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Crowding-based rheological model for suspensions of rigid bimodal-sized
particles with interfering size ratios
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We present a crowding-based model to predict the shear viscosity of suspensions of rigid bimodal-sized
particles. In this model, the mutual crowding factor is defined to explicitly account for the change in the amount
of fluid trapped in the interstices formed by particles upon mixing particles with two different sizes. Through
this factor, we cancel the effect of size interference by mapping the bimodal suspensions to a suspension of
noninterfering size ratio. This approach provides a set of decorrelated particle fractions that depend on crowding
and size distribution. The shear viscosity of the resultant suspension is then directly estimated based on the
viscosity of corrected components using a stiffening function that accounts for the self-crowding in each size
class individually. We tested the proposed model against published experiments over a wide range of particle
volume fractions, and we observe an excellent agreement.
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I. INTRODUCTION

The majority of rheology studies on suspensions are con-
ducted to quantify the relative viscosity of monodisperse size
distributions [1,2]. However, in nature, suspensions generally
involve multimodal distributions. The relative viscosity of
multimodal suspensions depends not only on the volume
fraction of the solid phase, particle deformation, and induced
shear rate, but also on the particle size ratio and particle size
distribution. The previous multimodal models [3–12] mostly
approximate the relative viscosity based on one of the follow-
ing two approaches. With the first approach, it is assumed that
the particle sizes are noninterfering, and hence the smaller sizes
are fully crowded in the interstices formed by large particles.
Therefore, the viscosity of such systems is directly estimated
based on the viscosity of related components. The second
approach uses monodisperse stiffening functions [2,13,14],
and applies a correction for the associated maximum close
packing considering the polydisperse suspension.

A different approach is to define a crowding factor that
accounts for the interaction between different particle size
classes. This idea, first introduced by Mooney [3], remains
poorly constrained. According to Farris [4], for noninterfering
particle sizes R1 and R2 (R1 � R2), the viscosity of the
suspension can be written as the product of two stiffening
functions H ,

η(�1,�2) = H (�1) H (�2), (1)

where �1 = ψl and �2 = ψs/(1 − ψl) are the corresponding
corrected volume fractions in which ψl and ψs refer to
the actual volume fraction of the large and small particles,
respectively.

Farris [4] argued that by introducing a crowding factor,
one could extend his model to account for the behavior of
all interfering size ratios. However, at present a theoretical
argument for the crowding factor and its application to develop
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a rheological model that is valid for any interfering size ratio
is still missing.

We follow the model of Farris [4] and the idea of Mooney [3]
and redefine the bimodal viscosity of the suspension as

η(ψl,ψs) = H (ψl)H (ψs) + H12(ψl,ψs)︸ ︷︷ ︸
crowding effect

, (2)

for interfering size ratios. Here we draw a parallel between
this definition of bimodal rheology and the field of probability.
The crowding factor here plays a role similar to that of a
conditional probability to relate the joint (probability) effect
of each individual size class to the rheology of a bimodal
suspension. The crowding term is therefore a measure of
the interaction between particles of different sizes and its
effect decreases as the size ratio, denoted by ζ , increases. The
objective of the present work is to derive a relationship that
includes the effect of crowding to predict the relative viscosity
of bimodal suspensions. We first suggest a practical model
to estimate the maximum volume fraction for a bidisperse
system. Next, by defining an appropriate crowding factor that
accounts for the residual pore space in the system that consists
of the two sets of particles, we propose a model to compute
the shear viscosity in suspensions of two interfering particle
sizes (1 � ζ � 7).

