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Much of the progress achieved in understanding plasticity and failure in amorphous solids had been achieved
using experiments and simulations in which the materials were loaded using strain control. There is paucity of
results under stress control. Here we present a method that was carefully geared to allow loading under stress
control either at T = 0 or at any other temperature, using Monte Carlo techniques. The method is applied to
a model-perfect crystalline solid, to a crystalline solid contaminated with topological defects, and to a generic
glass. The highest yield stress belongs to the crystal, the lowest to the crystal with a few defects, with the glass
in between. Although the glass is more disordered than the crystal with a few defects, it yields stress much
higher than that of the latter. We explain this fact by considering the actual microscopic interactions that are
typical of glass-forming materials, pointing out the reasons for the higher cohesive nature of the glass. The
main conclusion of this paper is that the instabilities encountered in stress-control condition are the identical
saddle-node bifurcation seen in strain control. Accordingly one can use the latter condition to infer the former.
Finally we discuss temperature effects and comment on the time needed to see a stress-controlled material failure.
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I. INTRODUCTION

Plasticity in crystalline solids is known to be carried by
defects, typically dislocations, that glide irreversibly under the
influence of loading the material with some mechanical load
[1,2]. On the other hand, the study of plasticity and yield
in amorphous solids is an ongoing subject of research, with
many issues remaining to be discovered, especially in more
complex amorphous glasses such as polymeric glasses and
metallic glasses. Much of the recent progress in understanding
plasticity in amorphous solids was based on experiments and
simulations done by loading the system under strain-control
protocols. A useful simulational protocol that attracted much
attention is the quasistatic athermal (AQS) strain-control pro-
tocol, in which the system is maintained at zero temperature,
and is allowed to return to mechanical equilibrium after every
small increase in strain [3,4]. This protocol exposed very
nicely the role of mechanical instabilities. These are easily
detected by examining the Hessian matrix of the system;
the eigenvalues of this matrix are all positive when the
system is mechanically stable, while a plastic instability is
characterized by an eigenvalue approaching zero, typically
via a saddle-node bifurcation [5]. When this happens, the
associated eigenfunction, which is also identified with the
nonaffine response of the system, localizes on a subset of
particles, those that participate in the plastic event.

In this paper we examine the corresponding physics for
stress-controlled protocols. In some sense, this is the more
natural protocol because it provides one with the right control
to precisely determine when does the system yield in the sense
that its strain will increase indefinitely as long as the stress is
maintained at a given value. When the stress is below the yield
stress σ

Y
the strain will reach a limit. Indeed, some attempts to

study yield using stress-controlled simulations were reported
in the literature [6–8]. We propose a more straightforward
protocol that appears to provide highly stable results which
are in good correspondence with the best available strain-
controlled results. The protocol is introduced in Sec. II. In
Sec. III we present the physical models employed here.

We discuss stress-controlled loading of a perfect hexagonal
structure in 2 dimensions, the same structure marred by some
defects, and finally a generic binary glass. This section includes
some of the main conclusions of this study: we argue that the
instabilities seen in stress-controlled loading are the very same
saddle-node bifurcations that are exhibited in strain-controlled
experiments. The difference is that once the system yields in
stress control there is no recovery. In strain-controlled loading
the system can yield, release a portion of its stress, and then be
loaded again, to yield again, etc. Therefore one sees the typical
serrated stress vs strain curves that can go for some time up
to high values of the strain. In contrast, in stress-controlled
experiments the system either gets stuck if the applied stress
is smaller than the yield stress, or it fails if the stress is
higher than the yield stress. We show that the knowledge
of strain-controlled results is useful in predicting much of
what can happen in stress-controlled loading. In Sec. IV
we focus on thermal effects, and particularly what happens
when the stress is lower than the yield stress but temperature
fluctuations can result in surmounting the barrier and failing.
Predicting the waiting time becomes an easy exercise once one
realizes that the transition is due to a saddle-node bifurcation.
This fact implies that the eigenvalue that vanishes at the
transition has a square-root singularity, and together with
the generic dependence of the barrier height on the distance
from the bifurcation one can easily estimate the waiting time.
Section V offers a summary and some concluding remarks.

