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The rheological behavior of a dilute suspension of vesicles in linear shear flow at a finite concentration is
analytically examined. In the quasispherical limit, two coupled nonlinear equations that describe the vesicle
orientation in the flow and its shape evolution were derived [Phys. Rev. Lett. 96, 028104 (2006)] and serve
here as a starting point. Of special interest is to provide, for the first time, an exact analytical prediction of the
time-dependent effective viscosity ηeff and normal stress differences N1 and N2. Our results shed light on the effect
of the viscosity ratio λ (defined as the inner over the outer fluid viscosities) as the main controlling parameter.
It is shown that ηeff, N1, and N2 either tend to a steady state or describe a periodic time-dependent rheological
response, previously reported numerically and experimentally. In particular, the shear viscosity minimum and the
cusp singularities of ηeff, N1, and N2 at the tumbling threshold are brought to light. We also report on rheology
properties for an arbitrary linear flow. We were able to obtain a constitutive law in a closed form relating the stress
tensor to the strain rate tensor. It is found that the resulting constitutive markedly contrasts with classical laws
known for other complex fluids, such as emulsions, capsule suspensions, and dilute polymer solutions (Oldroyd
B model). We highlight the main differences between our law and classical laws.
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I. INTRODUCTION

Vesicles (also known as fluid membranes) are closed
membranes suspended in an aqueous medium and are similar,
in some respects, to red blood cells (RBCs). They constitute
an interesting viscoelastic model mimicking more complex
entities. The dynamics of vesicles have been, and remain,
a challenge for different disciplines ranging from biology
to mathematics. The difficulty is due to the free-boundary
character of the vesicles. The shape is not known a priori and is
fixed or determined dynamically via a subtle interplay between
the local flow and interfacial forces that gives rise to a large
variety of shapes and dynamics, which have a strong impact on
the suspension rheological behavior [1]. In the present paper
we conduct a systematic study of a suspension of vesicles at
a finite concentration as a function of the control parameter
λ (the ratio between the viscosity of the encapsulated fluid
over that of the suspending fluid), using analytical tools. In a
general flow, the dynamics of vesicles seem to be a puzzle and
the full equations of motion are intractable analytically and
numerical treatments are inevitable. However, under certain
asymptotic limits, the dynamics can be simplified.

Under a linear shear flow of the form u0 = (γ̇ y,0,0),
where γ̇ is the shear rate, vesicles (and RBCs) have been the
subject of extensive theoretical, experimental, and numerical
studies [2–24]. It is found that vesicles exhibit a variety
of different regimes of motion depending on three control
parameters: (i) the excess area � = (A − 4πr2

0 )/r2
0 , (ii) the

viscosity contrast λ = ηint/ηext, and (iii) the bending number
(or the dimensionless shear rate) Cκ = ηextγ̇ r3

0 /κ , where A is
the vesicle area, r0 = [3V/(4π )]1/3, V is the volume of the
vesicle, ηint and ηext are the viscosities of the internal and
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the external fluids, respectively, and κ is the bending rigidity
modulus [25].

At low deformability (i.e., Cκ is small), it is found that, in the
shear plane, a quasispherical vesicle (i.e., its excess area � is
small) exhibits three major types of motions: (i) tank-treading
(TT) mode, in which the vesicle deforms into a prolate ellipsoid
inclined at a stationary angle ψ < π/4 with the flow direction,
while its membrane undergoes a tank-treading motion, (ii)
tumbling (TB) mode, in which the membrane flips like a rigid
body, and (iii) vacillating-breathing (VB) mode (sometimes
called trembling or swinging), in which the main axis of the
vesicle oscillates about the flow direction (the inclination angle
ψ oscillates around 0 in the interval [−π/4,π/4]), whereas
its shape makes a breathing motion [13–15,17,20]. For small
enough λ, vesicles exhibit the TT mode. Upon increasing the
control parameter λ, the TT regime first becomes unstable
in favor of the VB mode which loses in turn its stability
in favor of the TB regime as λ increases. Furthermore, a
remarkable property for a dilute suspension of vesicles was
reported [15,16,20] (see also the recent papers by Veerapaneni
et al. [23] and Thiébaud and Misbah [26]). From the numerical
results the authors showed that the shear viscosity of a vesicle
suspension first decreases, reaching a minimum, and suddenly
increases with increasing λ. This minimum occurs at a critical
value of λ corresponding to the transition between the TT and
TB-VB regimes. In addition, it is found that the time-average
of normal stress differences collapses in the TB and VB
regime. This and some open questions formulated in Ref. [20]
constituted the motivation for the present work.

Recently, we have shown in Ref. [27] that the original
set of nonlinear differential equations can be analytically
solved exactly in all the three regimes (TT, TB, and VB).
Taking advantage of this solution, we show here that all
rheological properties (steady and time-dependent) can be
expressed exactly analytically. Note that until now, analytical
expressions were only known in the TT regime [13]. Our study

1539-3755/2014/90(5)/052302(11) 052302-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.028104
http://dx.doi.org/10.1103/PhysRevLett.96.028104
http://dx.doi.org/10.1103/PhysRevLett.96.028104
http://dx.doi.org/10.1103/PhysRevLett.96.028104
http://dx.doi.org/10.1103/PhysRevE.90.052302


M. GUEDDA, M. BENLAHSEN, AND C. MISBAH PHYSICAL REVIEW E 90, 052302 (2014)

will provide a clear picture of all the reported numerical results
about rheology. Another important aspect reported here is the
derivation of a constitutive law in a closed form relating the
stress tensor to the strain rate tensor. It will be recognized
that the present law differs from those known for emulsion or
polymer solutions (Oldroyd B model). The main difference is
attributed to local membrane incompressibility.

