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Nonadditive entropy maximization is inconsistent with Bayesian updating
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The maximum entropy method—used to infer probabilistic models from data—is a special case of Bayes’s
model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the
maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes’s model inference
prescription has never been established. Here we demonstrate that nonadditive entropy maximization is
incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our
attention on special cases as illustrations.
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I. INTRODUCTION

Maximum entropy, MaxEnt, is widely used to infer prob-
abilistic models from limited data [1]. For instance, MaxEnt
has been used to determine size distributions of heterogeneous
particles in solutions [2], protein folding kinetic rates [3], and
pair distance distributions from electron spin resonance [4].

Probability distributions, p(x), inferred using MaxEnt
satisfy two key criteria:

Criterion 1: They are consistent with whatever constraints,
C, are available from the data.

Criterion 2: They simultaneously maximize Shannon’s
entropy, S = −∫

dxp(x) log p(x) [5–7].
While Criterion 1 is uncontroversial, Criterion 2 may

appear ad hoc [e.g., Why not maximize another arbitrary
function of p(x)?]. Reference [7] quantitatively addresses the
fundamental reasons why maximizing the Shannon entropy
should be preferred. For example, Criterion 2 assures that
joint distributions inferred from MaxEnt models, say, p(x,y),
where x and y are model variables, factorize into the product
of marginal distributions unless the constraints from the data
warrant otherwise.

Criterion 2 imposes properties that probabilistic models
should satisfy prior to considering data. For this reason, the
Shannon entropy should be related to a Bayesian model prior.
And, indeed, the MaxEnt model inference procedure—with
the Shannon entropy playing the role of a prior—is a special
case of Bayesian inference [8] which, itself, is firmly grounded
in basic propositional logic [9].

Here we first review how MaxEnt is related to Bayesian in-
ference and subsequently show that nonadditive entropy max-
imization cannot be reconciled with Bayes’s model inference
scheme. In doing so, we will have shown why distributions
inferred using nonadditive entropy maximization lack predic-
tive power and, simultaneously, illustrate the power of Bayes’s
theorem in establishing the merit of an inference method.

II. MAXENT IS A SPECIAL CASE
OF BAYESIAN INFERENCE

Bayes’s theorem is a principled recipe that can be used to
update probability distributions over models, P (M = p(x)),
when data, D, become available.
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For instance, prior to considering data, we have an opinion
on how probable a certain model is and this is quantified by the
distribution P (M) (called the model prior). The central object
of interest in Bayesian analysis is not P (M) but rather the
probability of the model once data has actually been gathered,
P (M|D). To construct the posterior probability, P (M|D), we
update the model prior P (M) by invoking Bayes’s theorem,

P (M|D) ∝ P (D|M)P (M), (1)

where P (D|M), a known function, is the probability of the
data given the model (called a likelihood function).

MaxEnt is a special case of Bayes’s model inference
prescription for these reasons: (1) MaxEnt returns one op-
timal model which we call M∗ [as opposed to an entire
distribution over models P (M|D)]. This model is the one
that maximizes P (M|D). Thus, by assumption, the MaxEnt
procedure assumes P (M|D) is sharply peaked at its maximum.
(2) MaxEnt assumes a special form for the model prior, P (M).
To find the form for P (M) dictated by MaxEnt, we relate the
objective function commonly maximized in MaxEnt (entropy
plus constraints) to Eq. (1),

C(D|M) + S(M) ↔ P (D|M)P (M) (2)

from which it can be shown that P (M) ∝ eS [8].
MaxEnt is a versatile inference scheme grounded in

Bayesian inference. Indeed, the MaxEnt prescription can infer
any type of probability distribution. One common textbook
application of MaxEnt is to use an average of a random
variable as a constraint, C = λ[

∫
dxxp(x) − x̄], where λ is

a Lagrange multiplier. By maximizing the Shannon entropy
subject to this constraint, the MaxEnt procedure yields an
exponential distribution [1]. Yet the Shannon entropy does not
only generate simple exponentials. In one of the earliest and
perhaps best-cited nontrivial applications of MaxEnt [10], an
entire probability density, whose grayscale represents remnant
features of the supernova Cas A, was inferred. This million-
pixel two-dimensional distribution is much more complex than
any simple distribution having an analytic form (such as an
exponential).

