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Local energy landscape in a simple liquid
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It is difficult to relate the properties of liquids and glasses directly to their structure because of complexity in
the structure that defies precise definition. The potential energy landscape (PEL) approach is a very insightful way
to conceptualize the structure-property relationship in liquids and glasses, particularly the effect of temperature
and history. However, because of the highly multidimensional nature of the PEL it is hard to determine, or
even visualize, the actual details of the energy landscape. In this article we introduce a modified concept of the
local energy landscape (LEL), which is limited in phase space, and demonstrate its usefulness using molecular
dynamics simulation on a simple liquid at high temperatures. The local energy landscape is given as a function of
the local coordination number, the number of the nearest-neighbor atoms. The excitation in the LEL corresponds
to the so-called β-relaxation process. The LEL offers a simple but useful starting point to discuss complex
phenomena in liquids and glasses.
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I. INTRODUCTION

The potential energy landscape (PEL) concept has been
shown to be a powerful tool to study the thermodynamics of
complex systems including liquids, glasses, molecules, and
clusters [1–4]. Although the general properties of the PEL are
beginning to emerge through various simulations [5–7], it is
difficult to visualize the PEL directly, particularly because it is
so highly multidimensional. Consequently, the picture of the
landscape is often schematically drawn by hand [3,7] and the
question of what the choice of the horizontal axis to represent
the atomic configuration should be is still being debated. In this
article we demonstrate that the local energy landscape (LEL)
in high-temperature liquids can be explicitly presented as a
function of the coordination number and local dynamics can
be directly calculated from the LEL. It should be pointed out
that even though the global PEL is highly multidimensional,
in practice there is little need of knowing the full landscape
because vast portions of it are virtually inaccessible due to
either to its high potential energy or its small phase space.
In order to apply the concept of the PEL more effectively to
liquids and glasses, high-temperature liquids in particular, we
propose to consider a configurationally averaged LEL in easily
accessible phase space, instead of the full energy landscape, by
using the local coordination number as the axis for the atomic
configuration. The LEL is closely related to the local PEL as
discussed below.

In crystalline solids phonons are the elementary excita-
tions of lattice dynamics [8]; however, in liquids phonons
are strongly scattered and short lived. This is because the
dynamical (Hessian) matrix, the diagonalization of which
defines the phonons, itself is time dependent, so there is
no real eigenstate [9]. Instead, we found recently that the
local configurational excitation (LCE), which is the action
of changing the local topology of atomic connectivity, is the
elementary excitation in the liquid, instead of phonons [10]. In
Ref. [10] the lifetime of local atomic connectivity, the time to
lose or gain one nearest neighbor τLC, was found to be equal
to the Maxwell relaxation time τM = η/G∞, where η is shear

viscosity and G∞ is the high-frequency shear modulus, above
the crossover temperature TA. This is an important finding,
because this result connects a microscopic time scale τLC

directly to a macroscopic time scale of liquid dynamics τM .
In the present work, through molecular dynamics (MD)

simulation of a simple liquid, a metallic Cu-Zr alloy liquid, we
show that the local dynamics of the LCE can be described very
well in terms of the LEL and excitations within the LEL. In
the language of the PEL theory, a high-temperature liquid
system is supposed to fly above the PEL as in a gaseous
state. However, a high-temperature liquid is a condensed
matter with strong atomic correlations, not a gas. On the
other hand, because of localization of atomic dynamics in
high-temperature liquids [10], all atoms of the same species
experience the same local PEL. We propose that a better
description is that the global PEL is reduced to the local atomic-
level energy landscape in high-temperature liquids, because
the system chooses the states with the highest degeneracy to
maximize entropy.

In the PEL approach the state of the system is characterized
by its inherent structure obtained by quenching the system
to T = 0 [3,5] and the dynamics of the system is studied by
its migration from one inherent state to another [7]. Myopic
details of the state are not of concern. Whereas this far-sighted
approach renders the method powerful to investigate extremely
complex systems, physical intuition suffers. In the present
work we provide an explicit depiction of the microscopic state
in terms of the local coordination number, focusing on high-
temperature liquids for which the PEL is particularly simple.
Extension to supercooled liquids and glasses will be discussed.