The paper is structured as follows: Section II deals with
a brief description of the small-deformation theory [13],
followed by a short presentation of the expression of the exact
analytical solutions, which was the subject of our previous
paper [27]. Section III presents the results for rheology of a
dilute vesicle suspension. In Sec. IV, we report on rheology
properties for an arbitrary linear flow and, in Sec. V, we
compare them with emulsions, capsule suspensions and dilute
polymer solutions. Finally, Secs. VI and VII contain the
summary of the main results and conclusion and perspectives,
respectively.

II. DYNAMICS UNDER SHEAR FLOW

Before starting the discussion of rheology, some preliminar-
ies about the considered context are necessary. To analytically
analyze TT, TB, and VB regimes a nearly spherical vesicle
shape is considered [13]. At small deformation it is found that
the vesicle deformation is described by the radial position r of
the vesicle interface which can be presented as (r0 = 1)

r = 1 + F2−2Y−2
2 + F20Y0

2 + F22Y2
2 ,

r = 1 + R[cos(2ψ) + i sin(2ψ)]Y−2
2 + F20Y0

2

+R[cos(2ψ) − i sin(2ψ)]Y2
2 , (1)

where Ym
2 ,m = −2,0,2, are the usual spherical harmonics of

order two, ψ coincides with the orientation angle of the vesicle
in x-y plane, and R and F20 are the (real) amplitudes of
deformation of the vesicles. The quantity F2−2Y−2

2 + F20Y0
2 +

F22Y2
2 , which is assumed to be small, is the deviation of the

vesicle shape from a sphere of equivalent volume. In Ref. [13],
it is found that ψ and R satisfy

dR
dt

= h

[
1 − 4

R2

�

]
sin(2ψ)

(2)
dψ

dt
= −1

2
+ h

2R cos (2ψ) ,

where h = 60
√

2π/15/(32 + 23λ). The above system con-
stitutes the basic equations in the small-deformation theory.
One key challenge is the highly nonlinear character of system
Eq. (2). This is traced back to the constraint of local-area
incompressibility. Note that system (2) is free of κ or, more
precisely, free of Cκ .

F20 is connected to R via the area conservation con-
straint [13]

� = 4R2 + 2F 2
20, (3)

which reflects the fact that the deformation amplitudes must
comply with the available excess area. If there is no deforma-
tion along the vorticity direction (i.e., F20 = 0) we have R =√

�/2 (fixed vesicle shape). In this case the orientation angle
satisfies the Keller–Skalak (KS) phenomenological model (the

Jeffery equation)

dψ

dt
= −1

2
+ h√

�
cos (2ψ) , (4)

which describes the dynamics of TT and TB motions with
fixed shape [2]. The TT motion is predicted when λ is less
than a critical value λc (see below), and the TB motion occurs
when λ > λc.

To put our present study in the context of earlier works, we
give a brief description of recent and known results concerning
system (2). In Ref. [13] the author showed that the critical
viscosity ratio which separates the TT and TB regimes is
given by

λc = −32/23 + (120/23)
√

2π/15�. (5)

More precisely, for λ < λc, or h >
√

�/2 ≡ hc, system (2)
has the equilibrium points

R0 =
√

�

2
, ψ0 = ±1

2
cos−1

(√
�

2h

)
. (6)

The “+” fixed point is stable and the “−” fixed point is
unstable.

For h < hc, there is no fixed-orientation solution. In-
stead, an unsteady tumbling motion is found. It is shown
that the TB mode takes place and coexists with the VB
mode [14,15,17,18,20,23].

Besides the numerical investigations, a complete set of
exact closed solutions for the vesicle orientation and its shape
evolution were recently presented by Guedda et al. [27] using
elementary methods. For later purposes we need to recall
some of the aspects. The essential idea is to introduce new
independent variables which transform the original system
into a system which is easier to solve. The authors noted that
system (2) can be simply rewritten as

dξ

dt
= ζ

(
1 − 4h

�
ξ

)
(7)

dζ

dt
= h − ξ − 4h

�
ζ 2,

in new independent variables ξ = R cos(2ψ) and ζ =
R sin(2ψ). The shape deformation and the inclination angle
are given by R2 = ξ 2 + ζ 2 and ψ = 1

2 arctan(ζ/ξ ). It is found
for h > hc that

ζ (t) = �ω

4h

eωt − C1e
−ωt

C2 + eωt + C1e−ωt
,

(8)

ξ (t) = �

4h
+ ω2�

4h

C2

C2 + eωt + C1e−ωt
,

whereas for h < hc,

ζ (t) = �ω

4h

cos (ωt + C3)

C4 + sin (ωt + C3)
,

ξ (t) = �

4h

� + sin (ωt + C3)

C4 + sin (ωt + C3)
, (9)

� = 4h2

�
C4,

where ω = |1 − 4h2

�
|1/2 and Cj ,j = 1,2,3,4, are constants

depending on the initial conditions.
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For h > hc (TT regime), the inclination angle ψ follows
from Eq. (8) as

ψ (t) = π

4
− 1

2
arctan

(
4h2C2 + �[eωt + C1e

−ωt ]

ω�[eωt − C1e−ωt ]

)
. (10)

From Eq. (8) we may deduce that ζ and ξ tend to

ξ∞ = �

4h
, ζ∞ = + �

4h

√
4h2

�
− 1, (11)

respectively, as t tends to infinity, and then (as is known) R
goes to

√
�/2 and ψ approaches the limit value

ψ∞ = π

4
− 1

2
arctan(ω−1) = +1

2
cos−1

(√
�

2h

)
, (12)

as t tends to infinity. The asymptotic solution corresponds to
a pure TT solution.