II. STATISTICAL MECHANICS OF LOADED SYSTEMS

In this section we construct a protocol based on a method
that was proposed for the simulations of deformations in solids
in Ref. [9]. The main ingredient in this approach is in changing
the shape of the simulation box as well as its size. In principle
this approach can be adapted to either molecular dynamics or
Monte Carlo techniques as can be see in, e.g., Refs. [9–11].
This method can be used even for large deformations under
applied external forces; see Refs. [12,13].
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In the variable shape method [9,10] the particle positions
change from the reference state {r0

i } to a new one, denoted
{r i}, by an affine transformation that is defined by a matrix J :

r i = J · r0
i . (1)

On the microscopic level the affine transformation Eq. (1)
destroys mechanical equilibrium, and it should be followed by
a nonaffine atomic-scale relaxation of the particle positions
{r0

i } [14]. This relaxation can be performed by molecular
dynamics or Monte Carlo methods or in the case of a athermal
system by energy minimization.

In the frame of statistical mechanics the mean value of an
observable in a loaded system is defined by

〈A〉 =
∫

d Jd r0
1 · · · d r0

NA(r0
i ,J) · e−G({r0

i },J,σ ext)/T∫
d J · d r0

1 · · · d r0
N · e−G({r0

i },J,σ ext)/T
. (2)

Here T is the temperature and G({r0
i },J,σ ext) is the gener-

alized enthalpy and σ ext is the external stress tensor. The
Monte Carlo method allows us to evaluate this expression
numerically.

The method of variable shape introduces strain into the
simulation box by first defining a square box of unit area
where the particles are at positions si . Next one defines a
linear transformation h, taking the particles to positions r i via
r i = h · si . In order to prevent rotations of the simulation box,
the matrix h should be symmetric. The current area of a system
becomes the determinant V =| h |. Then the positions of the
particles in the reference state are defined by r0

i = h0 · �si ;
accordingly the matrix J in Eq. (1) is given by J = h · h−1

0 .
It is suitable to change integrals over the components of

the matrix J in Eq. (2) by integrals over the independent
components of the matrix h and the integrals over r0

i by
integrals over S = {�si}. Then this equation reads

〈A〉 =
∫

dh · dS · ·A(S,h) · e−G′(S,h,σ ext)/T∫
dh · dS · e−G′(S,h,σ ext)/T

, (3)

where

G′(S,h,σ ext) = −T N ln V + G(S,h,σ ext). (4)

The integral in Eq. (3) is evaluated via the Metropolis
algorithm. Two kinds of trial moves are considered: one
performs n standard Monte Carlo moves (displacement of the
particle positions given by �si):

snew
i = sold

i + δs, 1 � i � N. (5)

In this equation the α component of the displacement vector
of a particle is given by

δsα = �smax(2ξα − 1), (6)

where �smax is the maximum displacement and ξα is an
independent random number uniformly distributed between
0 and 1. After n sweeps defined by Eq. (5) the transformation
h changes according to

hnew = hold + δh, (7)

where elements of the random symmetric matrix δh are defined
by

δhij = �hmax(2ξij − 1), i � j. (8)

Here �hmax is the maximum allowed change of a matrix
element and ξij is an independent random number uniformly
distributed between 0 and 1. The value of �hmax and
the maximum displacement of particle positions �smax are
selected so that the acceptance rate is 30%. For each kind of
move the trial configuration is accepted with probability

Ptr = min

[
1, exp

(
−�G′

T

)]
. (9)

For relaxation of particle positions the matrix h is fixed and
the difference of the generalized enthalpy is defined by the
difference of the potential energy of the system U (h,{s}):

�G′ = U
(
h,s1, . . . ,snew

i , . . . ,sN

)
−U

(
h,s1, . . . ,sold

i , . . . ,sN

)
, 1 � i � N. (10)

