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The statistical methods exploiting the “Correlation-Functions” or the “Differential-Critical-Region” are both
suitable for describing phase transformation kinetics ruled by nucleation and growth. We present a critical analysis
of these two approaches, with particular emphasis to transformations ruled by diffusional growth which cannot
be described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. In order to bridge the gap between
these two methods, the conditional probability functions entering the “Differential-Critical-Region” approach
are determined in terms of correlation functions. The formulation of these probabilities by means of cluster
expansion is also derived, which improves the accuracy of the computation. The model is applied to 2D and 3D
parabolic growths occurring at constant value of either actual or phantom-included nucleation rates. Computer
simulations have been employed for corroborating the theoretical modeling. The contribution to the kinetics of
phantom overgrowth is estimated and it is found to be of a few percent in the case of constant value of the actual
nucleation rate. It is shown that for a parabolic growth law both approaches do not provide a closed-form solution
of the kinetics. In this respect, the two methods are equivalent and the longstanding overgrowth phenomenon,
which limits the KJMA theory, does not admit an exact analytical solution.
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I. INTRODUCTION

In order to describe the kinetics of first-order phase trans-
formations proceeding via nucleation and growth, researchers
often make use of the Kolmogorov-Johnson-Mehl-Avrami
(KJMA) approach which is based on Poisson statistics (no
correlation among nuclei is present) [1–3]. The model has
been extensively employed to tackle interesting problems in
chemistry, electrochemistry, materials science, and biology,
just to mention a few [4–12]. Investigation of the possibility
to apply the KJMA theory to describe real systems has been
the main purpose of several works that analyzed the effects on
the kinetics of anisotropic growth [13–17], non-random nucle-
ation [18,19], nucleus growth in the presence of defects [20],
and nucleation and growth in different metrics [21].

The celebrated KJMA formula can be obtained through
three methods, namely: i) the Kolmogorov method, which
exploits Poisson statistics to find the probability that no
nucleation event takes place in a given region of space [1];
ii) the Avrami approach which is based on set theory [3];
and iii) the differential-critical-region method introduced by
Alekseechkin [22]. Moreover, we have combined approaches
i) and ii) in [23] and have found the connection between
Avrami’s expansion in terms of extended volumes and the
correlation functions in Ref. [24]. For the sake of clarity, it is
worth recalling the difference between actual and phantom-
included nucleation rates. The two nucleations distinguish
between real nuclei (actual nucleation) and nuclei which can
appear both in the untransformed and transformed phases.
It goes without saying that the phantom-included nucleation
process has simply a mathematical significance which, in
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turn, is limited to the Poisson process [25]. Accordingly,
both Avrami and Kolmogorov methods make use of the
phantom-included nucleation rate. Nonetheless, the mathe-
matical description of the KJMA process can be likewise
formulated in terms of the actual nucleation rate, while making
use of correlation functions [19]. The correlation function
approach (i.e., when employed with the actual nucleation rate)
naturally resolves the question of phantom overgrowth, which
limits the applicability of the KJMA model to a sub-set of
growth laws. The differential-critical-region method [22] has
also been improved to overtake the limit on the growth laws.
The diffusional parabolic growth is a paradigmatic example of
a growth law which the KJMA theory cannot describe [25–27].
In this respect both the differential-critical-region and the
correlation-function-based approaches are suitable for treating
phase transformations independently of the growth law. The
time is ripe for a comparative critical analysis of these
methods, aimed at highlighting not only their advantages
and disadvantages but, above all, the connection between the
physical quantities introduced in the two approaches. The very
purpose of the present work is to perform such a comparison, as
anticipated in our previous paper [28]. Notably, a general the-
ory linking the physical quantities entering the two approaches
will be developed and an explicit calculation up to second
order terms will be discussed. Such a calculation exposes some
limitations of the differential critical region method.

The paper is organized as follows. The first section is
devoted to the differential-critical-region method and to the
definition of appropriate probability functions that will be
employed in the theory. In the second section, which is the core
of the article, we evaluate the functional form of the above-
mentioned probabilities in terms of correlation functions. The
third section is devoted to the differential equation which is
satisfied by these probabilities and the possibility of obtaining
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their expressions in closed form. The last two sections are
devoted to an application of the theory to diffusional growth
and to comparison with computer simulations.

II. THEORY

A. Probability functions entering the
differential-critical-region method

In the following we consider a random distribution of
circular or spherical nuclei (2D and 3D phase transformations,
respectively). Their growth law is given by the function r(t1,t)
which is the radius, at time t , of the nucleus born at time
t1. The differential-critical-region method is based on a sort
of kinetic equation for the probability that a point in space,
chosen at random, is transformed in an infinitesimal interval
of time dt . In the following, two nucleation rates will be
considered, namely: i) the “phantom included” nucleation rate,
I0(t), i.e., the nucleation takes place throughout the entire
space independently of whether the nucleation point has been
already transformed or not [3]; ii) the “actual” nucleation rate,
Ia(t), for which the nucleation in the untransformed phase is
only considered. The relationship between the two nucleation
rates reads Ia(t) = I0(t)[1 − ξ (t)], where 0 < ξ (t) < 1 is the
fraction of transformed surface or the probability that a point
in space, taken at random, is transformed at t . Let us consider a
generic point, c, in space. Two events have to be defined, they
are: i) At and ii) Bt1 . At is the event according to which the
point c is untransformed at time t , Bt1 is the event according
to which an actual nucleus is formed at t1 (within dt1) at
distance r = r(t1,t)r̂ from c within rdt rdθ (r2dt rd�) with
dt r = ∂t r(t1,t)dt and θ (�) being the 2D polar (3D solid)
angle. To determine the kinetics the following differential
probability has to be computed:

P (At ∩ Bt1 ) = P (At |Bt1 )P (Bt1 )

= P (At )P (Bt1 |At ), (1)

where P (C|D) denotes the usual conditional probability that
the C event occurs provided that the D event has occurred.

In other words, Eq. (1) is the probability that a generic
point, c, is transformed between time t and t + dt by an
actual nucleus which starts growing between t1 and t1 + dt1
and located from c at distance r with r = r(t1,t) (Fig. 1). Let
us now “translate” Eq. (1) to a more “physical” language more
suitable for analytical computation. For the sake of simplicity,
in the following the computation is presented for the 2D case.
Nevertheless, the extension to the 3D case is straightforward
as we will point out throughout the paper.

Let dξ (t1,t) ≡ P (At |Bt1 )P (Bt1 ) be rewritten as

dξ (t1,t) = Pc(t |t1,r)dP̃a(t1,r), (2)

where dP̃a(t1,r) ≡ P (Bt1 ) and Pc(t |t1,r) is the conditional
probability that the point c is untransformed at time t provided
that the nucleation of an actual nucleus occurred at (r,t1). It
turns out that

dP̃a(t1,r) = Ia(t1)r(t1,t)dt rdθdt1. (3)

The last term of Eq. (1), dξ ≡ P (At )P (Bt1 |At ), can be written
according to

dξ (t1,t) = (1 − ξ (t))dPa(r,t1|t), (4)

FIG. 1. (Color online) Sketch of the differential critical region
(dr = rdrdθ ) for the point c for 2D phase transformations. The
nucleus which nucleates within dr = r(t1,t)∂t r(t1,t)dtdθ at distance
r = r(t1,t)r̂ from c and in the time interval dt1 at t1, will transform c
at t within dt .

where 1 − ξ (t) ≡ P (At ), and dPa(r,t1|t) is the conditional
probability that an actual nucleus nucleates at (r,t1) provided
that the point c is untransformed until t . The last requirement
guarantees that the point c is not transformed by an overgrowth
phenomenon even if the nature of growth law allowed the
overgrowth. The conditional probability reads

dPa(r,t1|t) = q(r,t1|t)I0(t1)r(t1,t)dt rdθdt1, (5)

where q(r,t1|t) is the conditional probability that the nu-
cleation point (at relative distance r = r(t1,t)r̂ from c,
within rdt rdθ ) is not transformed until t1. As the system
under analysis is homogeneous and isotropic, Pc(t |t1,r) =
Pc[t |t1,r(t1,t)] which will be denoted as Pc(t |t1) and, similarly,
q[r(t1,t),t1|t] ≡ q(t1|t). Equations (2)–(5) imply

dξ

dt
= 2π [1 − ξ (t)]