For h < hc (during TB and VB regimes) it is found that the
inclination angle satisfies

ψ(t) = π

4

�

|�|
cos(ωt + C3)

| cos(ωt + C3)|
[

1 − �

|�|
� + sin(ωt + C3)

|� + sin(ωt + C3)|
]

+ 1

2
arctan

(
ω

cos(ωt + C3)

� + sin(ωt + C3)

)
. (13)

The above expression is an extension of the KS solutions
which was obtained under the shape-preserving assumption.
Our solution accounts not only for the inclination angle but
also for shape evolution [27]. Note that the shape deformation
R can be written as (during oscillating regimes)

R2 (t) = �

4
+ ω2�3

64h4

[
4h2

�
− �2

]
1

[C4 + sin (ωt + C3)]2 .

(14)

The above equation implies that |�| � 2h√
�

≡ �c by using
constraint (3) and shows, in particular, the role of � in
causing departure from the KS model and that R =

√
�

2
(shape-preserving regime) only for � = ±�c. From Eq. (13)
two qualitatively different solutions are obtained by varying
�.�c � |�| < 1ψ describes a TB regime, while a VB regime
is obtained if |�| > 1. The border, or the TB to VB transition,
separating VB and TB regimes is obtained if � = ±1. We
suppose here that � > 0.

III. RHEOLOGY OF VESICLE SUSPENSION

Once the exact expressions of solutions of each regime
are obtained, the rheology of a dilute suspension will be
easily analyzed. Of particular interest are the steady and
the time-dependent effective viscosity (which is given by
the shear stress divided by strain rate), and the first normal
stress difference N1 = σ11 − σ22 and the second normal stress
difference N2 = σ22 − σ33, where “1, 2, 3” designate the flow,
the shear gradient, and the vorticity direction, respectively.
In fact, the basic question that underlines this section is how
do the effective viscosity and normal stress differences for
a dilute suspension behave at any time in the three primary
regimes (TT, TB, and VB)?

A. Reduced effective viscosity

In Ref. [19], Vitkova et al. reported on experimental obser-
vations of the reduced effective viscosity, or the normalized
viscosity,

[η] = ηeff − ηext

ηextϕ
, (15)

for vesicles and RBCs. In Eq. (15), ηeff is the time-dependent
effective viscosity and ϕ is the volume fraction of the
suspension (the volume occupied by the vesicles over the total
volume). Vitkova et al. observed that the reduced effective
viscosity of a vesicle suspension follows the general trend of a
RBC suspension with a slow decrease in the TT regime and a
rapid increase after the transition to TB. For quasispherical
vesicles, Danker and Misbah [15] and Danker et al. [20]
derived the formal expression of the time-dependent effective
viscosity

ηeff(t) = ηext

[
1 + 5

2
ϕ

(
1 − 4

5

√
15

2π
h

)

+ ϕ

�
h

√
480

π
R2(t) sin2(2ψ)

]
, (16)

or, equivalently,

ηeff (t) = ηext

[
1 + 5

2
ϕ

(
1 − 4

5

√
15

2π
h

)
+ ϕ

�
h

√
480

π
ζ 2 (t)

]
.

(17)

The reduced effective viscosity reads

[η] = 5

2

(
1 − 4

5

√
15

2π
h

)
+ h

�

√
480

π
ζ 2 (t) . (18)

The last term of Eq. (18), which is nonlinear, represents the
contributions of the vesicle deformation and orientation. The
time-dependent effective viscosity and the reduced effective
viscosity are evaluated here by using the exact expression of
ζ. As the explicit solutions were not known before the authors
of Refs. [15,20] presented the reduced effective viscosity for
the steady TT regime:

[η] = 5

2
− �

23λ + 32

16π
. (19)

For the unsteady regimes, system (2) has been solved nu-
merically and the time-average of [η] over one period has
been determined. This quantity is a function of λ and �, for
the three regimes, and is denoted 〈[η]〉. It is found that 〈[η]〉
decreases with increasing λ and attains a minimum at λc. For
λ > λc, 〈[η]〉 exhibits a sudden increase, in agreement with
experiments [19]. In addition, it is found that the TB regime
possesses a higher viscosity than the TT regime at the same
distance from the bifurcation point (see Fig. 2 of Ref. [15] and
Fig. 6 of Ref. [23]).

Here, as mentioned above, we use the exact explicit
solutions (for the three regimes) in the calculation of [η],
focusing on the dependence on viscosity parameter h or
viscosity ratio λ. We shall see briefly, as is known, that
the behaviors of the reduced viscosity as a function of λ
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for a suspension of vesicles and for an emulsion are quite
different. A general comparison with some complex fluids can
be found in Secs. IV and V. Actually, since the “+” steady TT
motion (11) is stable, one sees that ηeff(t) goes to

ηeff(∞) = ηext

[
1 + 5

2
ϕ

(
1 − 4

5

√
15

2π
h

)
+ ϕ

√
15

8π

4h2 − �

h

]
,

(20)

as t tends to infinity. Thereafter, reduced effective [η] ap-
proaches Eq. (19) for t large enough.

Let us now evaluate the time-dependent effective viscosity.
Making use of Eq. (18), one sees from Eqs. (8) and (9) that

[η] = 5

2

(
1 − 4

5

√
15

2π
h

)
+ |4h2 − �|

√
480

π

1

16h
G(ωt),

(21)

where the function G is given by

G(t) = (et − C1e
−t )2

(C2 + et + C1e−t )2
(22)

for λ < λc and, for λ > λc,

G (t) = cos2 (t + C3)

[C4 + sin (t + C3)]2 . (23)

Expression (21) displays several interesting properties. As
a function of t, the reduced effective viscosity for a TB or
VB regime exhibits a minimum over one period [15,28]. This
minimum, which is given by

[η]min = 5

2

(
1 − 4

5

√
15

2π
h

)
, (24)

irrespective of �, occurs at ψ = 0, ± π/2 during the TB
regime, while during the VB regime the minimum occurs at
ψ = 0. On the other hand, by using Eq. (21), one sees that
the maximum value over one period of the reduced effective
viscosity is given by

[η]max = 5

2

(
1 − 4

5

√
15

2π
h

)
+ |4h2 − �|

�2�2 − 16h4
h3

√
480

π
, (25)

which decays monotonically as � increases and tends to
Eq. (24) as � tends to infinity. We plotted in Fig. 1 the time
evolution of the reduced effective viscosity (during periodic
regimes) for different values of the parameter �(� = 4h2

�
C4).