The change of the generalized enthalpy due to affine transfor-
mation (at fixed particle positions {s}) is given by

�G′ = −T N ln(V new/V old) + U (hnew,{s})
−U (hold,{s}) + δW, (11)

where δW is the work that is done by an external stress σ ext.
In the general case for move J → J + δ J this work is given
by (see, e.g., [15])

δW = − 1
2V oldTr[σ ext(δ J J−1 + J̃

−1
δ J̃)]. (12)

Here the tilde (˜) represents the transpose of a matrix. Taking
into account the relation between the matrices J and h this
equation can be written as

δW = − 1
2 Tr[σ ext(δhH + H̃δh̃)], (13)

where the matrix H is given by

H =
(

hyy −hxy

−hxy hxx

)
. (14)

It follows from Eq. (9) that in the limit T → 0 only
the configurations with decreasing enthalpy are accepted;
i.e., the Monte Carlo process converges to one configuration
with minimal generalized enthalpy (for T = 0 the generalized
enthalpy is equal to the Gibbs free energy). In general, this
configuration belongs to a local minimum of the generalized
enthalpy landscape and its position depends on the initial
configuration of the simulation process.

To specialize the technique described above to stress-
controlled simple shear simulations at zero temperature one
chooses the following h matrix:

h = L

(
1 γ

0 1

)
, (15)

where L is the length of the square simulation box and γ is
the simple shear strain, with the volume of the system V = L2

being conserved. The external stress in this protocol is given
by

σ =
(

0 σ ext
xy

σ ext
xy 0

)
. (16)

For the matrix h defined by Eq. (15) the change of the
generalized enthalpy due to the increment δγ is given by

�G′ = U
(
γ + δγ ,rnew

i

) − U
(
γ ,rold

i

) − V σ ext
xy δγ. (17)
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Summing Eq. (17) over infinitesimal increments one can
find the generalized enthalpy at a given state parametrized by
γ , relative to the state defined by γ0:

G′(γ,γ0,σ
ext
xy

) = U
(
γ ,rγ

i

) − U
(
γ 0,r

γ0
i

) − V σ ext
xy (γ − γ0),

(18)

where U (γ ,rγ

i ) is the energy that is achieved after a sequence
of steps in the frame of this protocol. Usually the reference
state corresponding to γ0 is defined at σ ext

xy = 0. Nevertheless,
as one can see from Eq. (18) the replacement of the reference
state generates only a shift by a constant in the generalized
enthalpy; once the generalized enthalpy is minimized the
location of the minima do not depend on the reference state.

Note that the strain γ appears explicitly in our formalism.
It is therefore important to stress that in general the strain is
not a state function if the system undergoes irreversible events
during the nonaffine position reshuffling in which energy can
be lost to the heat bath [16]. The generalized enthalpy is
determined by γ as a state function only in the case of pure
elasticity. Here the appearance of γ in the formalism should
be interpreted only as a marker to the present shape of the
system, and the energy has to be computed incrementally via
following the protocol.

In the next section we present the results of MC calculations
for the temperature T = 0.05 and the pressure P = 0 at
different values of applied shear stress. For the sake of
easier interpretation these results are compared with the
consequences of the AQS strain-controlled protocol.

III. THE MODEL AND SIMULATION RESULTS

A two-dimensional binary mixture consists of two kinds of
particles A and B. The interatomic interactions are defined by
shifted and smoothed Lennard-Jones potentials

φαβ(r) =
{
φLJ

α,β(r) + Aαβ + Bαβr + Cαβr2 if r � Rcut
αβ ,

0 if r > Rcut
αβ ,

(19)

where

φLJ
αβ (r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
. (20)

It is convenient to introduce reduced units, with σAA being the
unit of length and εAA the unit of energy. All the potentials
given by Eq. (19) vanish with two zero derivatives at distances
Rcut

αβ = 2.5σαβ . The parameters in Eq. (20) [17] and in the
smoothing part of Eq. (19) are given in Table I. The dependence
of the potentials defined by Eq. (19) on the distance between
particles is shown in Fig. 1. The glass temperature in our
units is T ≈ 0.35, and the melting temperature is T � 1 (both

TABLE I. Potential parameters.