III. NONADDITIVE ENTROPIES CANNOT BE
RECONCILED WITH BAYESIAN UPDATING

Despite the success of the Shannon entropy prior (eS) [1],
Shannon’s entropy is often substituted for the nonadditive
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entropy [11–13], Sq , which has controversially been conjec-
tured in physics as a generalization of the standard entropy
formula [14],

Sq = 1

1 − q

[∫
dxp(x)q − 1

]
. (3)

Here q is a parameter called the “entropic index” and, for
concreteness, we take x to be a continuous random variable
with range [0,∞].

Contrary to traditional MaxEnt, we demonstrate that
nonadditive entropy maximization cannot be reconciled with
Bayesian updating. To show this, we begin by writing a
hierarchical Bayesian scheme to explicitly accommodate the
entropic index q,

P (M,q|D) ∝ P (D|M,q)P (M|q)P (q), (4)

where we condition the model prior, P (M|q), on the hyper-
parameter q. Equation (4) is an expanded form of Bayes’s
theorem, Eq. (1). It is not an approximation. More generally,
Eq. (4) treats q as a random variable subject to its own prior
distribution rather than treating q as a fixed value. To be clear,
a fixed value for q would imply the special case of a delta
function prior over q.

Hyperparameters (such as q) are routine in Bayesian
modeling. Bayes’s theorem does not impose restrictions on
the form for P (q). It only strictly requires that P (q) be some
prespecified function before considering data (and thus not be
an explicit function of D). The Rényi entropy, for instance,
also introduces a hyperparameter (usually called α) whose
value must also be quantified [15].

As we now detail, the reason that nonadditive entropy
maximization is not consistent with Bayesian updating is
because P (q) is directly informed by the data.

In fact, as we will see, P (q) will be set to a delta function
whose center, q∗, is treated as an adjustable parameter which—
in the words of the statistician J. Berger [16]—is “perhaps
the most questionable of all the pseudo-Bayes procedures
[which] is to write down proper (often conjugate) priors with
unspecified parameters, and then to treat these parameters as
‘tuning’ parameters to be adjusted until the answer ‘looks
nice’. At the very least, anyone using this technique should
clearly explain that this is what was done,” adding that
“...while these pseudo-Bayesian techniques can be useful as
data exploration tools, they should not be confused with formal
objective Bayesian analysis, which has very considerable
extrinsic justification as a method of analysis.”

In the nonadditive entropy literature the value set for q [17],
which we will call q∗, depends explicitly on the data. Either
q∗ is obtained by curve fitting [17] or conjectured to match
expected properties of the system that give rise to the data
[18,19].

Thus, consistent with the logic of fixing q∗ according
to some data which we preliminarily call D′, we obtain
the model posterior by marginalizing P (M,q|D) [given by
Eq. (4)] over q,

P (M|D) ∝
∫

dqP (D|M,q)P (M|q)δ[q − q∗(D′)]

= P (D|M,q∗(D′))P (M|q∗(D′)), (5)

where D′ is the data that determine q∗.

If D and D′ have no data in common (i.e., they are disjoint
sets), then Eq. (5) is compatible with Bayesian updating.
Otherwise, if D and D′ do have data in common, Eq. (5)
becomes

P (M|D) ∝ P (D|M,q(D))P (M|q(D)). (6)

We will show in the subsection that follows that nonadditive
entropy maximization leads to the incorrect form of Bayes’s
theorem given by Eq. (6).

Equation (6) is incorrect because it treats the very same
data, D, on a different footing (i.e., the data inform the prior
while, simultaneously, informing the likelihood function).

The dependence of q on the data in Eq. (6) is reminiscent
of a method called empirical Bayes [20]. In empirical Bayes,
hyperprior parameters (such as q) are fixed by the data
and, for this very reason, empirical Bayes is also not free
of criticism [16]. A strategy sometimes used in empirical
Bayes is to marginalize P (D|M,q)P (M|q) over M to obtain
P (D|q). Given P (D|q), point statistics such as moments of
this distribution (which depend on q) could be set to their
values obtained from data to estimate q.