∫ t

0
q(t1|t)I0(t1)r(t1,t)∂t r(t1,t)dt1

= 2π

∫ t

0
Pc(t |t1)Ia(t1)r(t1,t)∂t r(t1,t)dt1, (6)

or, using the relationship between I0 and Ia ,

Pc(t |t1) = q(t1|t) 1 − ξ (t)

1 − ξ (t1)
. (7)

Equation (7) holds independently of the space dimension.
Since in the KJMA model phantom overgrowth is precluded,
q(t1|t) = 1, so Pc(t |t1) = 1−ξ (t)

1−ξ (t1) , namely the ratio between
the (unconditional) probabilities that the generic point is un-
transformed at t and at t1 < t . This probability is independent
of the nucleation event occurring between t1 and t1 + dt1 at
r(t1,t)r̂. It is worth noting, in passing, that this probability
function has been employed by Avrami to demonstrate the
KJMA formula, in the form 1−ξ (t)

1−ξ (t1) = v′(t1,t)
ve(t1,t)

, where v′ and
ve refer to the nonoverlapped and extended volumes of the
nucleus, respectively [3,23].

We briefly comment on Eqs. (3) and (5), in the case of
KJMA compliant growths. In fact, setting I0 in place of Ia

in Eq. (3), this equation coincides with Eq. (5) since, in this
case, q = 1. However, the considered nucleation event is now
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different for it includes any nucleus whether it is actual or
phantom. As a consequence, P (At |Bt1 ) → P (At ) ≡ 1 − ξ (t).

Although in the present paper the application will be pre-
sented for the Poissonian nucleation, the differential-critical-
region method is much more versatile since, in principle, it can
be employed for treating: i) Poissonian nucleation with growth
laws which embody phantom overgrowth; ii) correlated nucle-
ation with any kind of growth law. Nevertheless, from the the-
oretical perspective a significant open question is whether the
integral form of the kinetics given by Eq. (6), also expressed as

1 − ξ (t) = exp

[
− DπD/2

�(D/2 + 1)

∫ t

0
dt ′

∫ t ′

0
dt1q(t1|t ′)I0(t1)

× rD−1(t1,t
′)∂t ′r(t1,t

′)dt1

]
, (8)

admits a closed-form solution or not [29]. In Eq. (8) D is the
space dimension and �(x) the gamma function. Furthermore,
in the case q(t1|t ′) = 1 the KJMA formula is easily obtained
from Eq. (8) by exchanging the order of integration. From
now on the cases D = 2,3 will be considered.

B. Correlation-function-based approach

In previous works [30,31] we developed an approach based
on correlation functions for describing phase transformation
kinetics. In the following, we report the main formulas which
are necessary to face the problem under examination. In
particular, the fraction of untransformed phase is given in terms
of fn-functions through the expansion [30]

1 − ξ (t) = 1 −
∫ t

0
dt1I (t1)

∫
�1t

dr1f1(r1) +
∫ t

0
dt1I (t1)

×
∫ t1

0
dt2I (t2)

∫
�1t

dr1

∫
�2t

dr2f2(r1,r2) − · · · (9)

that can be rewritten as

1 − ξ (t) = 1 +
∞∑

m=1

(−)m

m!

∫ t

0
dt1I (t1) · · ·

∫ t

0
dtmI (tm)

×
∫

�1t

dr1 · · ·
∫

�mt

drmfm(r1,r2, . . . ,rm)

≡ 1 +
∞∑

m=1

(−)m�m(t), (10)

where �it ≡ �(ti ,t), i = 1,2, . . . ,m, is the domain (a
disk or a sphere in the present work) transformed at
time t by a nucleus born at ti . In Eqs. (9), (10)
[I (t1)dt1dr1][I (t2)dt2dr2] · · · [I (tm)dtmdrm]fm(r1, . . . ,rm) is
the probability of finding nuclei born between ti and ti + dti in
the volume elements dri around ri , irrespective of the position
of the other N − m nuclei, being N the total number of nuclei at
t . For example, the f2(ri ,rj ) function is the well-known “radial
distribution function” for the pair of nuclei (i,j ). Moreover,
Eq. (10) holds provided the fm function is symmetric under the
exchange of nucleus coordinates. For homogeneous systems
f1(r1) = 1.

By introducing the function

Fm(t1, . . . ,tm; t) =
∫

�1t

dr1 · · ·
∫

�mt

drmfm(r1, . . . ,rm),

(11)

�m(t) becomes

�m(t) = 1

m!

∫ t

0
dt1I (t1) · · ·

∫ t

0
dtmI (tm)Fm(t1, . . . ,tm; t).

(12)

The nucleation rate, I (t), has to be defined in terms of
the stochastic process under study. For example, in the case
of KJMA compliant growths and unconditional (random)
nucleation throughout the entire space, I = I0, fn = (f1)n = 1
and Eq. (10) directly leads to the KJMA expression: ξ (t) =
1 − exp[−X̂e(t)], with the phantom included extended surface
X̂e(t) = ∫ t

0 I0(t ′)|�(t ′,t)|dt ′, |�| being the measure of �. On
the other hand, working with I = Ia in Eqs. (9) and (10) entails
correlation among nuclei being fm’s, in principle, different
from zero. The use of the actual nucleation rate therefore
allows one to deal with non-KJMA compliant growths in a
rigorous fashion, at the cost of a more involved mathematical
formulation [28].

Incidentally, the KJMA kinetics can be formulated in terms
of actual nucleation. This has been done in Ref. [28] where, to
simplify the mathematical computation, a constant value for
the actual nucleation rate, Ia , and the time dependent phantom-
included nucleation rate, I0(t) = Ia

1−ξ (t) , have been considered.
Equation (10) can be rewritten in terms of correlation

functions, gm, according to

1 − ξ (t) = exp

[ ∞∑
m=1

(−)m

m!

∫ t

0
dt1I (t1)

∫ t

0
dt2I (t2) · · ·

×
∫ t

0
dtmI (tm)

∫
�1t

dr1

∫
�2t

dr2 · · ·

×
∫

�mt

drmgm(r1,r2, . . . ,rm)

]
, (13)

where the gm are linked to the fm-functions by cluster
expansion. Specifically, the first three functions read

f1(r1) = g1(r1),

f2(r1,r2) = g1(r1)g1(r2) + g2(r1,r2), and

f3(r1,r2,r3) = g1(r1)g1(r2)g1(r3) + g2(r1,r2)g1(r3)

+ g2(r1,r3)g1(r2) + g2(r2,r3)g1(r1)

+ g3(r1,r2,r3). (14)

Since the fm’s are symmetric under the exchange of nucleus
coordinates, Eq. (14) implies the gm functions to share the
same symmetry. Under these circumstances the following rep-
resentation can be adopted for the argument of the exponential
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in Eq. (13):

1 − ξ (t) = exp

[ ∞∑
m=1

(−)m
∫ t

0
dt1I (t1)

∫ t1

0
dt2I (t2) · · ·

×
∫ tm−1

0
dtmI (tm)

∫
�1t

dr1

∫
�2t

dr2 · · ·

×
∫

�mt

drmgm(r1,r2, . . . ,rm)

]
. (15)

The meaning of the I (t) function entering Eqs. (13), (15)
is also subject to the considered stochastic process, namely,
to the functional form of the gm’s. In fact, KJMA compliant
growths with I = I0 imply gm�2 = 0 for, in this case, nuclei are
randomly distributed throughout the whole space. For gm�2 =
0 Eq. (13) directly leads to the KJMA formula. On the other
hand, if I = Ia , Eq. (13) entails correlation among nuclei with
all the gm’s, in principle, different from zero.