Particles σαβ εαβ Aαβ Bαβ Cαβ

AA 1.00 1.0 0.4527 −0.3100 0.0542
BB 0.88 0.5 0.2263 −0.1762 0.0350
AB 0.80 1.5 0.6790 −0.5814 0.1271
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FIG. 1. (Color online) Interaction potentials in dimensionless
units.

temperatures depend on the cooling rate; in the present case
the cooling rate is 3.2 × 10−6).

A composition of A and B particles that is stable in two
dimensions against crystallization is chosen to be 65% of
particles A and 35% of particles B [18]. For the one-component
system that is discussed below the potential of interaction is
chosen to be that of particles A.

A. The perfect hexagonal structure

1. Finite temperature

As a first step we studied the properties of a one-component
system consisting of N = 256 particles with the interaction
potential of A particles. A Monte Carlo process with 106

sweeps at a chosen value of the shear stress was run using
the shape-varying protocol described above. We always begin
our simulations from the liquid state, and cool down to a
chosen temperature. This process invariably leaves, even for
a one-component system, some defects in the self-forming
crystalline hexagonal solid. In other words, typically one finds,
upon cooling, a configuration like the one shown in the lower
panel of Fig. 2, denoted as configuration II. These remaining
defects can be removed by straining the system back and forth
as was done in Ref. [19]. The resulting perfect hexagonal
structure (configuration I) obtained in this way is shown in the
top panel of Fig. 2.

The distribution of the components of the internal stress
and strain tensors at zero pressure and with the external stress
σ ext = 0 and T = 0.05 is shown in Fig. 3. The components of
the internal stress tensor are defined by

σ int
αβ = ρT δαβ − 1

2V

∑
K ,L

∑
i 	=j

∂φK L(rij )

∂rij

rα
ij r

β

ij

rij

, (21)

where rij is the distance between particles i and j , α,β =
x,y denotes components of a vector r ij , and K ,L = A,B

distinguishes the kind of a particle. The strain tensor at
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FIG. 2. (Color online) Configurations of the one-component sys-
tem. Top panel: Configuration I with perfect hexagonal structure. Bot-
tom panel: Configuration II with defects. The dotted line represents
the simulation cell which is continued periodically in both directions.

zero-external stress is defined here by

ε = 1
2

(
h̃0

−1
h̃hh−1

0 − I
)
, (22)

where h0 = 〈h〉.
For notational purposes it is more convenient to use a

definition of shear deformation instead of Eq. (22). A current
shape of the simulation box is shown in Fig. 4. The strain
(so-called engineering shear strain) is given by

γ = LED

LAE

, (23)
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FIG. 3. (Color online) Distributions of the stress tensor compo-
nents (upper panel) and strain tensor components (bottom panel) of
the perfect hexagonal structure at σ ext = 0 at temperature T = 0.05
(α = x,y).

where Lij is the distance between points i and j . The same
definition of strain is used in Eq. (15). In order to define the
deformation relative to a reference state we will use also the
quantity γr = γ − γ0, where γ0 = 〈γ 〉σ ext

xy =0.
At this point the applied shear stress is increased in

steps, and after each increase the Monte Carlo process is
first run for 10 sweeps during which particle positions are
exchanged. This sweep is followed by a change in the shape
h which is followed again by 10 sweeps related to changes
of the position of the particles. The process of exchange
of positions of the particles during the sweeps followed
by change in shape of the box is continued until the total
accumulated sweeps reaches to a value 106. As long as
the chosen applied shear stress σ ext

xy is smaller than σ
Y

� 1.56
the shear strain γr reaches a constant mean value 〈γr〉 that does
not change upon increasing the number of sweeps. When the
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FIG. 4. (Color online) Shape of the simulation box. The segment
AE is perpendicular to the side CD.

applied shear stress σ ext
xy exceeds σ

Y
the solid fails and the shear

strain grows without limit. This behavior is shown in Fig. 5. It
is noteworthy that the definition and the existence of σ

Y
do not

depend on this stepwise increase in external shear stress. One
could go in one step to any value of the external shear stress
and the response of the system will be the same, failing only
when σ ext

xy > σ
Y
.