II. MOLECULAR DYNAMICS SIMULATION

The three-dimensional MD simulations on Cu56Zr44 were
performed using a large-scale atomic/molecular massively
parallel simulator (LAMMPS) on a model in a cubic box
under periodic boundary conditions. Our system consists of
16 000 atoms under the NVT ensemble at a number density
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of 0.05864 Å
−3

and for the interaction between atoms we use
the embedded-atom method potential [11]. The temperatures
studied range from 850 to 5000 K, all of which are above
Tg(= 700 K). The value of Tg was obtained from a jump in
specific heat during a cooling process at 5 × 1010 K/s. The
model has a crossover temperature TA below which viscosity
increases rapidly in a super-Arrhenius fashion, which is about
1600 K [10]. Equilibrium simulations allow for the calculation
of thermodynamic or transport properties, such as energy
and viscosity, and in the well-equilibrated liquid states the
transition rates at which an atom loses or gains one neighbor
were calculated as we discuss later. To improve the statistics of
the results we averaged over ten independent simulation runs.
In the simulation, time and length are expressed in units of ps
and Å, respectively, and the MD time steps were 0.001 ps for
temperatures below 3000 K and 0.0005 ps for temperatures
above 3000 K.

III. LOCAL COORDINATION NUMBER

Defining the structure by atomic connectivity is natural for
covalent glasses such as B2O3, which is well described by the
continuous random network (CRN) model [12]. However, even
though strong covalent atomic bonds do not exist in metallic
systems, one can still define the nearest neighbors by the first
peak in the atomic pair density function (PDF), using the first
minimum in the PDF, rmin, as the cutoff; if the interatomic
distance between two atoms is shorter than rmin they are
defined as nearest neighbors. The number of nearest neighbors
is called the coordination number NC and varies from one
atom to another. The topology of the atomic connectivity
network thus defined is an effective way to characterize the
structure of metallic liquids and glasses as the CRN structure
with a loose restriction on the coordination number. For a
binary alloy Cu56Zr44 the first minimum in partial PDFs was
used as the cutoff value. The cutoff values for Cu-Cu, Cu-Zr,
and Zr-Zr pairs are 3.172, 3.692, and 4.108 Å, respectively.
Alternatively, it is possible to define the nearest neighbors
through the Voronoi construction [13]. However, the Voronoi
method tends to overestimate NC by counting the neighbors
with a small Voronoi face.

The distribution of the value of NC(α), the local coordina-
tion number for the α atom where α = Cu or Zr, Pα (NC(α)),
is given in Fig. 1 for the model liquid Cu56Zr44. Here the
distribution is given by Pα(NC) = nα(NC)/N , where nα(NC)
is the number of α atoms having NC nearest neighbors and N

is the total number of atoms. The probability is normalized by∑
NC

[PCu(NC) + PZr(NC)] = 1. (1)

The average coordination number is a weak dependence on
T and NC(Zr) is about 15 and NC(Cu) is about 10–11, reflecting
their atomic sizes (rZr= 1.52 Å and rCu =1.32 Å [11]). The
distribution is nearly Gaussian and the peak of the distribution
shifts to a lower number and becomes wider as temperature
increases. This distribution function can be expressed in terms
of the local effective free energy Eα(NC (α)) by

Pα(NC(α)) = Pα,0 exp

(
−Eα(NC(α))

kBT

)
. (2)
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FIG. 1. (Color online) Distribution of the coordination number
NC at various temperatures for liquid Cu56Zr44 for Cu and Zr. The
lines are Gaussian fits to the data for each temperature.