C. Determination of Pc(t|t1) and q(t1|t) probabilities

In the following the general form fm(r1,r2, . . . ,

rm,t1,t2, . . . ,tm) ∈ C1 will be considered for the fm-functions.
Let us clarify a mathematical aspect which is important for
computing the probabilities Pc(t |t1) and q(t1|t). This aspect is
illustrated by considering the contribution of the f2 term in
Eqs. (9), (10). With reference to this term, we note that the
integral over the spatial coordinates is symmetric in t1,t2. We
denote this function as F2(t1,t2; t) (positive definite), where
F2(t,t2; t) = F2(t1,t ; t) = 0. The last term in Eq. (9) becomes

�2(t) =
∫ t

0
dt1I (t1)

∫ t1

0
dt2I (t2)F2(t1,t2; t)

= 1

2

∫ t

0
dt1I (t1)

∫ t

0
dt2I (t2)F2(t1,t2; t), (16)

where in the last equality the symmetry of the function was
exploited. The time derivative of �2 [Eq. (16)] therefore
implies

�̇2 = 1

2

∫ t

0
dt1I (t1)

∫ t

0
dt2I (t2)∂tF2(t1,t2; t)

≡
∫ t

0
dt1I (t1)

∫ t1

0
dt2I (t2)∂tF2(t1,t2; t). (17)

In other words, �̇2 has been expressed in the form �̇2 =∫ t

0 dt1I (t1)G(t1,t). What is important to note is that, in general,
G(t1,t) depends upon the representation of the double integral
in Eq. (16). In fact, Ga(t1,t) = 1

2

∫ t

0 dt2I (t2)∂tF2(t1,t2; t) and
Gb(t1,t) = ∫ t1

0 dt2I (t2)∂tF2(t1,t2; t) are not equal, given that
∂tF2(t1,t2; t)|t1=0 is, in general, different from zero [i.e.,
Ga(0,t) 	= Gb(0,t) = 0].

In order to compare the two approaches we employ the
following procedure: on the ground of the representation of
ξ in terms of fn functions [Eqs. (9), (10), (13), (15)] we
determine the differential of the fractional coverage which
should take the same form as Eq. (6), for both methods
are assumed to be exact. Such a comparison allows one to
compute, eventually, the Pc(t |t1) and q(t1|t) probabilities in
terms of fn and gn functions. It is worth reminding that

the probability functions satisfy the following constraints
[Eq. (7)]: q(0|t) = 1, Pc(t |0) = 1 − ξ (t). These conditions are
important since they suggest a convenient representation of the
ξ probability for computing its differential.

As far as the evaluation of Pc is concerned, the representa-
tion of ξ grounded on Eq. (10) is employed. One observes that
the derivative of Eq. (12) only requires the derivative of the
Fm function. Exploiting polar coordinates and the condition
Fm(t1, . . . ,tm; t)|tk=t = 0,∀k ∈ [1,..,m] one gets (2D case)

�̇m(t) = m

m!

∫ t

0
dt1I (t1)R1t ∂tR1t

∫ t

0
dt2I (t2) · · ·

×
∫ t

0
dtmI (tm)

∫
dθ1

∫
�2t

dr2 · · ·

×
∫

�mt

drmfm(r1, . . . ,rm,t1, . . . ,tm)|r1=R1t r̂1 , (18)

where r(t1,t) = R(t1,t) ≡ R1t . Comparing the expression
ξ̇ (t) = ∑∞

m=1(−)m−1�̇m(t), where I (t) = Ia(t) with Eq. (6),
we obtain for isotropic system, eventually,

Pc(t |t1) = 1 +
∞∑

m=2

(−)m−1

(m − 1)!

∫ t

0
dt2Ia(t2) · · ·

×
∫ t

0
dtmIa(tm)

∫
�2t

dr2 · · ·

×
∫

�mt

drmfm(r1, . . . ,rm,t1, . . . ,tm)|r1=R1t r̂1 ,

(19)

which holds for any space dimension.
As noted in Sec. II A for KJMA growths, if in Eq. (19)

Ia is substituted by I0 one obtains, as expected, P (At ) ≡∑∞
m=0

(−)m

m! X̂e(t)m = 1 − ξ (t). Moreover, for a homogeneous
system the cluster expansion technique makes it possible to
express the Pc probability as (see also the Appendix A for
details)

Pc(t |t1) = exp

[ ∞∑
m=1

(−)m

m!

∫ t

0
dτ1Ia(τ1) · · ·

×
∫ t

0
dτmIa(τm)

∫
�1t

dx1 · · ·

×
∫

�mt

dxmg̃m(x1, . . . ,xm,t1,τ1, . . . ,τm)

]
(20)

with �it ≡ �(τi,t) and xi = ri+1 − R(t,t1)r̂1 the relative
coordinate. The functions g̃m are defined by the following
cluster expansion:

f̄1(1) = g̃1(1),

f̄2(1,2) = g̃1(1)g̃1(2) + g̃2(1,2),

f̄3(1,2,3) = g̃1(1)g̃1(2)g̃1(3) + g̃2(1,2)g̃1(3)

+ g̃2(1,3)g̃1(2), + g̃2(2,3)g̃1(1) + g̃3(1,2,3),

(21)

and so on, where f̄m−1(x1, . . . ,xm−1,t1,τ1, . . . ,τm−1) ≡
fm(x1, . . . ,xm−1,t1,τ1, . . . ,τm−1).
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The computation of q(t1|t) is based on the representation
of ξ in terms of gm correlation functions, Eq. (15), where
the exponential form ensures that its derivative provides the

multiplicative factor [1 − ξ (t)] of Eq. (6). Following a similar
computation pathway as above, the derivative of Eq. (15) is
(2D case)

dξ

dt
= [1 − ξ (t)]2π

∫ t

0
dt1I0(t1)[1 − ξ (t1)]R1t ∂tR1t

[
1 + 1

2π

∞∑
m=2

(−)m−1
∫

dθim

∫ t1

0
dt2Ia(t2) · · ·

∫ tm−1

0
dtmIa(tm)

×
m∑

im=1

Rimt∂tRimt

R1t ∂tR1t

∫
�i1 t

dri1 · · ·
∫

�im−1 t

drim−1gm(ri1 , . . . ,rim ,ti1 , . . . ,tim)|rim =Rimt r̂im

⎤
⎦ , (22)

where in the sum the ik’s take the values 1,2, . . . ,m with i1 	= i2 	= . . . 	= im and the expression Ia(t) = I0(t)[1 − ξ (t)] has been
used in the first integral. In the case of power growth laws no singularity is expected at t = t1 for 1

R(t−t1)∂tR(t−t1)

∫
�1t

dr1 ∼ (t − t1).
Comparison with Eq. (6) leads to

q(t1|t) = [1 − ξ (t1)]

⎡
⎣1 + 1

2π

∞∑
m=2

(−)m−1
∫

dθim

∫ t1

0
dt2Ia(t2) · · ·

∫ tm−1

0
dtmIa(tm)

m∑
im=1

Rimt∂tRimt

R1t ∂tR1t

∫
�i1 t

dri1 · · ·

×
∫

�im−1 t

drim−1gm(ri1 , . . . ,rim ,ti1 , . . . ,tim )|rim =Rimt r̂im

]
. (23)

Equation (23) can be generalized to the 3D case provided
R2

ik t
∂tRikt , d�ik , and 4π are used in place of Rikt ∂tRikt , dθik ,

and 2π , respectively. Equation (23) satisfies the required limit
q(0|t) = 1. Notably, in Eq. (23) the multiplicative factor, [1 −
ξ (t1)], is the (unconditional) probability the nucleation takes
place in the uncovered portion of the surface.