II. RANDOM CLOSE PACKING

Providing a theoretical value for the random close packing
of bimodal systems is one of the major challenges to quantify
the rheological properties of bimodal suspensions. The me-
chanical stability condition for monosized sphere packings
starts from the random loose packing (with the volume
fraction around ψ = 0.56) to the face-centered-cubic structure
(ψ = 0.74), which is the most efficient way to pack equal-sized
spheres [15]. However, in practice, the maximum density of
packing depends on the protocol followed to produce it, and
lies between these two bounds, 0.56 < ψ < 0.74. It is called
the maximum random close packing ψM [16–18], which, for
jamming of monodisperse frictionless rigid spheres, mostly
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lies between 0.63 < ψM
1© < 0.64 [18–20]. In bimodal systems,

the maximum packing limit depends on the particle size ratio
and individual size fractions, and, therefore, the macroscopic
rheological behavior of these systems is very sensitive to these
two parameters.

To quantify the effect of bidispersity on the maximum
packing limit, we set up a semitheoretical argument that will
form the basis of the definition of the crowding factor later on.
The key aspect of the model starts with finding suitable bounds
for the maximum packing limits for a bimodal suspension
where the particle size ratio approaches infinity [21],

ψM
∞ = min

[
ψM

1©
1 − ks

,
ψM

1©
ψM

1© + (1 − kl)
(
1 − ψM

1©
)
]
, (3)

where ks = ψs/ψ and kl = ψl/ψ represent the fraction of
small and large particles, respectively (note that ψ = ψs + ψl

is the total solid phase volume fraction, and thus ks + kl = 1).
The limits in Eq. (3) respectively correspond to situations
where (i) large particles are dominant and they reach the
jamming density (small particles are crowded only in in-
terstices), and (ii) small particles dominate the suspension
and jam. The two expressions in Eq. (3) match when the
fraction of the small spheres is kM

s = (1 − ψM
1©)/(2 − ψM

1©),
where both sizes produce jamming conditions. We can predict
this singular point and its associated threshold packing for
any finite size ratio by replacing ks and kl respectively by
ksfs and klfl in Eq. (3). We refer to fs and fl as contracting
factors, and assume they depend only on the particle size
ratio. These contracting factors account for the bed (solid
plus interstices) volume contraction that occurs upon mixing
different particle sizes with a fixed overall volume of solid
particles. Contracting factors approach zero when the size
ratio approaches unity, and approach unity when the size ratio
approaches infinity. Therefore, we may assume empirically
that fs(ζ ) = (1 − ζ−1)α and fl(ζ ) = (1 − ζ−1)β , where ζ

denotes the particle size ratio (large to small). The exponents
α and β are constants that are estimated by fitting

kM
s (ζ ) = 1 − fs

fs + fl

(
1 − ψM

1©
) , 1 < ζ � ∞, (4)

and its corresponding threshold packing fraction to published
experimental and simulation data [19,21–24]. Using these
mapping procedures, we obtain α = 2.1 ± 0.1 and β = 1.9 ±
0.1. In Eq. (4), kM

s (ζ ) expresses the fraction of the small
particles at which the threshold random close packing (where
the two limits converge to each other and form a cusp) occurs
for a mixture of hard spheres of size ratio ζ . These points are
depicted in Fig. 1 with black circles for different size ratios.

It is interesting to note that Eq. (4) reduces to (1 −
ψM

1©)/(2 − ψM
1©) as the size ratio approaches infinity, while

it approaches unity as ζ → 1. Bournonville et al. [26,27]
developed a model where kM

s (ζ ) approaches zero as the
bidispersity vanishes, ζ → 1. More recently, Brouwers [22]
showed that for small size ratios ζ ↓ 1 the value of kM

s (ζ )
approaches the limit of 0.5, because of the parabolic nature
of random close packing in bimodal systems. The choice of
this limit has a small impact on the fitting parameters α and
β, but it is important to note that the relationship between
the maximum packing and ks becomes flat when ζ → 1. As
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FIG. 1. (Color online) Comparison between our theory stated in
Eq. (5) and published experimental and numerical data [19,22,25] for
different values of the size ratio (ζ ), as indicated. The solid line shows
the theoretical value of a packing fraction for the infinite size ratio
given by Eq. (3), and the dashed lines represent the value predicted
by our model [Eq. (5)] using ψM