The local effective free energy Eα(NC(α)) can be directly
calculated using Eq. (2) and is shown for Zr and Cu in
Fig. 2. Now the deviation in NC from the thermal average
NC (α),〈NC(α)〉, is proportional to the atomic-level pressure
pα [14]. For a monatomic system it is given by

p = 6
√

3 − 9

4π
B(NC − 〈NC〉), (3)

where B is the bulk modulus [15]. The local elastic self-energy
can be expressed as V 〈p2〉/2B, where V is the atomic volume
and 〈p2〉 is the second moment of the distributed atomic-level
pressure [14,16]. Furthermore, we have shown earlier that
p obeys the equipartition law at high temperatures [16,17].
Therefore, E(NC) can be explicitly expressed as [15]

E(NC) = V B
27(7 − 4

√
3)

16π2
(NC − 〈NC〉)2. (4)

The extension to the case of a binary alloy is given in the
Appendix. Indeed, the data fit this expression well as shown in
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FIG. 2. (Color online) Energies of the states with various NC ,
deduced by Eq. (2) at 3000 K for Cu and Zr. The solid lines represent
theoretical predictions based on the local elastic energy given by
Eq. (A7).
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Fig. 2 at 3000 K in spite of various approximations introduced
in deriving Eq. (4). At high temperatures the higher-order terms
become important, partly because the volume is kept constant.
Now the fact that the equipartition law is obeyed means that
NC is effectively an independent local variable in a liquid.
Therefore, even though the coordination number is an integer,
we can generalize it as a continuous variable and use it as the
coordinate for the LEL. The integral values of NC correspond
to the minima in the LEL, expressed by Eq. (2). In between the
integral values of NC the LEL has energy barriers, the heights
of which determine the transition rates between neighboring
NC .

IV. TRANSITION RATES FOR COORDINATION NUMBER

As time goes forward an atom may lose one of the nearest
neighbors, which moves on to become the second neighbor. So
the local coordination number of this atom NC(i) is reduced
by one. This happens simultaneously to two atoms i and j

when the connectivity between i and j is lost. This justifies
the description of this action as breaking of a bond. An atom
can also gain a new nearest neighbor. Then a new bond is
created and the local coordination number is increased by one.

Figure 3 shows typical examples of the time evolution of
NC for several atoms. The flow chart for the dynamical process
of NC , (bi,fi), is displayed in Fig. 4. Here bi and fi are two
connectivity parameters, which measure how many bonds are
broken or formed with respect to a reference state for the
atom i. Let us consider that at t = 0 an atom is in an NC-
coordinated state, which serves as the reference state denoted
by (bi,fi) = (0,0). As time goes by the atom loses or gains one
neighbor at t = t1 and the state of the atom is given by (1,0)
or (0,1). Hereafter, the two pathways through which the atom
takes (1,0) or (0,1) are referred to as process I and process II,
respectively.

Next we consider the escape time t2 (>t1), at which the
states excited at t = t1 move to different states. As shown
in Fig. 4, the possible next states that can be taken at t = t2
are given by (2,0) or (1,1) for process I and (0,2) or (1,1)
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FIG. 3. (Color online) Examples of the time evolution of NC for
several atoms. The atoms are constantly undergoing a discontinuous
change in NC , reflecting the discreteness of atoms.
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FIG. 4. (Color online) Flow chart for the dynamical process of
NC . In the liquid states the local coordination number of each
atom changes with time and the connectivity parameters (bi,fi) are
introduced to describe how the local structure of an atom changes
with time. These changes essentially take place in a discontinuous
manner. See the text (Sec. III) for definitions.