Note that in Fig. 5 the Monte Carlo results are compared
with an AQS stress-controlled protocol (see in Sec. III A 2
how this is defined and computed). One is not surprised that
at zero temperature the yield stress is considerably higher,
and see below for more details. At this point it is enough to
stress that σ

Y
depends on temperature if one can wait. Only at

zero temperature this quantity is absolute in the sense that no
waiting time is necessary for the system to fail. We return to this
important issue in Sec. IV where we estimate the waiting time.
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γ
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σex
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FIG. 5. (Color online) Stress-strain dependence under stress con-
trol for system I (see Fig. 2). The blue dots represent results of the
Monte Carlo simulations at T = 0.05. The red line represents the
prediction of the athermal quasistatic protocol (at T = 0). Note that
at zero temperature the yield stress is considerably larger.
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FIG. 6. (Color online) The dependence of the internal stress (top
panel) and the energy (bottom panel) on the strain under stress control
for system I (see Fig. 2).

At finite temperature the internal stress, the energy, and the
strain fluctuate. The extent of these fluctuations at T = 0.05
is shown in Fig. 6. Below the yield stress the system exhibits
elastic behavior. When the yield stress is exceeded the system
stays for a while in a series of metastable states (each of
which exhibiting “elastic” behavior) whose lifetime becomes
shorter and shorter until the simulation box collapses entirely.
Note that these metastable states are the elastic branches that
are seen very clearly in strain-controlled experiments; cf. Fig.
11 and Fig. 15. In that protocol the system loses energy and
releases strain upon reaching a saddle-point bifurcation and
lands on the next elastic branch where it will stay forever if
the strain does not increase. This is different from what is seen
here, where once σ

Y
is exceeded the system fails, even though

it may reside for a while on metastable states.

2. Zero temperature

In this subsection we show how to use the results of AQS
strain-control simulations to predict the physics of AQS
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FIG. 7. (Color online) The strain dependence of the generalized
enthalpy in the athermal case for system I. The input from the strain-
controlled experiment is the first curve at σ ext

xy = 0. To this function
we now add the term −V σ extγr according to Eq. (18) to get all the
other curves at varying values of σ ext

xy .

stress-controlled loading. Consider therefore the stress-strain
relation using the athermal limit in the NVT ensemble defined
by Eq. (18). Imagine then that we run an AQS strain-control
simulation, and for every value of γ we record the energy
U ({r i},γ ) of the force-free configuration after the nonaffine
relaxation took place. In order to find the minimum of the
function (18) with regard to particle positions and the strain
at a given external stress we have to study the dependence on
strain of the generalized enthalpy. This dependence is shown in
Fig. 7. We reiterate that the contribution U ({r i},γ ) is indepen-
dent of stress and is defined by minimizing the energy at given
strain via a relaxation of the particle positions. In the unstressed
perfectly hexagonal structure there is only one minimum which
is associated with a single reference state. Under applied stress
there appears the metastable state separated from the global
minimum by a barrier. The barrier height decreases with
increasing stress and it disappears at the (zero-temperature)
yield stress. We can now estimate the stress-strain relation
from the series of curves that are shown in Fig. 7. As the
stress increases the minimum of the curve shifts to higher
values of strain. The stress vs strain dependence that is read
in this way is shown in Fig. 5. We see the almost perfect
correspondence between the two curves for small values of
stress. The discrepancy at higher strains results from having
different ensembles: in the AQS protocol the pressure varies
nonmonotonically with strain, in contrast to the Monte Carlo
protocol at constant pressure, which in the present case is
P = 0.