D. Differential equation for q(t1|t)
Until now the functions Pc(t |t1) and q(t1|t) have been

expressed by using the correlation function approach; in
particular, in Appendix A Pc(t |t1) has been explicitly com-
puted retaining the lowest-order term g̃1 in the argument of
the exponential. The fact that ξ (t) is not given in closed
form (apart from the KJMA case) rules out the ambitious
goal to express q(t1|t) in closed form too, by means of a
differential equation for q(t1|t). Starting from Eq. (23), i.e.,
q(t1|t) = [1 − ξ (t1)]S(t1,t), one obtains

∂t1q = − dξ

dt1
S(t1,t) + [1 − ξ (t1)]∂t1S

= − q(t1|t)
1 − ξ (t1)

dξ

dt1
+ q(t1|t)∂t1 ln S, (24)

where the series S(t1,t) is defined through Eq. (23). By using
Eq. (6), Eq. (24) can be rewritten as

∂ ln q

∂t1
= −

[ ∫ t1

0
q(t2|t1)I0(t2)

∂|�12|
∂t1

dt2 − ∂ ln S

∂t1

]
, (25)

where |�12|= πD/2

�(D/2+1)R
D
12. Since |�12|=ωD(R12,R2t ; R1t ) +

�D(R12,R2t ; R1t ), �D(R12,R2t ; R1t ) is the overlap area (D =
2) or volume (D = 3) between two nuclei of radius R(t2,t1) =
R12 and R(t2,t) = R2t whose centers are R(t1,t) = R1t apart

(Fig. 2), Eq. (25) takes the form

∂ ln q

∂t1

= −
∫ t1

0
q(t2|t1)I0(t2)

∂ωD(R12,R2t ; R1t )

∂t1
dt2

−
[ ∫ t1

0
q(t2|t1)I0(t2)

∂�D(R12,R2t ; R1t )

∂t1
dt2 − ∂ ln S

∂t1

]
.

(26)

Equation (26) can be traced back to the equation proposed by
Alekseechkin in Ref. [27] provided the last term in the square
brackets is negligible. In the next section this issue is further
discussed in the ambit of the parabolic growth law.

The fact that the differential equation for q(t1|t) is not given
in closed-form is also supported by the following demonstra-
tion based on the differential-critical-region method. Although
the demonstration will be presented for the 2D case, it can be
easily reformulated for any spatial dimension.

FIG. 2. Graphical representation of the ωD(R12,R2t ; R1t ) and
�D(R12,R2t ; R1t ) quantities defined in the text. �D(R12,R2t ; R1t )
is the overlap area (volume) between two nuclei of radii R2t and
R12 at relative distance R1t . The quantities ωD and �D sum up to
|�12| = πR2

12 (2D) and |�12| = 4π

3 R3
12 (3D).
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FIG. 3. (Color online) Pictorial view of the differential critical
regions entering the definition of the conditional probability q(t1|t)
discussed in Sec. II D. At time t , the critical region of c is the
thick circular shell of radius R(t1,t) (circle in grey). The conditional
probability q(t1|t) is equal to the fraction of the untransformed area
of this shell at time t1 (t1 < t), given that the point c is untransformed
up to t . In this shell the actual nucleus, n1, will transform c at time t

within dt . The “conditional” critical region for n1 is also depicted as
red thick line for a generic nucleus at distance R(t2,t1) = R12 (t2 < t1).
Owing to the requirement that c is untransformed at t , only a fraction
of the circle centered at n1 of radius R12 has to be considered, i.e., the
portion protruding the circles R(t2,t) within the angle � = �(t2,t1,t).
The fraction of the untransformed area of this shell provides the
higher order function q (2)(t2|t1,t) which enters Eq. (33). In a similar
fashion one also defines the critical region for n2 (green thick line)
and the higher order probability q (3)(t3|t2,t1,t) which is subjected to
the condition that c, n1 and n2 are all untransformed until t , t1, and
t2, respectively.

To begin with, we consider the definition of dPa(t1|t) as
the probability that an actual nucleation event (n1 in Fig. 3)
takes place in the shell of area 2πr(t1,t)dt r in the time interval
dt1 around t1, given that the generic point c is untransformed
until t [Fig. 3, thick circle of radius R(t1,t)]. From Eq. (5) and
considering for the sake of simplicity I0 = const, we get

dPa(t1|t) = q(t1|t)[I02πr(t1,t)dt rdt1] = δNa(t1|t), (27)

thus δNa(t1|t) is the number of actual nuclei formed in the
shell 2πr(t1,t)dt r within dt1 given that the generic point c
is untransformed until t . The term in the square brackets of
Eq. (27) is the number of nucleation events, δN (t1,t), in the
considered shell, therefore

q(t1|t) = δNa(t1|t)
δN(t1,t)

. (28)

Incidentally, the last equation can be reformulated as given
in Ref. [27]

q(t1|t) =
(

δAa(t1,t)

δA(t1,t)

)(1)

�=2π

= X(t1|t) = 1 − ξ (t1|t), (29)

where X(t1|t) is the fraction of the shell area δA that is
untransformed at t1 provided the point c is untransformed until
t . In other words, q(t1|t) is the probability a point located at
r(t1,t) from c is untransformed at t1 given that the point c is

untransformed at t . From Eqs. (29) and (4)–(6), one obtains

dq(t1|t) = −dξ (t1|t)

= −q(t1|t)
∫ t1

0

(
dPa(t2|t1,t)

dt2

)
dt2. (30)

In Eq. (30) dPa(t2|t1,t) is the probability that an actual
nucleus (n2 in Fig. 3) is formed within the shell centered
at n1 of radius R12 and thickness dt1r = ∂t1r(t2,t1)dt1 in the
time interval dt2 (t2 < t1), given the two conditions: i) c is
untransformed until t ; ii) n1 is untransformed until t1 < t . On
the basis of the same argument that led to Eq. (27), one obtains

dPa(t2|t1,t) = q(2)(t2|t1,t)[I0�(t2,t1,t)r(t2,t1)dt1rdt2]

= δNa(t2|t1,t), (31)

where �(t2,t1,t) is the angle subtended by the nucleation zone
for n2 that is, in Fig. 3, the red thick arch of the circle of radius
R12 centered at n1. Consequently, q(2)(t2|t1,t) = ( δAa

δA
)(2)
�(t1,t2,t)

,
which is the untransformed portion of the shell area subtended
by �(t2,t1,t) (Fig. 3). The differential equation of q(t1|t)
becomes

dq(t1|t) = −q(t1|t)dt1

∫ t1

0
q(2)(τ |t1,t)

× [I0�(τ,t1,t)r(τ,t1)∂t1r(τ,t1)dτ ], (32)

and, eventually [q(0|t) = 1]

q(t1|t) = exp

(
−

∫ t1

0
dτ

∫ τ

0
dτ ′q(2)(τ ′|τ,t)I0�(τ ′,τ,t)

× r(τ ′,τ )∂τ r(τ ′,τ )

)
. (33)

Equation (33) is not an integral equation for q(t1|t),
since the functions q(τ ′|τ ) and q(2)(τ ′|τ,t) are differ-
ent. In general, the higher-order (unknown) probability,
q(m)(tm|tm−1, . . . ,t1,t), has to be introduced in order to estimate
q(m−1)(tm−1|tm−2, . . . ,t1,t). As a consequence, the differential
critical region method does not lead to a closed-form solution
of the longstanding overgrowth problem, in similar fashion
as the correlation-function-based approach discussed here.
Nevertheless, in this context there exists a difference between
the two methods. The correlation-function based approach
gives the solution as a series which could be estimated, in
principle, at the desired degree of approximation. On the
other hand, in the framework of the differential-critical-region
method the solution of the kinetics relies on the approximate
closed-form of the differential equation Eq. (26) [27]. In turn,
this last equation has been actually obtained by means of the
correlation-function-based method.