Equation (25) indicates that the maximum possible of the
instantaneous reduced effective viscosity is attained if � =
�c, corresponding to the shape-preserving regime, and this
maximum value is 5/2.

Next, as in Ref. [20], we are also interested in the time
average over one period. From Eq. (22) we get

〈[η]〉 = 5

2

(
1 − 4

5

√
15

2π
h

)
+ |4h2 − �|

√
480

π

1

16h
M(G),

(26)

FIG. 1. (Color online) Time-dependent reduced viscosity [η]
during TB and VB regimes for different values of �. Parameters
are � = 0.437, h = 0.3, � = 0.91 (solid blue line), and � = 1.02
(dashed red line).

where (C4 > 1)

M (G) =
C4 −

√
C2

4 − 1√
C2

4 − 1
, (27)

for h < hc (during TB and VB regimes), and for h > hc (at
steady state)

〈[η]〉 = 5

2
− �

4h

√
30

π
. (28)

The above expression, which extends the famous Einstein
result [29] for particle suspensions to the case of vesicles,
was originally derived in Ref. [13]. Note that this expression
remains valid in the limit of the spherical case � = 0,

irrespective of the value of λ, since a sphere with fixed area
and volume in shear flow only undergoes a rigid body rotation.
This is a peculiar property of the presence of a membrane.

If � = �c (shape-preserving solution) we have

〈[η]〉 = 5

2

(
1 − 4

5

√
15

2π
h

)
+ h

√
� − 4h2

√
� + √

� − 4h2

√
30

π
.

(29)

A similar expression has been derived in Ref. [19] in the small-
capillary-number (see below) limit where a direct transition
from TT to TB occurs.

As is readily apparent from Eq. (26) the reduced effective
viscosity first decreases, reaching the minimum

〈[η]〉min = 5

2
−

√
15�

2π
(30)

at the critical value λ = λc, and then increases with increasing
λ, with a cusp singularity at λ = λc. The reduced average
effective viscosity, as a function of h, is plotted in Fig. 2.

Next, we consider the two limiting cases λ → ∞ (high
internal rigidity) and λ → 0 (small internal rigidity). For large
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enough λ, we first note that

5

2

(
1 − 4

5

√
15

2π
h

)
� [η] � 5

2
(31)

for the three regimes. Estimate (31) says that the vesicle
suspension cannot exceed the Einstein viscosity (at leading
order). Using Eq. (31) one may see that [η] tends to 5/2
as h approaches 0 or λ → ∞. In the opposite limit, λ → 0,

since the vesicle performs the TT regime we deduce from
Eq. (19) that [η] tends to 5/2 − 2�/π (see also the numerical
simulations of Ref. [16]). Note that this limiting value
decreases upon increasing � and approaches 5/2 as � tends
to 0 (rigid body rotation). The same conclusion was reached
numerically for a dilute suspension in two dimensions [28]. It
is found that the reduced suspension viscosity of quasicircular
vesicle approaches 2 (which is the Einstein result in two
dimensions) for large enough λ, and for λ → 0 it approaches a
limiting value that decreases upon decreasing the reduced area
ν, defined as ν = A/(π [p/2π ]2), where A is the vesicle area
and p is the vesicle perimeter. Moreover, it is observed that this
limiting value (at λ = 0) tends to 2 as ν → 1 (corresponding to
a circle). This limiting value is the effective viscosity of a dilute
suspension of rigid circle (for the d-dimensional spherical
particles, Brady [30] showed that the Einstein coefficient is
equal to 1 + d/2). An extensive physical comparison between
emulsion and vesicle suspension in two dimensions can be
found in Ref. [28].

B. Comparison with initially spherical capsules with
a red-blood-cell-type membrane

In the spirit of Ref. [20], we would like to compare the
reduced effective viscosity of vesicles at leading order to that
of an initially spherical capsule, in order to tentatively analyze
the similarity and/or the dissimilarity between the excess area
for vesicles and the elastic capillary number for capsules Ca =
ηextγ̇ r0/μ, where μ is the shear elastic modulus. We recall, as
mentioned in Ref. [14], that in the small-deformation approach
for initially spherical capsules, the capillary number or the
inverse viscosity ratio are used as the small parameters of the
expansion, while for vesicles the small parameter is

√
�.

Recently, numerical studies on the rheology of a dilute
suspension of initially spherical capsules with both Skalak
(SK) and neo-Hookean (NH) laws have been presented by
Bagchi and Kalluri [31]. The authors considered a physical
situation for which only the steady TT motion is observed and
analyzed the behavior of the reduced effective viscosity as a
function of the viscosity ratio and the elastic capillary number.
For example, for the SK model, the authors concluded that for
Ca � 0.1 the reduced effective viscosity decreases uniformly
with increasing λ, while for Ca > 0.1 the reduced effective
viscosity first decreases reaching a (smooth) minimum, and
then increases with increasing λ. This indicates, in particular,
that a capsule suspension may exhibit a shear viscosity
minimum, even when the capsule is in TT regime, unlike a
vesicle suspension at leading order [15].