The increase in pressure in this AQS stress-controlled
procedure eliminates the failure of the material that we observe
in the Monte Carlo stress-controlled protocol. Nevertheless we
can predict the failure in the latter protocol from the former.
We need to focus on that value of the stress where for the
first time the depth of the two minima in Fig. 7 is the same.
Note that this occurs at σ = σ

Y
≈ 1.56 in excellent agreement
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FIG. 8. The evolution of the energy (top panel) and the strain γ

(bottom panel) during the MC protocol for system II (see Fig. 2) for
two values of the temperature. The external stress σ ext

xy = 0, T = 0.05
(black line), and T = 0.1 (gray line).

with the results shown in Fig. 5. Similar predictability will be
shown below for the more complex examples.

B. Hexagonal structure with defects

Our second system of interest is the hexagonal structure
with a small number of defects whose concentration is about
2%, as seen in the lower panel of Fig. 2. Trajectories of
measured values of the energy and the strain γ as a function
of the MC sweeps (here we used 2 × 106 sweeps) are shown
in Fig. 8. In contrast to the perfect hexagonal structure the
strain γ displays at T = 0.05 behavior typical to a bimodal
distribution. Nevertheless, the comparison with results for
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FIG. 9. Evolution of the strain γ in the MC simulations under
applied external stress.
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FIG. 10. Dependence of the internal stress (top panel) and the
energy (bottom panel) on the strain under stress control for system II
(see Fig. 2). Colors correspond to the legend in Fig. 9.

higher temperature T = 0.1 which exhibit the liquid behavior
(see also [20]) shows that the system at lower temperature is
in a solid state. A few examples of the same dependence under
applied external stress are shown in Fig. 9. One can see that
at relatively small values of external stress there are allowed
transitions between available configurations. When the applied
stress exceeds some critical value σ Y this dependence indicates
the permanent deformation of the simulation cell via a number
of metastable states (see Fig. 10). Needless to say, the
concentration of defects does not stay at the level of 2%. When
the stress increases, and particularly near and after yield, the
concentration of defects becomes very high.

The AQS strain-controlled protocol (see Fig. 11) now
reveals that U ({r i},γ ) has a more complex landscape with
a number of local minima. The athermal analysis of the
generalized enthalpy can be done again as explained above.
The applied external stress shifts the equilibrium positions
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=0.02

FIG. 11. (Color online) The strain dependence of the generalized
enthalpy in the athermal case for system II. The input from the strain-
controlled experiment is the first curve at σ ext

xy = 0. To this function
we now add the term −V σ extγr according to Eq. (18) to get all the
other curves at varying values of σ ext

xy .

similarly to the pure crystal results. In Fig. 12 we show
how the distribution of measured strain values depends on
the external stress during the stress-controlled simulations.
For zero external stress there are only two available states
corresponding to the two maxima in the distribution of the
strain, or to the two minima in the free energy. For higher
values of the external stress there are more available states
which appear as additional peaks in the distribution of strain.
The measured strain in the lower panel is computed as an
average over the distributions in the upper panel. In the lower
panel of Fig. 12 we present the comparison between the
AQS stress vs strain curve and the stress-control results. Note
the lack of correspondence which stems from the fact that
the AQS simulation remains in the same inherent state for
these values of strain. The finite-temperature stress-control
protocol is highly sensitive to the availability of additional
inherent states. The simulation results show that transitions
between different minima can soften the material enormously,
leading to a yield stress that is enormously smaller than the
corresponding one for the perfect hexagonal structure.

C. The glass

In the glass simulations we employed 400 particles in the
simulation cell. A typical configuration of the binary mixture
which produces our glass is shown in Fig. 13. In Fig. 14 we
show the Monte Carlo simulation results of the internal stress
and potential energy at different values of the external stress.
The reader can already guess that the increased disorder seen
in this figure will translate to an increased complexity in the
enthalpy landscape. Indeed, in Fig. 15 we show the enthalpy
landscape as computed using the strain-controlled protocol
and the changing landscapes upon the increase of the external
stress.
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FIG. 12. (Color online) Simulation results for system II (see
Fig. 2). Upper panel: Distribution of strain values for a given external
stress in the Monte Carlo simulation at T = 0.05. For zero external
stress there are only two available states corresponding to the two
maxima in the distribution of the strain, or to the two minima in the
free energy. For higher values of the external stress there are more
available states which appear as additional peaks in the distribution
of strain. The measured strain in the lower panel is computed as
an average over the distributions in the upper panel. Lower panel:
stress-strain dependence under stress control (blue dots) and for AQS
(red line). The black triangle represents the state obtained by an MC
simulation at σ ext

xy = 0 starting from an initial condition which is a
configuration found by the Monte Carlo protocol at σ ext

xy = 0.01.