Notably, in the case of growth laws that are consistent
with the KJMA model, the angle �(τ ′,τ,t) vanishes and
Eq. (33) implies q(t1|t) = 1. In fact, from Fig. 3 it stems that
�(t2,t1,t) 	= 0 provided that R1t + R12 > R2t . For instance,
such a condition is not satisfied by power laws with power
exponents greater than or equal to unity (KJMA compliant
growths).
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III. APPLICATION TO PARABOLIC GROWTH

A. Kinetics of growth

The growth law is defined as R(t ′,t) = v
√

t − t ′ and im-
plies the phantom overgrowth phenomenon. In the framework
of the correlation-function-based approach, in order to get rid
of phantoms, i.e., of overgrowth, it is compulsory to formulate
the theory in terms of the actual nucleation. For this purpose a
hard-core-like model must be used. Moreover, since nucleation
densities in real systems are usually small (of the order of
10−4 per site), approximate expressions for the fm’s can be
employed. On the other hand, beyond these approximations
the analytical computation does become prohibitive.

The lowest order terms of the fm-functions are given by

f2(r1,r2,t1,t2) = H [|r12| − r(t1,t2)],
(34)

fm(r1,r2, . . . ,rm,t1,t2, . . . ,tm) =
∏
i<j

f2(ri ,rj ,ti ,tj ),

where H (x) is the Heaviside function and r12 = r1 − r2.
In Eq. (34) the superposition principle has been employed
which is expected to hold in the low-density limit [32]. The
time dependence of the growth law is usually of the form
r(t ′,t) = r(t − t ′); consequently, in Eq. (34) the argument
of the Heaviside function can be written as f2(r1,r2,t1,t2) =
H [|r12| − r(|t1 − t2|)] that is symmetric under the exchange
of nucleus coordinates. In the following, we apply Eq. (20) by
considering the contribution of the f2-function. In this context
a comment is in order. Strictly speaking, the equations derived
above for Pc and q hold for f -functions belonging to the class
C1. Accordingly, care must be taken in applying the above
formulation to the hard core model, owing to possible edge
effects resulting from differentiation under the integral sign.
However, it is shown that this effect is negligible on the kinetics
of the transformation. The edge-effect on the Pc probability is
discussed in the next section.

Inserting Eq. (34) into Eq. (20) and performing the
integration over the r2 variable [see also Eqs. (A10), (A11)
in Appendix A) one obtains a term containing the overlap area
(volume) �D(R12,R2t ; R1t ) (Fig. 2). The integration domain of
the spatial integral is illustrated in Fig. 4 for parabolic growth at
t2 > t1 and t1 > t2 (panels a, b). For the sake of completeness,
the case of linear growth is also illustrated where, for t1 < t2,
�D = 0 (panels c and d).

To simplify the complexity of the mathematical compu-
tation the case Ia(t) = const is initially treated. Under these
circumstances the general expression for Pc(t |t1) becomes

Pc(t |t1) ∼= exp[−Xe(t)(1 − b(τ1))] , (35)

where, Xe(t) = πD/2

�(D/2+1)

∫ t

0 Ia(t ′)RD(t ′,t)dt ′ is the actual ex-
tended transformed fraction,

b(τ1) = Dn + 1

πD/2
�(D/2 + 1)

×
∫ 1

0
�D[(1 − τ2)n,(|τ1 − τ2|)n; (1 − τ1)n]dτ2 (36)

with τi = ti
t

� 1 (i = 1,2), R(t ′,t) = v(t − t ′)n, and n being
the growth exponent (n = 1/2 and n = 1 for parabolic and
linear growths, respectively). On the basis of a scaling

FIG. 4. Integration domains, R1t and R2t , employed for comput-
ing second-order terms of the Pc(t |t1) probability for both t1 > t2
and t1 < t2. (a), (b) and (c), (d) refer to the parabolic and linear
growths, respectively. In the panels the circles of radius R(t2,t1) = R12

are also displayed; they are linked to the hard core correlation
employed to deal with actual nucleation. To compute Eq. (20) the
position of nucleus 1 is fixed at R1t . In the case of linear growth
�D(R12,R2t ; R1t ) = 0 for t1 < t2 (c).

argument we also infer that the conditional probability scales
as − ln Pc(t,τ1) = Xe(t) + ∑∞

k=1 Ck(τ1)Xe(t)k , where the Ck

functions are the coefficients of the expansion.
For parabolic growth, the overlap area and volume read

�2(R12,R2t ; R1t )

= v2(t − t2) arccos
2t − t2 − t1 + |t1 − t2|

2
√

(t − t2)(t − t1)

+ v2|t1 − t2| arccos
t2 − t1 + |t1 − t2|
2
√|t1 − t2|(t − t1)

− 1

2
v2

√
4|t1 − t2|(t − t1) − (|t1 − t2| + t2 − t1)2,

(37)

�3(R12,R2t ; R1t )

= 2π

3
v3(|t1 − t2|3/2 + (t − t2)3/2) + π

12
v3(t − t1)3/2

− π

2
v3(t − t1)1/2[t − t2 + |t1 − t2|]

− π

4
v3 [t − t2 − |t1 − t2|]2

(t − t1)1/2
(38)
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FIG. 5. (Color online) Behavior of the conditional probability
Pc(t |t1) computed using Eq. (35) in the case of 2D parabolic growth,
n = 1/2, and constant value of the actual nucleation rate Ia . The
time variables, t and t1, have been normalized to the quantity
(πIav

2/2)−1/2, i.e., t = X1/2
e and t1 = tτ1 are dimensionless variables.

In the lower panel it is reported the computer simulation of the kinetics
of the surface coverage as a function of dimensionless time, t .

with the extended area Xe(t) = π
2 Iav

2t2 and extended volume
Xe(t) = 8π

15 Iav
3t5/2. The Pc(t |t1) function, as computed from

Eqs. (35)–(38), has been displayed in Figs. 5, 6 as a function
of t and t1. In particular, the time variable has been normalized
to the quantity (πIav

2/2)−1/2 and (8πIav
3/15)−2/5, to get

Xe(t) = t2 (2D case) and Xe(t) = t5/2 (3D case), respectively.
Figures 5 and 6 also report the kinetics of the surface and
volume fractions obtained through computer simulations at
Ia = const. Specifically, simulations of 2D phase transitions
by nucleation and growth have been performed on a square
lattice whose dimension is M × M . Simulations were per-
formed for M = 500,1000, and 2000 and at Ia = const and
no significant differences between the three sets of kinetics
were detected. Also, the kinetics is found to depend only on
the Xe variable in agreement with the analytical approach.
The simulation also provides the phantom-included kinetics
which differs from ξ owing to the overgrowth events. The
computer outputs are plotted in Fig. 7(a) as a function of the
extended actual surface, Xe, together with the kinetics for the
linear growth (at constant Ia). The contribution of phantoms,
�ξ , highlighted in the inset of Fig. 7(a), entails a deviation
of the KJMA formula from the actual kinetics that is lower
than 0.02. This result is in agreement with previous studies
on the contribution of phantoms performed for the nucleation
rate I0 = const [26]. In order to check the reliability of the

FIG. 6. (Color online) Behavior of the conditional probability
Pc(t |t1) computed using Eq. (35) in the case of 3D parabolic growth,
n = 1/2, and constant value of the actual nucleation rate Ia . The
time variables, t and t1, have been normalized to the quantity
(8πIav

3/15)−2/5, i.e., t = X2/5
e and t1 = tτ1 are dimensionless vari-

ables. In the lower panel it is reported the computer simulation of
the kinetics of the volume fraction as a function of dimensionless
time, t .

simulation, with respect to phantom overgrowth, we evaluated
their contribution analytically. In fact, the effect of phantom
overgrowth can be estimated by computing the extended
surface (phantom included) entering the KJMA-equation:
ξKJMA = 1 − exp[−X̂e(Xe)]. It is possible to show that for
parabolic growth

X̂e(Xe) =
∫ Xe

0

1

1 − ξ (y)

[(
Xe

y

)1/2

− 1

]
dy, (39)

namely, a relationship between the phantom included extended
surface and the transformed surface, ξ (Xe). Using the ξ (Xe)
function obtained by the simulation, Eq. (39) implies a
maximum value of �ξ equal to 0.0156 in comparison with
0.016 from Fig. 7(a).