for process II. Often fluctuations let the atom go back to the
previous state (1,0) or (0,1). For this case the value of t2
remains unassigned until the atom again reaches one of the
states (2,0), (1,1), and (0,2). In order to differentiate if the state
that arrived at t = t2 is due to fluctuations or structural changes,
we need to know further transition states (3,0), (2,1), (1,2), or
(0,1) for process I and (0,3), (2,1), (1,2), or (1,0) for process
II. When the atom takes one of such states at t = t3 (>t2), we
assign t2, just before t3, as the time at which the atom eventually
escapes from the states with (1,0) or (0,1). Within a time
interval of [t1,t2], some atoms were found to fluctuate back and
forth between the two states, especially at high temperatures. In
such a case it is difficult to identify exactly when the excitations
take place. For the present purpose, it is more convenient to
define the time during which the atom lies in the states with
(1,0) or (0,1) for t ∈ [t1,t2] as τLC. This can approximate the
lifetime of the states with (1,0) or (0,1). If the atom reaches a
state with NC at t = t1 and then undergoes a transition from this
state to a state with NC ± 1 at t = t2, τLC = t2 − t1 is expressed
as τLC(NC |NC ± 1). Also, we can count the number of atoms
undergoing a transition from the NC-coordinated state to an
(NC ± 1)-coordinated state in unit time, which is denoted by
�n(NC |NC ± 1). In the present analysis the probability that
bond breaking and formation occurs simultaneously on the
same atom is small and such atoms (less than 6% of atoms)
are neglected. Note that the value of t1 is reset only when the
atom goes from (0,1) to (1,0) via (0,0) or vice versa.

Using τα
LC(NC |NC + 1), �nα(NC |NC + 1), and nα(NC),

we define the rate at which transitions from NC to NC ± 1
occur by

kα
LC(NC | NC ± 1) = �nα(NC | NC ± 1)

nα(NC)τα
LC(NC | NC ± 1)

(5)

and nα(NC) = �nα(NC | NC + 1) + �nα(NC | NC − 1). As
shown in Fig. 5 kα

LC strongly depends on temperature as well
as on the local coordination number NC . This is reasonable
because it is easier to lose a neighbor when NC is large and
vice versa. The combined transition rates

kLC(α) = (
1
2

)[
kα

LC(NC | NC − 1) + kα
LC(NC | NC + 1)

]
(6)
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FIG. 5. (Color online) Coordination number dependence of the transition rates for Cu and Zr. We see that the transition rates strongly
depend on NC . For the process to gain a neighbor (left) it is easy to gain a neighbor when NC is low than when NC is high. Similarly, for the
process to lose a neighbor (right) it is more difficult to gain a neighbor when NC is low. It is also dependent on temperature, because the atomic
mobility increases with temperature.

are shown in Fig. 6. They show that when NC is close to its
average 〈NC〉 the transition rates are low and so the system is
stable as expected, whereas it is unstable when it is far away.

V. TEMPERATURE DEPENDENCE OF
THE TRANSITION RATE

It is found that kα
LC has an Arrhenius temperature depen-

dence over a wide temperature range as shown in Fig. 7,
except for NC = 12 for Cu, which shows an anomalous
behavior. This exceptional behavior will be discussed later.
From this result we can determine the activation energy for
the process NC → NC − 1, �Eα(NC |NC − 1), and that for
NC → NC + 1, �Eα(NC |NC + 1), and calculate it as

�Eα(NC |NC ± 1) = −kBT log

(
kα

LC(NC |NC ± 1; T )

kα
LC(NC |NC ± 1; ∞)

)
.

for each process shown in Fig. 7.

By combining these activation energies with Eα (NC) in
Eq. (2), which represents the energy of the local minimum
in the LEL for each coordination state, we can construct
the local energy landscape as a function of NC as shown
in Fig. 8. The saddle point energies in the LEL are given
by Eα+

saddle(NC + 1
2 ) = Eα(NC) + �Eα(NC |cN + 1) for the

process NC → NC + 1 and by Eα−
saddle(NC + 1

2 ) = Eα(NC +
1) + �Eα(NC + 1|NC) for the process NC → NC + 1. Here
it is seen that the salient part of the LEL changes little with
temperature. The portions of the LEL with high values of NC

increase with temperature. The state with high coordination
number involves the nearest-neighbor atoms that are closer
to each other. At high temperatures this results in accessing
the more strongly repulsive part of the interatomic potential,
increasing the local potential energy.