Probability distributions [i.e., models M = p(x)] drawn
from Eq. (6) have limited predictive power especially in the
limit of small data sets.

Now we turn to a concrete example as an illustration.

A. An illustration using power-law distributions

Power-law distributions arise in the nonadditive entropy
framework by maximizing the following objective function:

φq ≡ 1

1 − q

[∫
dxp(x)q − 1

]

−α

[∫
dxp(x) − 1

]
− λ

[∫
dxxp(x) − x̄

]
, (7)

which is a nonadditive entropy, Sq , constrained by an average
(enforced by Lagrange multiplier λ) and a normalization over
the p(x) (enforced by the Lagrange multiplier α).

The model maximizing φq is the q exponential

p∗
q(x) = θ

x̄(θ − 1)

[
1 + x

x̄(θ − 1)

]−θ−1

, (8)

where, for notational convenience, we have defined −θ −
1 ≡ 1/(q − 1) [21] and, for the sake of clarity, we add a
q subscript to all distributions obtained from nonadditive
entropy maximization, p∗

q . We note, for completeness, that
p∗

q(x) only has a well-defined mean if 1 � q > 1/2. For
fits to data requiring a q beyond 1 � q > 1/2, the form
for p∗

q(x) must be altered. This has been accomplished by
postulating new definitions for averages in φq [from

∫
dxxp(x)

to
∫

dxx(p(x))q ], thereby drawing fresh criticism [22] on
what is already a controversial model inference scheme
[23–26].

So far, the recipe we just followed—in going from φq to
p∗

q(x)—can be repitched in the Bayesian framework (problems
will arise as we try to parametrize q). In particular, the
model we just inferred, p∗

q(x), equivalently follows from the
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maximization of the following posterior [1]:

P (D|M,q)P (M,q)

∝ δ

[∫
dxxp(x) − x̄

]
δ

[∫
dxp(x) − 1

]
eSq . (9)

Both procedures, that is, the maximization of Eq. (9) or
(7), so far have left q in p∗

q(x) undetermined. Bayes’s model
inference framework would have enforced that we specify a
prior distribution of whichever form (even flat) over q. By
contrast, the nonadditive entropy framework [17] requires that
q be informed from the data. We now follow the latter recipe
to its logical conclusion (the eventual incompatibility with
Bayesian updating).

Suppose we take the curve-fitting route to determine q

(actually using the alternate route of “deriving” q from
system properties would not change our conclusions because,
ultimately, q derives from D).

To curve fit q, we follow a standard statistical recipe [21] by
first constructing a likelihood function L(θ ) = ∏n

i pq(xi) for n

identical independently distributed data points, D = {xi}. We
then select the value of θ which maximizes the likelihood, θ∗,
which is satisfied by the following self-consistent equation:

θ∗ = n∑
i

{
log

[
1 + xi

x̄(θ∗−1)

] − 1
θ∗−1

[
xi (θ∗+1)

xi+x̄(θ∗−1) − 1
]} . (10)

In the large-data-set limit (n → ∞), this estimate should coin-
cide with any exact q “derived” for the system. Equation (10)
pinpoints exactly which statistics q∗ explicitly depends on. For
instance, q∗ depends explicitly on x̄. Hence, we find that the
data D′ on which q∗ depends [in Eq. (5)] is the same data
D which appears in the likelihood function P (D|M,q∗(D′)).
In doing so, we have illustrated that Eq. (6) holds for even
this most basic example. Of course, any q determined from
curve fitting—no matter the functional form for p∗

q(x)—will
clearly depend on the data, D, that make up that curve which,
incidentally, also informs the likelihood function.

B. The improbable q exponential

The parametrization of q, as it is currently accomplished
following the nonadditive entropy framework, eliminates all
predictive power for any p∗

q(x).
Nonetheless, any distribution function p∗

q(x), obtained by
maximizing the nonadditive entropy under arbitrary con-
straints, may be normalizable and everywhere positive. This
was certainly true of our special case—the q-exponential given
by Eq. (8)—for some q range. Thus any p∗

q(x) can still play
the role of a probability distribution function.