As far as the 3D case is concerned, computer simulations
have been performed on a square lattice M × M × M at
constant Ia and for n = 1 and n = 1/2 (M = 200). The
computer simulations are shown in Fig. 7(b) as a function of
the actual extended volume, Xe, for n = 1/2 (solid lines) and
n = 1 (dashed line). Also, the contribution of phantoms, �ξ ,
is highlighted in the inset of Fig. 7(b) and, as in the 2D case, the
behavior of the KJMA formula slightly differs from the actual
kinetics (about 0.01). The model can also be employed to
compute the Pc(t |t1) and q(t1|t) functions in the case of linear
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FIG. 7. (Color online) (a) Computer simulation of 2D phase
transformations ruled by parabolic growth of circular nuclei for
constant value of the actual nucleation rate, Ia , (black solid line).
The computer simulation of the phantom-included kinetics (KJMA-
kinetics ξKJMA), which implies phantom overgrowth, is reported
as red solid line. The contribution of phantoms to the kinetics is
displayed in the inset where �ξ = ξKJMA − ξ . The kinetics for linear
growth is also shown as dashed line. (b) The same as in (a) for the
3D case.

growth where q = 1 is expected. The Pc(t |t1) function is given
by Eq. (35) where, for n = 1, Eq. (36) provides b(τ1) = τD+1

1 .
Since for linear growth Xe(t1)

Xe(t) = τD+1
1 ≡ b(τ1) we get

Pc(t |t1) ∼= exp{−[Xe(t) − Xe(t1)]}. (40)

Moreover, at the same order of approximation as Eq. (40)
the fraction of untransformed phase, Eq. (15), is equal to
1 − ξ ∼= exp[−Xe]. Consequently, Pc(t |t1) ∼= 1−ξ (t)

1−ξ (t1) which
implies q(t1|t) ∼= 1 [Eq. (7)].

In order to check the validity of Eq. (35), we compare the
analytical result to computer simulations of 2D and 3D phase
transformations ruled by parabolic growth. In particular, for
power growth laws and constant Ia Eq. (6) provides

dξ (Xe)

dXe

= Dn

∫ 1

0
(1 − τ1)Dn−1Pc(t(Xe),τ1)dτ1, (41)

FIG. 8. (Color online) 2D phase transition. (a) Dimensionless
rate dξ

dXe
, computed using Eq. (41) and the Pc(t |t1) probability of

Fig. 5, as a function of the extended surface for parabolic growth
(n = 1/2) and constant value of the actual nucleation rate (solid
symbols). The same quantity, as obtained by computer simulation, is
also displayed (open symbols and dashed line). (b) Dimensionless rate
dξ

dXe
for linear growth and constant value of the actual nucleation rate

computed through Eq. (41) at n = 1 (solid symbols). The derivative
of the KJMA kinetics is displayed as open symbols and dashed line.
The kinetics of the surface fraction ξ (Xe) vs actual extended surface,
are reported in the insets.

which links the kinetics to the conditional probability Pc(t |t1).
In Eq. (41) t = t(Xe) is obtained through inversion of
the Xe = Xe(t) function and τ1 = t1/t . Notably, a scaling
argument applied to Eq. (10) reveals that for given nucleation
and growth laws, ξ = ξ (Xe) at Ia = const. The comparison
between the analytical approach [Eqs. (35), (41)] and the
numerical simulation is displayed in Fig. 8(a) for parabolic
growth (n = 1/2) and indicates that the conditional probability
computed here, retaining terms up to f2, well describes the
kinetics up to ξ ∼= 0.6. Similar results have been obtained
for the linear growth in Fig. 8(b), by means of Eqs. (40),
(41) at n = 1 (solid symbols) and the KJMA formula (open
symbols). The comparison between the analytical computation
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FIG. 9. (Color online) 3D phase transition. (a) Dimensionless
rate dξ

dXe
, computed using Eq. (41) and the Pc(t |t1) probability of

Fig. 6, as a function of the extended volume for parabolic growth
(n = 1/2) and constant value of the actual nucleation rate (solid
symbols). The same quantity, as obtained by computer simulation, is
also displayed (open symbols and dashed line). (b) Dimensionless rate
dξ

dXe
for linear growth and constant value of the actual nucleation rate

computed through Eq. (41) at n = 1 (solid symbols). The derivative
of the kinetics obtained by computer simulation is displayed as open
symbols and dashed line. The kinetics of the volume fraction ξ (Xe)
vs actual extended volume, are reported in the insets.

and the 3D simulations are reported in Figs. 9(a) and 9(b)
for parabolic [Eqs. (35), (41)] and linear [Eqs. (40), (41)]
growths, respectively. For n = 1/2 the results are similar to
those attained for the 2D case while, for n = 1, the analytical
approach is in very good agreement with the simulation in the
entire range of the volume fraction.

Finally, we apply the theory to the case, widely considered
in the literature, of constant value of the phantom-included
nucleation rate, I0. In this case the relation holds,

dξ (X̂e)

dX̂e

= Dn

∫ 1

0
(1 − τ1)Dn−1[1 − ξ (τ1t(X̂e))]

×Pc(t(X̂e),τ1)dτ1, (42)

where X̂e is the phantom-included extended surface (volume).
The computation of Pc(t |t1) is carried out through numerical
integration of Eq. (A11) (see the Appendix) where Ia(t2) =
I0[1 − ξ (t2)]. To this end, we make use of the ξ (X̂e) function
available from computer simulations of 3D parabolic growth at
I0 = const [33]. Once expressed in terms of the dimensionless
variables τ1 and X̂e, the argument of the exponential entering
the probability Pc

∼= exp(−Ĩ1) [Eq. (A11)] becomes

Ĩ1(X̂e,τ1) = (3n + 1)X̂e

∫ 1

0

[
(1 − τ2)3n − 3

4π
�3((1 − τ2)n,

|τ1 − τ2|n; (1 − τ1)n)
]

[1 − ξ (t(X̂e)τ2)]dτ2,

(43)

where t(X̂e) = ( 8π
15 I0v

3)−2/5X̂
2/5
e . The Pc function is further

employed in Eq. (42) to evaluate the derivative of the
volume fraction as a function of extended volume, X̂e. The
result, displayed in Fig. 10(a), indicates that the theory is
in very good agreement with the computer output in the
whole range of volume fraction. Notably, also in the case
of linear growth, n = 1, the theory is in very good agreement
with the KJMA kinetics, as Fig. 10(b) shows. In this case
Ia(t2) = I0 exp[−X̂e(t)τ 4

2 ]. From the present analysis it stems
that the truncation of the cluster expansion of Pc up to the
f2 term, works better at constant I0, where the concentration
of phantoms is actually very small [33]. On the other hand,
a much larger number of phantoms is expected nucleating
at Ia = const rather than at I0 = const. As a consequence,
for Ia = const the f2-containing term gives a less accurate
description of the whole kinetics for both 2D and 3D transitions
(Figs. 8, 9).

B. Effect of the hard-core discontinuity
on Pc(t|t1) and q(t1|t) functions

This section is devoted to analyzing the effect brought about
by the non-continuous Heaviside function on the expression
of the probability Pc reported above. In the following, the
actual nucleation rate is taken as constant and only second-
order terms are considered. To this end, the time derivative is
performed after integration over the space variables. In fact,
integration over the space variables gives the overlap area
(volume) that is a continuous function. In the 2D case the
F2(t1,t2; t) function becomes

F2(t1,t2; t)

= H (t1 − t2)
∫ 2π

0
dθ1

∫ R1t

0
r1dr1

[
πR2

2t − �2(R12,R2t ; r1)
]

+H (t2 − t1)
∫ 2π

0
dθ2

∫ R2t

0
r2dr2

[
πR2

1t − �2(R12,R1t ; r2)
]
.