The saddle point energies for the activation processes
NC → NC − 1 and NC → NC + 1 are not exactly identical.
However, these small differences must be due to statistical
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FIG. 6. (Color online) Combined rate of local configurational change kLC for Cu (left) and Zr (right) as a function of NC for Cu56Zr44

liquid. Here kLC(Cu) = 1
2 [kCu

LC(NC |NC − 1) + kCu
LC(NC |NC + 1)] and kLC(Zr) = 1

2 [kZr
LC(NC |NC − 1) + kZr

LC(NC |NC + 1)]. The lower the rate,
the more stable the atom is. Thus kLC is minimum near the average coordination of each element at high temperatures. For Cu atoms below
900 K the atoms with NC = 12 gain stability due to formation of icosahedral clusters, but the atoms with NC = 11 or 13 also gain stability.
For Zr atoms at low temperatures the atoms with NC = 15 become most stable.

noise because the law of detailed balance requires them to
be equal. The LEL shown in Fig. 9 is the average of the two
LELs for the processes to increase and decrease NC . Note that
this landscape is different from the full energy landscape in
that here all the variables other than NC are averaged out in
statistical sampling and in doing so only the portion of the
phase space accessible at each temperature is considered. It
clearly shows that the coordination states close to 〈NC〉 are
more stable and the activation process to change NC , LCE, is
the elementary process of activation.

VI. COMPARISON WITH VISCOSITY

The total LCE transition rates of the system

k±
LC =

∑
NC

kCu
LC(NC |NC ± 1)PCu(NC)

+
∑
NC

kZr
LC(NC |NC ± 1)PZr(NC) (7)

are plotted against 1/T in Fig. 10 and are compared to
the Maxwell relaxation time of the system calculated using
viscosity obtained by the Green-Kubo formula [10]. Obviously
k+

LC = k−
LC in order to preserve the steady state. As shown

in Ref. [10], kLC = 1/τM above the crossover temperature
TA ∼ 1600 K. It is observed, at least within the temperature
range studied, that the temperature dependence of k±

LC remains
Arrhenian down to well below TA, even though the Maxwell
relaxation time, and thus viscosity, deviates from the Arrhenian
behavior below TA. This result supports the earlier conjecture
that the nature of the LEL and the excitation to change the
local coordination number, LCE, is basically independent of
temperature, justifying the definition of LCE as the elementary
excitation in liquids. However, the interactions among the
LCEs change as the system is cooled through TA. Above
TA the excitations are independent of each other because the

Maxwell relaxation time is shorter than the time for the phonon
to propagate over one atomic distance, but below TA they start
to interact through exchanging phonons [10]. Note that above
TA, 1/kLC, calculated from Eq. (7), gives almost the same value
as τLC defined in Ref. [10].

In terms of the relaxation phenomena it is most likely
that the LCE is related to the so-called β relaxation [18,19],
whereas the Maxwell relaxation represents the macroscopic
viscosity. To prove this point we show the imaginary part
of the dynamic shear modulus G′′(ω) at T = 3000 K (>TA)
and 850 K (<TA) in Fig. 11. The dynamic shear moduli were
defined as the Fourier transform of the stress-stress correlation
function with respect to time

G′(ω) + iG′′(ω) = iω

∫
dt〈σxy(t)σxy(0)〉 exp(iωt), (8)

where G′(ω) and G′′(ω) are the storage modulus and loss
modulus, respectively, σxy is the shear component of the
macroscopic stress tensor, and ω is angular frequency. At
T = 3000 K, G′′(ω) has only one peak at the frequency ωp ∼
ωLC = 1/tLC = 1/τM , as expected from the Debye relaxation
phenomena. At T = 850 K, G′′(ω) shows two peaks, the fast
dynamic peak due to phonons and the other relaxation peak
tracking 1/τM . However, there is additional weight between
the two peaks, usually attributed to the extended β-relaxation
wing [20]. The ωLC falls right at the extended β-relaxation
wing, suggesting that the LCE or combination of the LCEs
could be the origin of the β-relaxation process.