1© = 0.633. The block circles show
the required fraction of the small particles for each size ratio in order
to have both sizes separately in a jammed condition.

a side note, we report that we tested our rheology model for
bimodal suspensions (discussed later) using our packing model
[Eqs. (4) and (5)] and compared it to the results obtained
similarly but with the packing model of Brouwers [22] at
small size ratios ζ ↓ 1. We found that the discrepancy in
the predicted relative viscosity remains less than a percent
at small size ratios even at a high volume fraction. The model
of Brouwers [22] is more accurate to predict the optimal
packing of bimodal suspensions with a size ratio close to unity.
However, because of the limited sensitivity of the viscosity
prediction to the location of the cusps at small size ratios,
ζ ↓ 1, and the better performance of Eq. (4) over larger size
ratios, we decided to proceed with Eq. (4) to estimate the
power-law exponents α and β and establish a maximum close
packing model for bimodal systems.

Consequently, one can approximate the maximum packing
limit for binary systems of different ζ and ks using

ψM
ζ = min

[
ψM

1©
1 − fsks

,
ψM

1©
ψM

1© + (1 − flkl)
(
1 − ψM

1©
)
]
, (5)

which is plotted against some simulation and experimental data
reproduced from Refs. [19,22,25] in Fig. 1. For normalization
purposes, we used the reported values of monomodal packing
of ψM

1© = 0.633 and ψM
1© = 0.641 ± 0.4% that are reported in

Refs. [19,22] and [25], respectively.

III. RELATIVE VISCOSITY IN BIMODAL SUSPENSIONS

To proceed on the rheological properties of bimodal
systems, we need to define a proper stiffening function (see
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FIG. 2. (Color online) Schematic representation of the excess and dead fluid volume in different binary systems. (a) A packed monomodal
system of large particles with a bed volume of V B

1©, (b) a binary system with a size ratio in the range of 1 < ζ < 7 and a bed volume of V B
ζ ,

(c) a binary packed system of noninteracting particles (ζ → ∞) with the smallest possible bed volume of V B
∞, and (d) a packed monomodal

system of small particles with a bed volume of V B
1©.

Ref. [2]) which accurately accounts for the crowding and
microscopical interactions among the embedded equal-sized
particles in concentrated suspensions. For this purpose, one
may use the model proposed by Ref. [14],

H (ψ) =
(

1 − ψ

1 − �ψ

)−2.5

, (6)

where � = (1 − ψM
1©)/ψM

1©. � is a geometrical constant that
accounts for the effective volume of particles (particles’
volume plus the volume of the trapped matrix inaccessible to
other particles). Therefore, � is a measure of the self-crowding
effect [2].

As the size ratio increases, the amount of trapped matrix, the
so-called dead fluid (see Fig. 2), decreases, and hence more
fluid is available to suspend the total particles. Consider a
stepwise construction for a system with a total particle volume
fraction ψ = ψs + ψl . By introducing the large particles, we
note that the viscosity of the suspension increases by a factor
H (ψl). The viscosity is further increased if we add the small
particles. This increment is smaller than if the small particles
were large, because of the reduction in the dead fluid volume.
The added small particles are homogeneously placed in the
available space not occupied by the effective volume of the
large particles, and may frustrate the jamming network of the
large particles. Therefore, particles with interfering sizes feel
each others’ effective volume (particle plus associated dead
fluid), and they are crowded mutually (the addition of small
particles also decreases the available free space for the large
particles). When the size ratio between particles increases, the
amount of dead fluid trapped between the particles decreases
and the effective volume approaches the volume of particles.
Following the model in Eq. (1), we aim to find the corrected
volume fractions �1 and �2 such that Eq. (2) reduces to
Eq. (1) in a way that H12 is merged into H (�1) and H (�2).
These corrected volume fractions therefore should depend on
the mutual crowding factor Cf , the volume fractions of the
small particles ψs , and the large particles ψl . In the dilute
limit, there is no dead fluid, therefore, the bimodal system
can be interpreted as a monomodal system of the total solid

phase ψ . This highlights that the crowding effect is crucial at
high particle concentrations, where crowding among particles
becomes important.