(44)

The derivative of Eq. (44) is

∂F2

∂t
= π2∂t

(
R2

1tR
2
2t

) − A(t1,t2; t)H (t1 − t2)

−A(t2,t1; t)H (t2 − t1), (45)
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FIG. 10. (Color online) 3D phase transition. (a) Dimensionless
rate dξ

dX̂e
, computed using Eqs. (42) and (43), as a function of the

phantom-included extended volume (X̂e) for parabolic growth (n =
1/2) and constant value of I0 (solid symbols). The same quantity,
as obtained by computer simulation, is also displayed (open symbols
and dashed line). (b) Dimensionless rate dξ

dX̂e
for linear growth (n = 1)

and constant value of I0 computed through Eqs. (42) and (43) (solid
symbols). The derivative of the KJMA kinetics is displayed as dashed
line. The kinetics of the volume fraction ξ (X̂e) vs X̂e are reported in
the insets.

where

A(t1,t2; t) = 2π

[
�2(R12,R2t ; R1t )R1t ∂tR1t

+
∫ R1t

R2t−R12

∂t�2(R12,R2t ; x)xdx

]

= 2πR1t ∂tR1t

[
�2(R12,R2t ; R1t )

+ ∂tR2t

R1t ∂tR1t

∫ R1t

R2t−R12

∂R2t
�2(R12,R2t ; x)xdx

]
.

(46)

Taking the time derivative of the transformed fraction
[Eq. (10)] and using Eqs. (45), (46) together with the definition
of Pc given by Eq. (6), we get

Pc(t |t1) ∼= 1 − Xe(t) + Ia

∫ t1

0
dt2

[
�2(R12,R2t ; R1t )

+ ∂tR2t

R1t ∂tR1t

∫ R1t

R2t−R12

∂R2t
�2(R12,R2t ; x)xdx

]
, (47)

which is easily generalized to the 3D case according to

Pc(t |t1) ∼= 1 − Xe(t) + Ia

∫ t1

0
dt2

[
�3(R12,R2t ; R1t )

+ ∂tR2t

R2
1t ∂tR1t

∫ R1t

R2t−R12

∂R2t
�3(R12,R2t ; x)x2dx

]
.

(48)

In the case of parabolic growth law, using dimensionless
variables one eventually obtains

Pc(t |t1) ∼= 1 − Xe(t)[1 − β(τ1)],
(49)

q(t1|t) ∼= [1 − Xe(t1)]

[1 − Xe(t)]
{1 − Xe(t)[1 − β(τ1)]},

where

β(τ1) = (Dn + 1)

πD/2
�(D/2 + 1)

×
∫ τ1

0
dτ2

[
�D((τ1 − τ2)1/2,(1 − τ2)1/2; (1 − τ1)1/2)

+ (1 − τ2)−1/2(1 − τ1)1−D/2

×
∫ (1−τ1)1/2

(1−τ2)1/2−(τ1−τ2)1/2
∂R′

2t
�D(τ1,τ2; x ′)x ′D−1dx ′

]
(50)

with x ′ = x/vt1/2 and R′
2t = R2t /vt1/2 = √

1 − τ2 being
the dimensionless lengths. Comparison between Eqs. (35)
and (49) indicates that in the low-coverage regime the effect
of the boundary implies the presence of the b(τ1) function in
place of β(τ1). In fact, since β(τ1 → 0) = 0 and ξ (t) ∼= Xe for
Xe << 1, Eq. (49) leads to the correct limit P (t |0) = 1 − ξ (t).
This limit is not well satisfied by Eq. (35), giving b(0) = 0.125
and 0.0625 for 2D and 3D growths, respectively. The Pc(t |t1)
and q(t1|t) probabilities computed from Eqs. (49)–(50) are
plotted in Fig. 11, as a function of the dimensionless time
(D = 2). In the low coverage regime q(t1|t) is found to be, in
fact, in agreement with the behavior of the kinetics reported in
Fig. 7. In Figs. 12(a)–12(b) the functions Pc(t |t1) [see Eq. (49)]
are compared to those obtained in the previous section on the
ground of the cluster expansion, for both 2D and 3D growths.
As far as the kinetics of the transformation is concerned, it is
worth noting that, although the Pc(t |t1) curves are different,
they lead to the same kinetics, i.e., to the same dξ/dXe value.
In other words, the edge effect does not play a significant
role on the kinetics of the transformation which, according to
Eq. (41), is linked to the Pc(t |t1) function through integration.
It is this operation which reduces the effect of the function
discontinuity on the kinetics.
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FIG. 11. (Color online) The Pc(t |t1) and q(t1|t) probabilities in
the low-coverage regime for 2D parabolic growth and constant Ia . The
computation—developed as discussed in Sec. III B—is not affected
by the Heaviside discontinuity when performing the derivative of
the transformed fraction. Please notice that the minimum of the q

function is made visible because the scale has been magnified by a
factor of about 100. Dimensionless variables t and t1 are defined as
in Fig. 5.

Notably, for linear growth the effect of the boundary
analyzed here vanishes. In fact, it is possible to show that
the derivative Eq. (45) coincides with the expression obtained
by performing the differentiation under the integral sign
since, in Eq. (46), R1t = R2t − R12 and �D(R12,R2t ; R1t ) =

πD/2

�(D/2+1)R
D
12H (t1 − t2).

Before concluding this section we apply the present
calculation to estimate the last term in the square brackets
of the differential equation for q [Eq. (26)]. Using Eqs. (44)–
(46), in the low coverage regime the first correction to the
Alekseechkin equation is found to be (see Appendix B for de-
tails)

∫ t1
0 dt2I0(t2)[(1 − ξ (t2)) − q(t2|t1)]∂t1�D(R12,R2t ; R1t ),

which equals zero in the limit q(t ′|t) = 1 − ξ (t ′), namely at
the lowest order of approximation for q.

IV. CONCLUSIONS

In this article we have presented a comparative study on
the “differential-critical-region” and “correlation-functions-
based” methods for modeling the kinetics of phase transitions,
with particular emphasis on the case of non-KJMA compliant
growths. The connection between these methods has been

FIG. 12. (Color online) The Pc(t |t1) functions in the low-
coverage regime computed from Eq. (49) at Xe = 0.1 (curve a, solid
line) and Xe = 0.2 (curve b, solid line). (a) and (b) refer to 2D and 3D
parabolic growths, respectively. The same quantity, computed using
b(τ1) in place of β(τ1) in Eq. (49), is also reported as a dashed line.

established by computing the Pc(t |t1) and q(t1|t) conditional
probabilities, namely, the key quantities of the differential-
critical-region approach, in terms of correlation functions.
The expression of Pc has been obtained by means of the
cluster expansion technique, which improves the accuracy of
the computation. The relationship between the Pc(t |t1) and
q(t1|t) functions has also been established in Eq. (7), which
allows us to evaluate the q(t1|t) probability. The Pc(t |t1)
function, computed by retaining first-order terms in the g̃k

expansion, leads to a good description of the kinetics obtained
by 2D- and 3D-computer simulations of parabolic growth.
The discontinuity of the Heaviside function is found to have
a negligible effect on the kinetics of the phase transformation.
In the case of non-KJMA compliant growths both approaches
indicate that closed-form solutions for q(t1|t) cannot be
achieved. It must be stressed, however, that for parabolic
growth this result is only conceptually important, given the
negligible effect of phantoms on the kinetics as scrutinized in
previous works at I0 = const [26,33] and here at Ia = const.

Finally, the theory here developed can be applied to model
phase transitions with spatially correlated nuclei and KJMA-
compliant growth laws. Since in this case phantom overgrowth
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is precluded the nucleation rate I0(t) can be employed in
Eqs. (20), (23) in place of Ia(t).

ACKNOWLEDGMENTS

The authors are indebted to Prof. R. Molle for the helpful
discussions on the mathematical aspects of this work and to
Dr. C. Hogan for the critical reading of the manuscript.