It has been known by the PEL approach that the local
excitations out of the metabasin have an Arrhenian temperature
dependence [7,21]. However, the precise nature of such
excitations is not known, except that they are thought to be
related to breaking of the cage. In this work we explicitly
identify the excitations as the cutting or forming of atomic
bonds, represented by changing the coordination number.
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FIG. 7. (Color online) Temperature dependence of the transition rates for Cu and Zr, plotted against 1/T. For high temperatures above TA

the transition rates exhibit an Arrhenius behavior with a well-defined activation energy. The lines represent the Arrhenius fit with kLC(T ) =
kLC(∞) exp(−�Ea/kBT ). We see that the Arrhenius activation energy depends on NC as well as the type of atoms and the process to gain or
lose one neighbor. As temperature is decreased the activation energy shows temperature dependence.

VII. DISCUSSION

Whereas the PEL describes the energy states of the inherent
structures x, the LEL is determined by the population of the
NC states and the transition rates among them. Therefore, the
LEL reflects the local free energy landscape rather than the
local potential landscape. However, the difference may not be
significant. As shown in Fig. 2, the energies of the minima
are expressed by Eq. (4) in terms of the elastic self-energy.
Deviations at the both ends most likely reflect anharmonicity
rather than the entropic effect. Also, as shown in Fig. 7, the ac-
tivation energy does not change much with temperature, again
suggesting that the entropic effects are minimal. Therefore, we
believe that the LEL reflects the local PEL rather faithfully.

The result shown in Fig. 9 suggests that the LEL of a liquid
at high temperatures can be expressed as

Eα
PEL = Cα[NC(α) − 〈NC(α)〉]2 + βαsin2[πNC(α)]

+ H.O.[NC(α) − 〈NC(α)〉 ], (9)

where Cα is given by Eq. (4) for a monatomic system and in the
Appendix for a binary alloy. The higher-order term H.O. due
to anharmonicity increases with temperature. The value of βα

appears to be related to the bond energy [15]. It depends only
weakly on NC , so in Eq. (9) we neglected this dependence.
This expression provides a concrete and simple picture of the
LEL of a liquid and allows various properties to be calculated.
We show an example of viscosity in Fig. 10.

As shown in Fig. 6, the lowest transition rate for Cu is
at NC = 10 at high temperatures, but the transition rate for
NC = 12 becomes unusually low at low temperatures. As
shown in Fig. 7, the transition rate for NC = 12 signifi-
cantly deviates downward from the Arrhenius behavior below
1100 K. Consequently, the rate for NC = 13 deviates upward.
This anomalous behavior must be a consequence of the
formation of stable icosahedral clusters. Icosahedral clusters
are often found to dominate at low temperatures [11,22–24]. As
pointed out by Frank a long time ago [25], icosahedral clusters
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and step-up (right). The local energy minimum at integer values of NC was calculated by Eq. (2) and the energy barrier at half integer values
was given by the activation energy obtained from the Arrhenius fit at high temperatures shown in Fig. 7. Then the saddle point energies
at NC + 1/2 are given by Eα+

saddle(NC + 1/2) = Eα(NC) + �Eα(NC |NC + 1) for the process to increase NC and by Eα−
saddle(NC + 1/2) =

Eα(NC + 1) + �Eα(NC + 1|NC) for the process to decrease NC .

are not conducive to crystallization and contribute to enhancing
supercoiling. Thus there have been many discussions to relate
the formation of icosahedral clusters to the stability of the
glassy state [11,22–27]. However, the total transition rates
shown in Fig. 9 do not show significant deviation from
the Arrhenius behavior. Therefore, whereas the formation of
icosahedral clusters is certainly favored, it does not appear

to be the main driver for glass formation through the rapid
increase in viscosity. As Frank originally suggested, their
main contribution to glass stability could be to increase the
boundary energy between the liquid and the crystal and slow
down the crystallization kinetics. It is also most likely that
icosahedra are found stable mainly because the coordination
12 is often close to the average 〈NC〉 because the ideal
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FIG. 9. (Color online) Local energy landscape for Cu56Zr44 at various temperatures for Cu (left) and Zr (right). The local energy landscape
was calculated by averaging two LELs for the processes to increase and decrease NC by one. The energy minimum at integer values was
determined by Eq. (2) and the saddle point energy at NC + 1/2 was given by (Eα+

saddle + Eα−
saddle)/2.
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FIG. 10. (Color online) Compositionally averaged rates of con-
figurational change k±

LC compared with the inverse of the Maxwell
relaxation time τM . Above TA(= 1700 K), k±

LC = 1/τM , while below
TA, k±

LC > 1/τM . The Arrhenius activation energy at high tempera-
tures is 0.248 eV.

coordination in a monatomic system is 4π (=12.56) [28].
Indeed, for Zr (NC = ) 12 is far from the average and the state
with NC = 12 is not preferred.