For the present comparison, we focus on an initially spher-
ical capsule with a RBC-type membrane, since an analytical
expression of the reduced effective viscosity is obtained. Based

FIG. 2. (Color online) Reduced average effective viscosity 〈[η]〉
as a function of h for � = 1. The cusp singularity is due to the
transition from TB or VB to TT.

on the work of Barthes-Biesel and Rallison [32], Dorchon [32]
derived the following analytical expression for the reduced
effective viscosity [ηc] for an initially spherical capsule with
a RBC-type membrane:

[ηc] = 5

2

23λ − 16

23λ + 32
+ 7680

(23λ + 32)[64 + (23λ + 32)2Ca2]
,

(32)

for small Ca. Moreover, Drochon proposed to use Eq. (32) as
a phenomenological equation to predict rheological properties
of RBCs even if elastic capillary number Ca is not small.
Behaviors of [ηc] as a function of Ca are plotted for λ = 0.2
and λ = 1 (see Fig. 4 of Ref. [32] of Drochon). The high-shear
limit (Ca → ∞) of [ηc] is also obtained from Eq. (32). It must
be noted that Eq. (32) has already been found by Barthes-Biesel
in Ref. [33].

As in Ref. [31], we analyze the qualitative behavior of [ηc],
as a function of λ, a property that is not presented in Refs. [32]
and [33]. From Eq. (32) we find that

∂

∂λ
[ηc] = 2760

(23λ + 32)2Ca2 − 64

[(23λ + 32)2Ca2 + 64]2
Ca2, (33)

showing that, at finiteCa > 0, [ηc] exhibits a smooth minimum
(see Fig. 3)

[ηc]min = 5
2 (1 − 3Ca), (34)

and, at the critical value,

λ�
c = 8

23 (Ca−1 − 4). (35)

As a result, we can distinguish two different trends depending
on the value of Ca. For values of Ca in the range Ca � 0.25,

the critical value λ�
c is negative. This means that [ηc] increases

uniformly with increasing λ. In the range Ca < 0.25, [ηc]
presents some similarities with the predictions of Danker and
Misbah [15], Danker et al. [20], and Bagchi and Kalluri [31];
[ηc] first decreases reaching the minimum (34), and then
increases with λ. Figure 3 shows the effect of λ for various Ca.

Note that, as in Ref. [31], the minimum of [ηc] decreases as Ca

increases, and that for small enough Ca there is a long interval
where [ηc] decreases before reaching the minimum (34).
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FIG. 3. (Color online) Reduced viscosity for capsules with a
RBC-type membrane as a function of the viscosity ratio for different
values of Ca: Ca = 0.06 (solid red line), 0.1 (doted black line), 0.15
(dotted-dashed green line), 0.2 (dashed blue line), and 0.26 (circle
black line).

Notice again that [ηc] is negative for small enough λ for
Ca >

√
2/4 ≈ 0.3535 [see Eq. (37) below]. However, as for

vesicles with moderate reduced volume [34], the behavior
of Eq. (32) agrees at least qualitatively with the results for
capsules reported by Bagchi and Kalluri [31].

As for vesicles, the reduced effective viscosity [ηc] satisfies
Eq. (31), i.e.,

5

2

(
1 − 4

5

√
15

2π
h

)
� [ηc] � 5

2
, (36)

and then approaches 5/2 as h tends to 0, or λ → ∞. For λ → 0
we have

[
ηc

] = 5

2

(
1 − 24Ca2

1 + 16Ca2

)
. (37)

The above limiting behavior, which is below the Einstein value,
increases upon decreasing Ca, and approaches the Einstein
value for small enough Ca. A similar behavior is predicted
in the small-deformation theory of spherical microcapsule
suspensions [35]. In fact, as in Ref. [35] and as pointed out
in Ref. [32], we can see from Eq. (32) that, in the low-shear
limit, [ηc] = 5/2 in all cases.

Analogous to Ref. (35), the critical value λc for vesicle
[Eq. (5)] can be written as

λc = 8
23 (δ−1 − 4), (38)

where

δ =
√

�

30π
. (39)

Hence, for δ > 1/4 the reduced effective viscosity [η] for
vesicles increases uniformly with increasing λ, and if δ <

1/4, [η] first decreases reaching the minimum (34), and then
increases with λ in the VB and TB regimes. Therefore, we
may deduce, at first sight, that Ca and δ play a similar role.

In this respect, there is some qualitative similarity between
vesicles (at leading order) and initially spherical capsules with
a RBC-type membrane. However, their physical mechanisms

are different. The reduced viscosity for vesicles reaches the
minimum at the TT-to-TB transition, which is associated with
the onset of the VB mode [15,16], while for initially spherical
capsules with a RBC-type membrane the minimum may occur
even if the capsules are in a steady tank-treading regime. A
similar trend was reported in numerical studies for vesicles in
Ref. [16]. In that paper the authors discussed the implication
of the higher-order theory on the rheology of vesicles as a
function of λ. It is predicted that, at small bending number
Cκ , the cusp singularity persists as in the leading order, while
at larger Cκ , the cusp is smeared out and, in addition, the
minimum is located in the TT mode.

Let us continue our comparison. It is worth noting here
that the critical value for capsule λ�

c (35) coincides with λc for
vesicles (38) if Ca is proportional to

√
�, i.e.,

Ca =
√

�

30π
= Ca�. (40)

In this case minimum (34) reads

[ηc]min = 5

2

(
1 − 3

√
�

30π

)
, (41)

which is larger than quantity 〈[η]〉min given in Eq. (30) except
if � = 0. We note that

λ�
c ∼ 8

23
Ca−1 (42)

as Ca goes to 0 and

λc ∼ 8

23

√
30π

�
= 8

23
(Ca�)−1 (43)

as � goes to 0.
We note again that the minimum (34) for capsules coincides

with that for vesicles [Eq. (30)] if

Ca = 2

√
�

30π
, (44)

which is nearly the critical elastic capillary number, derived
in Ref. [24], for the transition from swinging to TB for a
nonspherical microcapsule at small enough � [see Eq. (4.12)
of Ref. [24] ].