APPENDIX A: CLUSTER EXPANSION OF Pc(t|t1)

We consider the following integral of Eq. (19):∫ t

0
dt2Ia(t2) · · ·

∫ t

0
dtmIa(tm)

∫
�2t

dr2 · · ·

×
∫

�mt

drmfm(r1, . . . ,rm,t1, . . . ,tm)|r1=R1t r̂1 , (A1)

where the fm’s depend upon |ri − rj |. Using relative coordi-
nates, xi = ri − R(t,t1)r̂1, with i > 1, the integral becomes∫ t

0
dt2Ia(t2) · · ·

∫ t

0
dtmIa(tm)

∫
�2t

dx2 · · ·

×
∫

�mt

dxmfm(x2, . . . ,xm,t1, . . . ,tm)

=
∫ t

0
dt2Ia(t2) · · ·

∫ t

0
dtmIa(tm)

∫
�2t

dx2 · · ·

×
∫

�mt

dxmf̄m−1(x2, . . . ,xm,t1, . . . ,tm), (A2)

where f̄m−1 is a m-dots f -function. Changing the variable
labels in Eq. (A2), the sum in Eq. (19) becomes

∞∑
m=2

(−)m−1

(m − 1)!

∫ t

0
dt2Ia(t2) · · ·

∫ t

0
dtmIa(tm)

×
∫

�2t

dx2 · · ·
∫

�mt

dxmf̄m−1(x2, . . . ,xm,t1, . . . ,tm)

=
∞∑

m=1

(−)m

m!

∫ t

0
dτ1Ia(τ1) · · ·

∫ t

0
dτmIa(τm)

×
∫

�1t

dx1 · · ·
∫

�mt

dxmf̄m(x1, . . . ,xm,t1,τ1 . . . ,τm).

(A3)

Next one defines a cluster expansion according to

f̄1(1) = g̃1(1),

f̄2(1,2) = g̃1(1)g̃1(2) + g̃2(1,2),

f̄3(1,2,3) = g̃1(1)g̃1(2)g̃1(3) + g̃2(1,2)g̃1(3) + g̃2(1,3)g̃1(2)

+ g̃2(2,3)g̃1(1) + g̃3(1,2,3), (A4)

and so on, where the numbers, in the argument of the functions,
label the relative coordinates of nuclei. In particular, 1 stands
for x1 = r2 − R(t,t1)r̂1, that is the relative coordinate of
nucleus 2 with respect to nucleus 1.

The relationship between the g̃m and gm functions can be
expressed as

g̃1(1) = 1 + g2(1),

g̃2(1,2) = g3(1,2) + g2(1,2) − g2(1)g2(2),

g̃3(1,2,3) = g4(1,2,3) + g3(1,2,3) − g2(1)g3(2,3)

− g2(3)g3(1,2) − g2(2)g3(1,3)

+ 2g2(1)g2(2)g2(3), (A5)

and so on. In Eq. (A5) g3(1,2) ≡ g3(x1,x2) is a three-dots
correlation function, for nuclei 1,2,3, which is a function of
the relative coordinates of nuclei 2 (i.e., x1) and 3 (i.e., x2),
with respect to nucleus 1; also, g2(1,2) is a two-dots correlation
function for nuclei 2 and 3 and g2(1) is a two-dots correlation
function for nuclei 1 and 2.

Let us define the integral

Ĩk =
∫ t

0
dτ1Ia(τ1) · · ·

∫ t

0
dτkIa(τk)

∫
�1t

dx1 · · ·

×
∫

�kt

dxkg̃k(x1, . . . ,xk,t1,τ1 . . . ,τk). (A6)

The use of the cluster expansion Eq. (A4) allows one
to decouple the integral [Eq. (A3)] in dependence of the
multiplicity of the g̃m function. It follows:∫ t

0
dτ1Ia(τ1) · · ·

∫ t

0
dτmIa(τm)

∫
�1t

dx1 · · ·

×
∫

�mt

dxmf̄m(x1, . . . ,xm,t1,τ1 . . . ,τm)

=
∑

n1,n2,...,nm

m!

(1!)n1 (2!)n2 . . . (m!)nmn1!n2! . . . nm!

× (Ĩ1)n1 (Ĩ2)n2 . . . (Ĩm)nm, (A7)

where
∑m

k=1 knk = m. Using Eqs. (A3), (A7), Eq. (19)
becomes

Pc(t |t1) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

· · · (−)n1 (Ĩ1)n1

(1!)n1n1!

(−)2n2 (Ĩ2)n2

(2!)n2n2!
...

× (−)mnm (Ĩm)nm

(m!)nmnm!
· · ·

= exp

[ ∞∑
m=1

(−)m

m!
Ĩm

]
. (A8)

The first term in the argument of the exponential reads

Ĩ1(t,t1) =
∫ t

0
dτ1Ia(τ1)

∫
�1t

dx1g̃1(x1,t1,τ1)

=
∫ t

0
dt2Ia(t2)

∫
�2t

dx1f2(x1,t1,t2)

=
∫ t

0
dt2Ia(t2)

∫
�2t

dr2f2(r1,r2,t1,t2)|r1=R1t r̂1 . (A9)
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Using the f2 function given by Eq. (34), Eq. (A9) provides,
eventually,

Ĩ1(t,t1) = ∫ t

0 dt2Ia(t2)
[
πR2

2t − �2(R12,R2t ; R1t )
]

(A10)

for 2D growth and

Ĩ1(t,t1) =
∫ t

0
dt2Ia(t2)

[
4π

3
R3

2t − �3(R12,R2t ; R1t )

]
(A11)

for 3D growth, with the short notations R(ti ,t) ≡ Rit ,
R(ti ,tj ) ≡ Rij . In Eqs. (A10), (A11), �D(R1,R2; x) denotes
the overlap area (D = 2) and the overlap volume (D = 3)
of two nuclei of radius R1 and R2 at relative distance x

(Fig. 2).

APPENDIX B: DIFFERENTIAL EQUATION FOR q(t1|t):
PARABOLIC GROWTH

Expanding the argument of Eq. (15) up to g2 gives rise to
(I = Ia , 2D growth)

1 − ξ = exp

[
−

∫ t

0
dt1Ia(t1)πR2

1t +
∫ t

0
dt1Ia(t1)

×
∫ t1

0
dt2Ia(t2)(F2(t1,t2,t) − π2R2

1tR
2
2t )

]
, (B1)

where F2 is the integral over the space variables. Moreover,

ξ̇ (t) = [1 − ξ (t)]

[ ∫ t

0
dt1Ia(t1)2πR1t ∂tR1t −

∫ t

0
dt1Ia(t1)

×
∫ t1

0
dt2Ia(t2)∂t

(
F2 − π2R2

1tR
2
2t

)]
, (B2)

that is further elaborated by using Eqs. (45), (46), obtaining

ξ̇ (t) = [1 − ξ (t)]

{∫ t

0
dt1I0(t1)(1 − ξ (t1))2πR1t ∂tR1t

×
[

1 +
∫ t1

0
dt2Ia(t2)

(
�2(R12,R2t ; R1t )

+ ∂tR2t

R1t ∂tR1t

∫ R1t

R2t−R12

∂R2t
�2(R12,R2t ; x)xdx

)]}
.

(B3)

The q(t1|t) function takes the form

q(t1|t) = [1 − ξ (t1)]S(2)(t1,t), (B4)

where S(2) is the last term in the square brackets of Eq. (B3).
In addition,

∂t1S
(2) =

∫ t1

0
dt2I0(t2)(1 − ξ (t2))

[
∂t1�2 + ∂t1T (t2,t1,t)

]
,

(B5)

with T (t2,t1,t) = ∂tR2t

R1t ∂tR1t

∫ R1t

R2t−R12
∂R2t

�2(R12,R2t ; x)xdx.
The differential equation for q(t1|t) is eventually given by

Eq. (26) according to

− ∂ ln q

∂t1

∼=
∫ t1

0
dt2q(t2|t1)I0(t2)∂t1ω2

+ 1

S(2)

∫ t1

0
dt2

[
q(t2|t1) − (1 − ξ (t2))

]
I0(t2)∂t1�2

− 1

S(2)

∫ t1

0
dt2I0(t2)(1 − ξ (t2))∂t1T + O

(
I 2

0

)
(B6)

which is the equation obtained by Alekseechkin [27] provided
the terms normalized to S(2) are neglected. Equation (B6) can
be easily generalized to the 3D growth.
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