On the other hand, the LEL clearly shows the emergence
of a highly degenerate state at low temperatures. For instance,
for Cu, states with NC = 10, 11, and 12 are almost equally
preferred at low temperatures. For Zr the state with NC = 15
is at the energy minimum, but the states with NC = 14 and
16 are populated as well. Therefore, we can summarize the
features of the LEL in relation to glass stability as follows.

(i) Atoms with NC close to the average 〈NC〉 are stable.
(ii) At low temperatures atoms choose multiple states, not

one state with a particular NC , but states with a range of NC .
(iii) Such degeneracy is at the core of glass formation

because the preference of a single NC tends to drive the system
to the crystalline state.

(iv) Formation of exceptionally stable clusters, such as the
icosahedral clusters, contributes to the glass stability, but it is
not the main factor.

(v) Exceptionally stable clusters are preferred, however,
only when condition (i) is met. For instance, icosahedra
(NC = 12) are stable only when 〈NC〉 is close to 12.

The atoms with NC close to the average have small
atomic-level pressure, because the atomic-level pressure is
proportional to NC , 〈NC〉, as in Eq. (3). The results in Figs. 8
and 9 justify the idea that the atoms with small values of
pressure, either negative or positive, are solidlike and those
with large pressure, and thus the atoms with NC far from the
average, are unstable and liquidlike [29].

As shown in Ref. [10], LCEs are independent at high
temperatures above TA, but interact with each other through the
exchange of phonons. It has been known that the atomic-level

820 K

(P
a)

(rad/fs)

3000 K

(P
a)

FIG. 11. (Color online) Imaginary part of the dynamic shear
modulus G′′(ω), which shows the loss spectrum of internal friction.
At T (=3000 K) the spectrum has only one peak, but at T (=850 K)
it splits into two peaks, with extra weight in between the two peaks,
which corresponds to the β-relaxation wing. Here ωLC = 1/τLC falls
right at the extended β-relaxation wing, suggesting that the LCE or
combination of the LCEs could be the origin of the β-relaxation
process. The solid line represents a Newtonian behavior with ηω and
the viscosity η was calculated from the Green-Kubo equation for
shear stress. The dashed line is the high-frequency shear modulus
G∞ (=V 〈σ 2

xy〉/kBT ).

stresses are spatially correlated below TA [16]. The Eshelby
theory, which is a continuum theory of elastic inclusion [30], is
known to describe the dressing of the atomic-level stresses by
the long-range elastic field [14,29]. Therefore, the interaction
between the LCEs may be described in terms of the Eshelby
theory. Indeed, we found recently that the correlations among
the atomic-level stresses follow the symmetry of the Eshelby
field. It is possible that the interaction among LCEs through
the long-range Eshelby field leads to super-Arrhenius behavior
of viscosity below TA.

In this work we employed the NVT (constant number of
atoms, volume, temperature) ensemble rather than the NPT
(constant number of atoms, pressure, temperature) ensemble.
In the NPT ensemble the increase in temperature results
in thermal expansion and eventually in evaporation. Such
significant changes in the structure would make the activation
energy strongly temperature dependent and would not allow
it to be determined from the Arrhenius relation as was done
in this work. On the other hand, the NVT ensemble provides a
liquid structure much less dependent on temperature. For this
reason we decided to use the NVT condition.