For the sake of completeness, we note a formal analogy
between the vesicle and capsule problems. The reduced
effective viscosities can be written as (after using the definition
of h)

[ηc] = 5

2

23λ − 16

23λ + 32
+ 120

23λ + 32

1

1 + (23λ + 32)2(Ca/8)2

(45)

for capsules with a RBC-type membrane and, for vesicles, as

〈[η]〉 = 5

2

23λ − 16

23λ + 32
+ 120

23λ + 32

4

�
〈ζ 2〉. (46)

For the shape-preserving solution the above expression reads

〈[η]〉 = 5

2

23λ − 16

23λ + 32
+ 120

23λ + 32

1

1 +
√

�√
�−4h2

. (47)
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During the VB to TB transition (� = 1) the maximum value
(over one period) of the instantaneous reduced effective
viscosity can also be written as

[η]max = 5

2

23λ − 16

23λ + 32
+ 120

23λ + 32

1

1 + �
4h2

. (48)

As in Eqs. (47) and (48), the terms proportional to 120
23λ+32 in

both equations (45) and (46) take values in the interval (0,1).
This may suggest that Eqs. (45) and (46) are similar. In fact,
Eq. (45) is equal to Eq. (46) if

1

1 + (23λ + 32)2(Ca/8)2
= 4

�
〈ζ 2〉. (49)

In the stationary state (6), relation (49) holds for

Ca−1 = 1

h

√
15π

2

√
4h2

�
− 1 (50)

or, equivalently,

Ca−1 = 2

√
15π

2�

√
1 − �

(
23λ + 32

8
√

30π

)2

. (51)

At small enough � we have Ca ∼ Ca� [see Eq. (40)]. The
same estimate holds at the bifurcation from VB to TB. More
precisely, Eq. (45) coincides with Eq. (48) [the maximum
value (over one period) of the instantaneous reduced effective
viscosity] if Ca = Ca�. This result indicates, in particular, that
if Ca < Ca� we have [η] < [ηc] during VB regimes.

Finally, In the limit Ca → 0 (for fixed �), since very
small Ca corresponds to quasirigid particles, we use Eq. (47)
to deduce that the behaviors of the reduced viscosity for
a suspension of vesicles and for a suspension of initially
spherical capsules with a RBC-type membrane are closely
similar for large λ or small h if

Ca−2 = 15π

2h2

√
1 − 4h2

�
. (52)

Not surprisingly, we get from Eq. (52) that Ca goes to zero
with h or, equivalently, as λ → ∞, and then

Ca ∼ 8

23
λ−1, (53)

as λ → ∞. Relation (53), which is similar to Eq. (42), was
used in Ref. [32] in the case of highly viscous capsules. In
that case both [ηc] and [η] have the same limiting value 5/2 as
λ → ∞.

C. Normal stress differences

As an interesting supplemental physical investigation and
another consequence of the exact explicit solutions is to
compute the first normal stress difference N1 = σ11 − σ22

and the second normal stress difference N2 = σ22 − σ33.

According to Ref. [15], N1 and N2 are given by

N1 = −2N2 = 16ϕγ̇ ηext

�

√
15

32π
R2 sin (4ψ) . (54)

FIG. 4. (Color online) Time evolution of the first normal stress
difference for � = 0.5, h = 0.3, and � = 0.95 (tumbling regime).
Parameters ϕ, ηext, and γ̇ are such that ϕηextγ̇ = 0.2.

By using the identity sin(2x) = 2 sin x cos x, Eq. (54) can be
written simply as

N1 = −2N2 = 32ϕγ̇ ηext

�

√
15

32π
ξζ. (55)

Therefore, in the TT regime, N1 approaches

N1 (∞) = ϕγ̇ ηext

√
15�

2π

1

h2

√
h2 − h2

c (56)

as t tends to infinity. In the TB and VB regimes the exact
solution (9) yields

N1 = −2N2 = ϕγ̇ ηext

2

√
15

2π

�

h2

× cos(ωt + C3)[� + sin(ωt + C3)]

[C4 + sin(ωt + C3)]2
, (57)

from which it is readily seen that the time-averaged (over a
period) of N1 and N2 vanishes; 〈N1〉 = 〈N2〉 = 0.

In Fig. 4 the first normal stress difference N1 is plotted by
using the exact explicit solution. Note that the time-dependent
normal stress differences (57) vanish when the vesicle aligns
with the flow (ψ = 0) and at the orientation ψ = ±π/4. As a
function of h, 〈N1〉 is connected with the angle orientation
during the TT regime. It decreases upon decreasing h (or
equivalently increasing λ) and vanishes at the critical value
h = hc with a square-root singularity (at the transition a
tank-trading vesicle has its main axis parallel to the flow).
During the TB and VB regimes 〈N1〉 remains zero (there is no
preferred orientation of the vesicle).

IV. CONSTITUTIVE LAW IN THE CASE OF AN
ARBITRARY LINEAR FLOW

A. Preliminaries

Our starting point is the evolution equation of the shape
conformation and the relation between the stress tensor and the
shape conformation. These equations were originally derived
in Ref. [15]. We shall rather use the Cartesian form of the
conformation of the vesicle instead of Fij referring to spherical
coordinates, used here above. The relation between the two sets
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of coefficients is given by

r = 1 + ε

2∑
m=−2

F2m (t)Ynm (θ,φ)

= 1 + ε
∑

i,k=x,y,z

3rirkfik (t) . (58)

Parameter ε is a small quantity and can be related to the excess
area via ε = √

�.
The vesicle conformation fij equation was derived in

Ref. [15] for a shear flow, where the shear plane lies in the
x-y plane. It reads

Dfij

Dt
= h

6

√
15

2π
eij + 6h

√
15

32π
fxyfij , (59)

where DM/Dt is the Jaumann (or corotational) derivative
defined as

DM
Dt

= DM
Dt

+ 1

2
[ωM − Mω] , (60)

where M is any second-order tensor, D/Dt is the usual mate-
rial derivative, and ω = (∇v − ∇vT )/2 is the vorticity tensor.
The nonlinear behavior is present in the 6h

√
15/(32π )fxyfij

term of Eq. (59).
In order to derive a constitutive law we need to generalize

this equation to an arbitrary flow. We will assume that the
flow gradient remains small enough (i.e., we assume that the
flow evolves slowly enough at the scale of the suspended
entities), so that at the scale of a vesicle (or RBC) the flow
can be regarded as linear shear. However, each vesicle will
“see” locally a shear flow which has another orientation
than that seen by the other vesicles. This is also the spirit
of the derivation of the Oldroyd B constitutive law for
dilute polymer solutions [36]. The question thus amounts to
extending the derivation to an arbitrary shear flow (having
arbitrary orientation).