The corresponding results of the Monte Carlo simulation
of the stress-strain dependence under stress control (in the
glass simulations we use 2 × 106 sweeps) are shown in
Fig. 16. To understand these results we again turn to the
strain-control experiment at T = 0, for which we exhibit the
stress vs strain trajectory in Fig. 15. Note again the immense
difference between the two protocols: in strain-controlled
simulations one sees many plastic instabilities, and in each
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0
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0.4

0.5

0.6
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1

FIG. 13. (Color online) The structure of the binary mixture. Blue
circles correspond to A particles, black circles to particles B.

of them the system releases a part of the stress and a part of its
mechanical energy. The strain is no longer a state variable
due to the irreversible drops in energy. In contrast, in the
stress-control experiment one is bound to get stuck at one of
the elastic branches as long as the stress is lower than the yield
stress σ

Y
, which in the present case is about 0.26.

At zero temperature the stress-control experiment can
exhibit only one instability where the system fails, when σ ext >

σ
Y
. At finite temperatures one can observe multiple instabilities

also in the stress-control protocol as the system overcomes the
barriers with the help of temperature fluctuations. Of course
for a given external stress the waiting time will get longer and
longer as the barrier increases, until the barrier that is associate
with the zero-temperature σ

Y
is reached. Finally note also the

precise correspondence between the zero-temperature and the
finite-temperature trajectories for small but finite values of
the stress in Fig. 15. This correspondence can be maintained
for much higher values of stress and strain by reducing the
temperature.

An important point to discuss is the fact that the glass is
much more cohesive than structure II even though is has many
more “defects.” The reason for this lies in the microscopic
interactions that are exhibited in Fig. 1. We see there that the
AB interaction is considerably deeper than the AA interaction,
meaning that the B particles act as pinning centers for the
movement of A particles. This is in fact the deep reason why
this mixture is a good glass former. For the structure II there is
nothing that can pin the defects and they glide happily under
any minute strain or stress, which explains the low yield stress
of that structure compared to the glass. Indeed, this insight
should be remembered whenever one wants to increase the
cohesiveness of glasses, or to increase their shear modulus or
their yield stress. One should add particles that act effectively
as pinning centers, and see Ref. [21] for more details.
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FIG. 14. (Color online) Dependence of the internal stress (top
panel) and the energy (bottom panel) on strain under stress control
for the glass model (see Fig. 13).

IV. TEMPERATURE EFFECTS AND WAITING TIMES

At this point we focus on values of the stress that are close
to the yields stress σ

Y
, and particularly to the zero-temperature

value of this quantity (much of the discussion in this section
is however relevant for any instability point at lower values
of stress). Stressing the system at zero temperature will result
in the system being stuck at a mean strain value 〈γ 〉 that is
less than the value of the strain which is associated with the
position of the highest barrier, denoted conveniently as γ

Y
.

The question that we pose in this section is what is the waiting
time τ (first passage time) for failure if the temperature is not
zero. The problem is the classical one for escape over a barrier,
but because this is a saddle-node bifurcation there are some
special characteristics that need to be taken into account.