Finally, it is interesting to speculate if the LEL concept
could be extended to other classes of liquids and glasses
such as the network-forming glass formers where there exist
well-defined bonds between atoms (covalent bonds, hydrogen
bonds, etc.). Strong glasses, such as silicates and borates,
are characterized by fixed coordination numbers. However, at
elevated temperatures deviations from the fixed environment
start to occur through bond breaking and they determine the
properties such as viscosity. Therefore, it is likely that the same
analysis would work and the difference is merely the enhanced
energy scale for the LEL, both the height of the barriers and
the energy states. On the other hand, in more complex glasses,
such as soda glasses and polymers, strong covalent bonds and
weak ionic or van der Waals bonds coexist. In such a case the
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LEL would have two subsystems, the LEL in small energy
scales for weak bonds and the LEL with large energy scales
for covalent bonds. In either case, the extension of the present
approach may well prove to be very useful.

VIII. CONCLUSION

In this work we have demonstrated that the local energy
landscape in high-temperature liquids can be explicitly ob-
tained based upon the information on the distribution of the
local coordination number NC and the rates to change it. The
results of simulation on liquid Cu-Zr give an intuitive picture of
the relative stability and dynamics of each coordination state.
The minima in the LEL are characterized by the coordination
number. Atoms with NC closest to the average 〈NC〉 have
the highest stability. The system makes thermally activated
jumps from one coordination state to another over the barrier
and these jumps provide the basis for the β relaxation.
As a liquid is cooled the LEL remains largely unchanged,
except for the case of NC = 12 for Cu, which is due to
formation of icosahedral clusters. As shown here, the LEL
provides an intuitive and yet realistic understanding of the local
structure and complex dynamics of normal and supercooled
liquids.
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APPENDIX: PREDICTING THE PROBABILITY
FUNCTION FOR NC IN A BINARY ALLOY

Based on the local elastic self-energy, we derive an
expression for the local effective energy, given in Eq. (2) as a
function of coordination number in a binary alloy Cu56Zr44.
Let us consider a monatomic system composed of spheres with
an effective radius

rav =
√

fCur
2
Cu + fZrr

2
Zr, (A1)

where fCu = 0.56 and fZr = 0.44. The packing problem of a
single atom with a radius of r embedded in the monatomic
system of atoms with rav gives an approximate expression for

the coordination number for the embedded atom [28]

NC(x) = 4π

(
1 −

√
3

2

)
(1 + x)[1 + x +

√
x(x + 2)], (A2)

where the size ratio x = r/rav. The validity of Eq. (A2) was
tested numerically and it was shown that the results predicted
by Eq. (A2) agree very well with simulation results [28].
Similar analysis based on Eq. (A2) also allows us to calculate
the coordination number in a binary glass with different size
ratio [31].

The atomic level volume strain is given by

εV = 3

2

�x

x
= 3

2

1

x

(
dx

dNC(x)

)
x=xα

�NC, (A3)

where xα = rα/rav and rα is the radius of the embedded α atom
(α = Cu or Zr). Note that the atomic-level strain is different
from the volume strain obtained from the uniform volume
expansion by a factor of 2, because the atomic volume strain is
defined as the change in the pair distance between neighboring
atoms.

Using Eqs. (A2) and (A3), the atomic-level pressure of the
embedded atom pα is expressed as

pα = BαεV = 3Bα

2x

(
dx

dNC(x)

)
x=xα

�NC(x), (A4)

where Bα is the bulk modulus for the embedded atom. The
local elastic self-energy is thengiven by

Eα
p = p2

αVα

2Bα

= 9BαVα

8x2

(
dx

dNC(x)

)2

x=xα

[�NC(x)]2, (A5)

where Vα is the atomic volume for the α atom. From the
equipartition theorem for the fluctuations in pα [15], the local
elastic energy Eα

p is related to Cα in Eq. (8) by

Cα = 2Eα
p. (A6)

Therefore, the final form for local effective energy in Eq. (2)
can be expressed as

Eα(NC) = 2Eα
p(NC − 〈NC〉)2. (A7)

The curves thus predicted by (A7) are shown in Fig. 2 and
the good agreement with simulation results suggests that the
distribution of NC is determined largely by the local elastic
energy.
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