Although Mooney [3] outlined two different physical trends
as functions of size ratio for the crowding factor, we argue that
there is a direct relationship between the crowding factor and
the dead fluid volume, as shown in Fig. 2. The crowding factor
should depend on both size ratio and size distribution. For
monosized suspensions of jammed small or large particles,
the amount of the dead fluid is the same, i.e., the same bed
volume, as shown in Figs. 2(a) and 2(d). At a fixed total
volume of particles, as ζ departs from unity, an excess in
the available matrix (excess fluid) is observed as shown in
Figs. 2(b) and 2(c), i.e., both bed volume and dead fluid
decreases. The lowest volume of dead fluid for any packed
binary systems is reached when ζ → ∞ and the small size
fraction is kM

s (ζ → ∞), as schematically depicted in Fig. 2(c).
Therefore, we establish crowding as the reduction in the dead
fluid upon mixing two interfering particle sizes. We define the
crowding factor as

Cf (ζ,ks) = V B
ζ − V B

∞
V B

1© − V B∞
, (7)

where V B represents the bed volume, and subscripts refer to
different size ratios (see Fig. 2). Equation (7) reduces to

Cf (ζ,ks) = ψM
1©

ψM
ζ

(
ψM

ζ − ψ ′M
∞

ψM
1© − ψ ′M∞

)
, (8)

when the total solid phase fraction remains constant. In Eq. (8),
ψ ′M

∞ represents the maximum packing fraction for a suspension
of noninterfering size ratio ζ → ∞ at which the cusp is
formed [where the fraction of the small particles is such
that both sizes produce jamming conditions, ks = kM

s (∞)].
This function is plotted in Fig. 3 for an arbitrary system
where ψM

1© = 0.633. We observe that, for each size ratio,
the minimum crowding factor occurs at ks = 0.268, which
corresponds to the minimum possible dead fluid. The crowding
factor approaches unity when either ks → 0 or ks → 1. A
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FIG. 3. (Color online) Crowding factor variation with respect to
the size ratio and small particle fraction in a binary system computed
using Eq. (8) where calculations are performed for ψM

1© = 0.633.

zero crowding factor represents a specific situation where each
particle size jams without disturbing the monosized packing
structure of the other size. It also points to the minimum
possible dead fluid (maximum excess fluid), as schematically
shown in Fig. 2(c). According to Fig. 3, as the size ratio
increases, the effect of ks on the crowding factor and hence the
dead fluid increases.

To remove the crowding effect H12 from Eq. (2), we need
to decorrelate the two particle size classes while conserving
the volume of dead fluid. First, we map an arbitrary binary
system of size ratio ζ with particle volume fractions ψs and
ψl to a binary system of noninterfering size ratio, where
the small particles jam. We construct a linear transformation
	1 : [0,1] × [0,1] → [0,1] × [0,1] such that the set of volume
fractions (ψ1,ψ2) = 	1(ψl,ψs) conserve the amount of dead
fluid in the suspension (the same crowding factor),

	1 : (ψ1,ψ2) = (ψl − Cf ψl,ψs + Cf ψl). (9)