The general expectation for the waiting time is that it should
scale like

τ ∼ ω−1 exp �G/T , (24)
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γ

σ xyin
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FIG. 15. (Color online) Top panel: The strain dependence of the
generalized enthalpy in the athermal case for the glass. The input
from the strain-controlled experiment is the first curve at σ ext

xy = 0.
To this function we now add the term −V σ extγ according to Eq. (17)
to get all the other curves at varying values of σ ext

xy . Bottom panel:
Stress vs strain in a strain-controlled simulation of the response of
the binary glass at AQS conditions.

where ω is the typical frequency of oscillations in the
metastable minimum from which the system escapes, and
as before �G is the enthalpic barrier that becomes a saddle
together with the minimum at σ = σ

Y
. One knows that in a

saddle-node bifurcation the frequency ω ∼ √
λ, where λ is the

lowest eigenvalue of the Hessian matrix. The latter goes to
zero at the saddle bifurcation like λ ∼ √

γ
Y

− γ [22]. As long
as the harmonic approximation is relevant (i.e., λ ∼ ω2) we
can therefore write

ω ∼ (γ
Y

− γ )1/4. (25)

On the other hand the height of the barrier scales like [23]

�G ∼ λ3 ∼ (γ
Y

− γ )3/2. (26)
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FIG. 16. (Color online) Stress-strain dependence of the binary
glass. We again stress that in the stress-control simulation the external
stress is fixed and shown are the results for varying this fixed stress.
In a triangle we show the state obtained by the MC simulation at
σ ext

xy = 0 with initial configuration from the run at σ ext
xy = 0.15.

Using these scaling estimates in Eq. (24) we see that formally
the waiting time diverges both at (γ

Y
− γ ) → 0 and at

(γ
Y

− γ ) → ∞ with a minimum waiting time at a temperature-
dependent value (γ

Y
− γ ) = (T/6)2/3. In reality however for

any finite temperature we lose the relevance of the harmonic
approximation in the limit (γ

Y
− γ ) → 0, and we need to use

the next, nonsingular, anharmonic correction to ω. Also in
the other limit, when (γ

Y
− γ ) becomes large, we lose the

relevance of the scaling law (26), destroying the singularity in
this limit. Thus in both limits we predict a nonsingular waiting
time. The conclusion is that a precise estimate of the waiting
time calls for molecular dynamics simulations that are beyond
the scope of this paper.

V. SUMMARY AND CONCLUDING REMARKS

The main aim of this paper was to introduce a reliable
simulational approach to stress-controlled loading of amor-
phous systems at zero or finite temperatures. The method of
variable shape appears stable and useful, and we exemplified

it for a perfect hexagonal structure, the same structure with
a few defects, and a generic binary glass in 2 dimensions.
Not surprisingly, we see from comparing Figs. 5, 12, and
16 that the pure solid requires the highest stress to yield,
then comes the glass and finally the defected solid. The
main conclusion is that the type of mechanical instabilities
encountered in stress-controlled protocols is one and the same
as those seen in strain-controlled protocols, i.e., saddle-node
bifurcations in which the Hessian matrix becomes unstable,
sending one of its eigenvalues to zero. As a result, the
knowledge of the possible instabilities that are found in AQS
strain-controlled simulations is very helpful for understanding
what is happening in stress-controlled simulations, even at
finite temperature. Of course, the difference in the type of
ensemble is not unimportant, and deviations in the system
response from one protocol to the other are expected and also
found. Nevertheless approximating the enthalpy landscape
with the help of the AQS stain controlled simulations is shown
to be very useful in clarifying what one should expect in a
finite-temperature stress-controlled protocol. Examples of this
understanding were given for all the three examples treated in
this paper.

Finally we examined the issue of the waiting time for
yield in stress-controlled simulations, making full use of the
identification of the instabilities as saddle-node bifurcations.
The proposition there was that one can see a decrease or
increase in the waiting time as a function of the distance
from the instability, but that eventually the waiting time is
not singular.

We reiterate that all our stress-controlled simulations here
were performed for zero pressure. It would be interesting in the
future to follow up on the present study with stress-controlled
simulations when different components of the stress tensor are
kept constant, to see how the response of the system depends
on such details. We hope to report on such simulations in
forthcoming publications. In addition, and maybe even more
importantly, the present protocol allows a very precise study
of the yielding process itself. This study will be reported
elsewhere.
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