Now suppose that we use the very same data to obtain: (1) a
MaxEnt distribution p∗(x) and (2) a distribution obtained from
nonadditive entropy maximization, p∗

q(x). But let us assume
that we do not parametrize the q in p∗

q(x). It is now fair to ask
how probable the model p∗

q(x) is as compared to the MaxEnt
model p∗(x) for any value of q if the same data are used to
inform both distributions.

To compare p∗
q(x) with p∗(x), we consider the ratio of

posteriors evaluated at p∗
q(x) and p∗(x),

P (M ≡ p∗
q(x)|D)

P (M ≡ p∗(x)|D)
= e

∫
dxp∗(x) log p∗(x)−∫

dxp∗
q (x) log p∗

q (x). (11)

In Eq. (11) we note that the ratio of posteriors simplifies
to a ratio of priors because—by assumption—the likelihood
functions are identical.

By construction, since p∗(x) maximizes the Shannon
entropy, then the ratio of posteriors must be less than 1 [or
identical to 1 if p∗(x) = p∗

q(x)]. Equation (11) is as far as we
can go unless we specify what data was used to inform p∗

q(x)
and p∗(x).

For concreteness, therefore, we consider the special case
where we have constraints on a mean value x̄. We consider
this special case because it is the simplest and most common
in the literature. Of course, any other constraints can be used.
For this special case, p∗

q(x) takes the form of Eq. (8) and p∗(x)
takes its usual exponential form, 1

x̄
e−x/x̄ . We then find

P (M ≡ p∗
q(x)|D)

P (M ≡ p∗(x)|D)
= e

1−q

q (−1 + 2q)

q
, (12)

which is again only valid for 1 � q > 1/2 [a requirement that
the mean of p∗

q(x) be finite] and reduces to unity in the limit
that q → 1, as it should.

Now consider a model where q ∼ 0.5, say, in Eq. (12).
Such a model is substantially less likely to be a valid
model—as compared to the MaxEnt distribution under average
constraints—and would, normally, be discarded according to
the logic of Eq. (12).

In fact, this logic generalizes to all models with q 
= 1
and the exercise can be repeated for any distributions (not
just power laws and exponentials) obtained from any data
constraints.

IV. CONCLUSION

Historically, the nonadditive or “Tsallis” entropy emerged
as a early effort to infer exotic distributions at a time when
principled inference techniques were largely unknown to
the broader physics community. While, at first glance, the
generalized form for the Shannon entropy [Eq. (3)] might seem
plausible, careful investigation over the past decade has shed
light on the perplexing inconsistencies to which this peculiar
generalization gives rise [22,25,26].

For instance, the models obtained by maximizing nonaddi-
tive entropies are suboptimal as compared to those obtained
by maximizing the Shannon entropy because—as we have
shown [26]—they introduce biases in the inferred probabilities
where none are warranted by the data. In fact, only q = 1
(which is the limit in which nonadditive entropies become
the Shannon entropy) assures that the inferred distribution
does not introduce spurious correlations between model
variables where none are otherwise warranted. These spurious
correlations are made explicit in Eq. (13) of Ref. [26].

Here we show definitively that invoking nonadditive
entropy maximization to infer models yields probability
distributions of no predictive value because they are obtained
in a way that is incompatible with Bayesian updating.

By analogy, suppose we were to alter Maxwell’s equations
by changing the power of their spatial and temporal derivatives
to model electromagnetic wave propagation through some
exotic materials. While the fit to some data sets might improve,
we would—just as a start—lose Lorentz invariance and
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overturn the definitions of dielectric and magnetic permeabil-
ities to accommodate the changes in units of our fields.

There is intrinsic value in searching for generalizations of
basic physical principles to tackle complex problems presented
by biology and other systems out of equilibrium. However,
basic foundational principles—such as Bayesian updating
rules—must be preserved.

The emerging perspective is that Shannon’s entropy pro-
vides a way of finding the most probable model consistent

with laws of inference [8] and it is not restricted to equilibrium
or other simple systems [1] as the breadth of its generality is
demonstrated by Shore and Johnson [7].
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