This transformation is illustrated in Fig. 4. Through this
mapping, the size classes (ζ → ∞) and volume fractions
change, but it conserves the amount of dead fluid (constant
crowding factor) and hence the rheological behavior of the
suspension is not modified. One can understand the mapping
of ψl and ψs into ψ1 and ψ2 as a linear transformation that
decorrelates the two distributions, and removes the effect of
the crowding factor arising from the size ratio. The resultant
bimodal suspension is located on a coordinate system χs (along
the curve on the right in Fig. 4) between the two extremes
illustrated in Figs. 2(c) and 2(d). Along this coordinate, the
excess fluid volume of the real suspension (ψl,ψs,ζ ) can
be retrieved by performing a second linear transformation
(�1,�2) = 	2(ψ1,ψ2) that conserves the amount of excess
and dead fluid in the suspension, but does not necessarily con-
serve the total volume fraction. In summary, the transformation
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FIG. 4. (Color online) The linear projection of an arbitrary bi-
modal system of volume particle fractions ψs and ψl to a configuration
where sizes are not interfering and small particles are in a jamming
state. This transformation conserves the crowding factor (the same
amount of dead fluid) and yields a set of particle volume fractions ψ1

and ψ2 projected on a coordinate χs .

	1 allows us to decouple the two size classes (ζ → ∞) while
	2 corrects the bed volume for each distribution by adjusting
the amount of dead fluid that each particle size fraction traps.
Finally, we define the transformation (�1,�2) = 	2(ψ1,ψ2) as

�1 = ψ1

1 − Cf ψ2
, �2 = ψ2

1 − (1 − Cf )ψ1
. (10)

These totally decorrelated volume fractions for ζ → ∞
can be directly used to compute the relative viscosity of
suspension of interfering sizes using Eq. (1).
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FIG. 5. (Color online) Relative viscosity in bimodal suspensions.
Comparison of our crowding-factor-based model results (solid lines)
with experimental data sets provided by Poslinski [8] for a binary
system with ζ = 5.2 and different total solid phase fractions. The
solid circles are extracted from Chong [5] for a relative viscosity of
monosized suspensions at a total solid phase fraction of ψ = 0.6.
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When ζ = 1, we obtain Cf = 1, �1 = 0, and �2 = ψ2 =
ψs + ψl , and the relative viscosity of the bimodal system
computed by this model reduces to that of a monomodal
system. On the other hand, when ζ → ∞ and ks = kM

s (∞),
we obtain �1 = ψl and �2 = ψs/(1 − ψl), which exactly
reduces to the formulation proposed by Mooney [3] and Farris
[4].

The ability of our model to capture the effect of bidispersity
and crowding on the viscosity of bimodal suspensions is
tested against experimental data conducted by Poslinski [8]
for a system with ζ = 5.2 over a wide range of total solid
phase volume fractions (0.1 � ψ � 0.6). This comparison is
depicted in Fig. 5 in which we set ψM

1© = 0.64 ± 0.5% fol-
lowing Refs. [8,9,25]. Figure 5 shows the excellent agreement
between the proposed theory and the rheology of bimodal-
sized suspensions. One can see that the effect of bidispersity is
much higher in denser suspensions where the crowding among
particles is important, and the excess fluid plays a significant
role on the relative viscosity of such systems. Previous models
such as those recently proposed by Qi and Tanner [11] and Dorr
et al. [12] fit these data sets only at the lowest volume fractions
(low effect of bidispersity), and their model does not provide
a good approximation when the solid phase concentration
increases.

IV. CONCLUSION

We present a crowding-based rheological model including
self-crowding and mutual crowding for bimodal particle size
suspensions. The crowding factor is introduced through a
measure of the change in dead fluid volume in the suspension
and is therefore related to the maximum packing limit. The
model provides a good fit to experimental data for bidisperse
suspensions of interfering size ratios (1 � ζ � 7). Our model’s
ability to fit the experimental data over a wide range of volume
fractions and size distributions suggests that the proportion of
dead to excess fluid in a suspension governs the rheological
behavior of bidisperse suspension. This model offers a simple
approach to parametrize the effect of bidispheresity on the
relative shear viscosity of bimodal suspensions, and can
replace complex correlations that are only valid over a limited
range of particle volume fraction.
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