For an arbitrary orientation of the shear plane, the general-
ization of the evolution equation (59) takes the form

Df
Dt

= αe + β(f : e) f. (61)

We have set

α = 20√
�

, β = − 192π

(23λ + 32)
√

�
. (62)

The relation between the stress tensor σ and the vesicle
conformation f was derived in Ref. [15] for a shear flow with a
given orientation of the axes. The generalization to an arbitrary
coordinate system is readily obtained,

σ

2ηext
= e + 5φ

2

(
1 − 4h

5

√
15

2π

)
e + φ

√
15π

2

96 (f : e) f
5

,

(63)

which we will abbreviate as

σ = α′e + β ′ (f : e) f, (64)

where

α′ = 2ηext

[
1 + 5φ

2

(
1 − 4h

5

√
15

2π

)]
,

(65)

β ′ = 192ηextφ

5

√
15π

2
.

The closure condition is given by the momentum balance and
mass conservation equations

∇ · σ = 0, ∇ · v = 0. (66)

Equations (61)–(64) constitute a closed set for the study of
rheology of a dilute suspension of vesicles in the leading-order
limit in arbitrary flow provided that the velocity gradient is
small on the scale of the suspended entities. The knowledge of
f from Eq. (61) determines the stress from Eq. (64). Use of the
conservation law (66) (plus boundary conditions) determines
in principle the flow properties of the complex fluid.

B. A closed form for the constitutive law

A closed form of the constitutive equation (i.e., relating
directly the stress σ to the strain rate e) can be obtained from the
equations derived in the previous section. A simple algebraic
manipulation of Eqs. (61) and (64) allows us to extract the
following relation:

(f : e) = ±
√

σ : e − α′e : e
β ′ . (67)

Referring to the study performed here, we can check that, in
the pure shear flow, the study of tank-treading motion shows
that the solution with the minus sign is unstable. Therefore, we
select the plus solution. The next step of the derivation consists
of applying to Eq. (64) the Jaumann derivative and, by using
Eqs. (67) and (61), one obtains a closed form relating the stress
and strain rate, which can be written quite as follows:

DS
Dt

= (a1e + a2S)
√

S : e + a3
S√
S : e

D
Dt

√
S : e, (68)

where S = (σ − α′e), a1 = α
√

β ′, a2 = β/
√

β ′, and a3 = β ′.

V. DISCUSSION OF CONSTITUTIVE LAW AND
COMPARISON WITH EMULSION AND CAPSULE

SUSPENSIONS

It is worthwhile to briefly compare the present constitutive
law (68) with that of emulsions, capsule suspensions, and
dilute polymer solutions (Oldroyd B model).

The analog of Ref. (61) for emulsions is given by [37]

ε′Df
Dt

= 5

3 (2λ + 3)
e − 40 (λ + 1)

(2λ + 3) (19λ + 16)
f, (69)

where ε′ is a small parameter ensuring the small strength of the
drop deformation about a sphere. It is shown in Ref. [37] that,
generally, ε′ ∼ ηextγ̇ r0/� (where � is the surface tension).
This means that the small-deformation theory is valid for a
small enough capillary number. The first important difference
between Eqs. (69) and (61) is the fact that Eq. (61) is nonlinear
in the deformation f, while it is linear for a drop (69). This
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is traced back to the local-area constraint for vesicles. It
is precisely this nonlinearity that is the source of rich time
dynamics and bifurcations for vesicles.

The analog of Eq. (64) in the case of emulsions is given
by [37]

σ

2ηext
= e + φ

2

[
10 (λ − 1)

2λ + 3
e + 24

2λ + 3
f
]

. (70)

Here again the equation for vesicles is nonlinear in the
deformation, while it is linear for drops. The source of the
nonlinearity is again the membrane incompressibility.

Let us now compare our results to the case of inextensible
capsule suspensions, which is the closest situation to ours. The
evolution equation for the conformation tensor is given by [32]

ε
Df
Dt

= 20

23λ + 32
e − 8

23λ + 32
f. (71)

Here again the same remarks made for emulsion apply: apart
from the Jaumann derivative, the equation is linear, in contrast
to Eq. (61). This is a bit astonishing. We have seen in
the vesicle model that bending energy scales out from the
equation at leading order. Likewise, in capsule theory, shear
elasticity scales out to leading order for the same reason.
Therefore, inextensible capsule and vesicle models should
become equivalent to leading order. However, Eq. (5.6) in
Ref. [32] [identical to Eq. (71), apart from the constant
prefactor] is different from Eq. (61).

We believe that the treatment made for capsules should be
revisited as follows: We have to restart from the evolution
equation which contains the elastic contribution [Eq. (5.1) in
Ref. [32] ]. Then, following the same procedure as in Sec. V,
one arrives at the same evolution equation for vesicles (59) or
for a generalized flow (61). That is to say, at leading order, both
systems obey the same equation. To higher order in f it is not
yet clear how the difference between the two systems expresses
itself. Indeed, one expects elasticity to reinstate itself at higher
order, as does membrane rigidity in the case of vesicles. Since
the physics of the two systems are different, we expect different
behaviors. This question is under investigation.

