller than a 1σ fluctuation, and
it is not a temperature fluctuation (“local hot spot”), but
simply caused by the movement required to achieve the density
changes.

Four large stable bubbles form during the steady-state
nucleation regime in run T85r2h. Their centers move less than
2.5 σ during the analysis period, and each center lies within
one fixed (6σ )3 cell at practically all times. The local densities
and kinetic energies of the central cells of these four bubbles
(time-averaged over 500 measurements) are shown in Fig. 13:
They show wild fluctuations, with an amplitude similar the
one sigma scatter found in the other cells. The kinetic energies
were smoothed using a Gaussian window with a width of 5τ

to make the figure more easily viewable. The histories of these
four large bubbles are obviously very noisy, and no time before
tbf can one identify a period were their formation is preceded by
a local hot spot. The average temperature of these four regions
of successful bubble nucleation fluctuate randomly around the
simulation average at all times before the moment of bubble
formation tbf .

VIII. CONCLUSIONS

The main results presented in this work can be summarized
as follows:

(1) Large-scale, microcanonical (NVE) MD runs allow the
simulation of homogeneous bubble nucleation in a realistic
way, free of unphysical numerical manipulations (thermostat-
ing and barostating) and unaffected by finite simulation size
effects.

(2) Bubble nucleation rates are lower than most of the
previous estimates from smaller simulations.

(3) Our measured bubble nucleation rates agree well with
classical model in the regimes of superheated boiling (pos-
itive ambient pressure) and moderate cavitation (moderately
negative pressures): They lie within two orders of magnitude
of CNT predictions. The reconstructed free energy landscapes
also agree very well with CNT in these regimes.

(4) In the extreme cavitation regime (at very large negative
pressures) CNT does underestimate the nucleation rates
significantly.

(5) Introducing a small, positive Tolman length (δT =
0.25σ ) leads to very good agreement between the predicted
and measured nucleation rates at all temperatures. The same
conclusion was reached from our recent large scale vapor-to-
liquid nucleation simulations [45].

(6) The critical bubbles sizes derived with the nucleation
theorem agree well with the CNT predictions at all tempera-
tures.

(7) Local hot spots reported in an earlier MD simula-
tion [11] are not seen: Regions where bubble nucleation events
will occur are not above the average temperature, and we
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observe no correlation between temperature fluctuations and
subsequent bubble formation.

Our direct large-scale bubble nucleation simulations form
a large number of stable bubbles in a realistic manner and
environment. They produce a lot of additional information
about these bubbles, like their shapes, density and temperature
profiles and growth rates. These properties will be presented
in a subsequent work [47].
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