By applying the Jaumann derivative to Eq. (70), and by
using Eq. (69) in order to eliminate f, it is a simple matter to
show that the stress tensor can be related to the strain tensor
via a relation of the form

Dσ

Dt
+ γ1σ = γ2e + γ3

De
Dt

, (72)

where constants γ1, γ2, and γ3 are expressed in terms of the
coefficients in Eqs. (69) and (70) and are not listed here since
we are only interested in comparing the general forms of
constitutive laws.

The above relation is reminiscent of the constitutive law
for a dilute solution of polymers, treated as a suspension of
elastic Hookean dumbbells, commonly known as the Oldroyd
B model, which reads [36,38]

σ(1) + α1σ = ηext
[
e + α2e(1)

]
, (73)

where α1 and α2 are constants of the model (they are related
to friction of the dumbbell with the solvent and the elastic
constant of the dumbbell) and the subscript (1) refers to the

upper convected derivative defined as

σ (1) = Dσ

Dt
− [∇vσ + σ∇vT

]
. (74)

The conformation tensor for a dumbbell is defined as f =
〈RR〉/R2

g where R is the end-to-end vector, Rg is the
equilibrium gyration value for a Gaussian polymer chain,
and 〈. . .〉 designates average over noise due to solvent. The
conformation tensor obeys a linear equation of the form

f(1) = I − f
τ

, (75)

where τ is a relaxation time of the polymer towards equilib-
rium, and I is the identity tensor. The Oldroyd B model shares
similarities with the emulsions rheology, the major difference
being the nature of the time derivative, which have different
rheological consequences.

Due to the nonlinear nature of both the equation obeyed by
the conformation tensor for vesicles [Eq. (61) at leading order]
and the relation between stress and conformation (64), our
constitutive law (68) is highly nonlinear and contains rational
functions of σ and e.

VI. SUMMARY OF MAIN RESULTS

The major results obtained here are the following:
(i) In addition to the already existing result of the effective

viscosity in the TT regime [Eq. (19)], we have been able to
derive analytically the instantaneous viscosity for the three
classical regimes [Eq. (21)], including the TB and VB ones. We
have shown that the time-dependent viscosity has a minimal
value [Eq. (30)] which is smaller than the Einstein one.

(ii) We showed that the instantaneous viscosity has a
nontrivial behavior as a function of time and exhibits several
maxima and minima (as reported numerically before [15,28])
over one period.

(iii) We also analytically obtained the time-averaged (over
one period) expression of the effective viscosity. This average
expression is given by Eq. (26) and shows a cusp singularity
when the viscosity contrast is equal to the critical value λc for
the transition from TT to TB and VB regimes. This averaged
viscosity has a minimum at λ = λc. As λ is increased, the
averaged viscosity decreases in the TT regime and increases in
the TB and VB regimes. In the limit of high viscosity contrast
we have shown that the reduced viscosity tends to a value equal
to 5/2 [see Eq. (31)].

(iv) We compared the reduced effective viscosity of vesi-
cles to that of an initially spherical capsule with a RBC-type
membrane. As for vesicles, we have shown that the reduced
effective viscosity of capsule has a minimum, even when the
capsule is in the TT regime. Moreover, we have shown that
the elastic capillary number for capsules and the square root
of the excess area play similar roles (at leading order).

(v) We analytically calculated the instantaneous normal
stress differences N1 and N2 for the three regimes TT, TB,
and VB [Eq. (55)]. The behaviors of N1 and N2 are nontrivial
over one period and capture the previously reported numerical
results [15,28].

(vi) We showed that the averaged values of the normal
stresses both decrease when λ increases in the TT regime
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[Eq. (56)]. When the critical value of λ is approached, we have
shown that they exhibit a square-root singularity. We have
shown that, in the TB and VB regime, they collapse to zero, in
accordance with numerical results [15,28].

(vii) We also determined a constitutive law for a vesicle
suspension in a closed form and compared the result with
that of emulsions, capsule suspensions, and dilute polymer
solutions (Oldroyd B model). The constitutive law is highly
nonlinear due to local membrane incompressibility.

VII. CONCLUSION AND PERSPECTIVES

The purpose of this paper is to reexamine the rheology
of a dilute suspension of vesicles. The analysis is analytical
and based on the small-deformation theory presented in the
original work [13]. In the small-deformation limit, vesicles,
under shear flow, exhibit various dynamics, TT, TB and VB
modes, depending on viscosity ratio λ and initial conditions.
Recently, exact analytical expressions of the vesicle inclination
angle and the shape deformation have been discovered [27].
We briefly recalled some features of exact analytical solutions
and then derived rheological laws in terms of the effective
viscosity and the normal stress differences. Exact analytical
expressions of ηeff, N1, and N2 are presented for the three
regimes. In the TB and VB regimes it is clearly found that
ηeff, N1, and N2 are nonlinear oscillating functions of time.
In addition, the exact expression of the effective viscosity
showed a cusp singularity at the critical viscosity ratio at
which TB takes place, whereas the time averages over one

period of the normal stress differences vanish in the TB and
VB regimes. In addition, we found that, for large λ, the
reduced effective viscosity behaves similar to the drop one.
The exact analytical analysis reported here can serve as a
starting point for the study of higher-order contributions in
the shape deformation equations [16,17], or for the study
of incompressible capsules [22,24] (a model for red blood
cells). It was numerically shown recently [39] that the study of
rheology of vesicles under the combination of a steady shear
flow and an oscillating flow exhibits several new features (like
resonances in the viscosity as a function of shear rate) that
cannot be captured by the application of a pure oscillation.
The present analysis can serve as a starting point in order
to understand analytically this behavior. It is our hope to
investigate this matter further in a future presentation. Finally,
we derived a constitutive law in a closed form relating the stress
tensor to the strain rate tensor. The form of this law is quite
different from other classical laws, such as the popular Oldroyd
B model. It will be an interesting task to study systematically
this law in various flow configurations and to analyze its
far-reaching consequences.
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