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Virial coefficients in the (μ̃,q)-deformed Bose gas model related to compositeness
of particles and their interaction: Temperature-dependence problem
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We establish the relation of the second virial coefficient of a recently proposed (μ̃,q)-deformed Bose gas model
[A. M. Gavrilik and Yu. A. Mishchenko, Ukr. J. Phys. 58, 1171 (2013)] to the interaction and compositeness
parameters when either of these factors is taken into account separately. When the interaction is dealt with, the
deformation parameter becomes linked directly to the scattering length and the effective radius of interaction
(in general, to scattering phases). The additionally arising temperature dependence is a feature absent in the
deformed Bose gas model within the adopted interpretation of the deformation parameters μ̃ and q. Here the
problem of the temperature dependence is analyzed in detail and its possible solution is proposed.
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I. INTRODUCTION

Nonlinear physical systems involving either nonideality or
nonlinearity factors are often effectively described by means
of some deformed (e.g., algebraic or phenomenological)
models as counterpart to their corresponding ideal prototype.
Deformed Bose gas models (DBGMs), along with deformed
oscillators, deformed quantum mechanics, and some other
extensions, having evolved since the end of 1980s until now,
belong to such models of an effective description. Generally
speaking, the DBGMs may or may not be directly linked
with deformed oscillators, which in many cases are taken
as the structural object underlying the former. Soon after
the introduction of deformed oscillators or deformed bosons
[1–3], their use for elaborating respective deformed analogs
of the Bose gas model became popular. The early instances
of DBGMs (for a few examples see [4–9]) had already
witnessed the appearance of a very important new direction
with a long-term perspective and with good potential for
useful (and realistic) applications. The latter range from the
4He system [10] to, e.g., objects of high-energy physics such
as two- and three-particle correlations of pions generated
in relativistic collisions of nuclei [11]. These applications
yielding a good effective description stimulated the study of
deeper reasons of the applicability of DBGMs to real physical
systems. Helpful, from this viewpoint, appears the idea that
deformation of the ideal Bose gas model could and should
provide an efficient effective description of the properties
of more realistic (i.e., nonideal) gases of Bose-like particles.
Moreover, the deviation from strict ideality may originate for
several reasons (nonideality factors). It was demonstrated [12]
that the nonpointlike form of particles may serve as the first and
most obvious such factor and it is possible to link the parameter
q of deformation directly with the ratio of the excluded volume
(the sum of nonzero proper volumes of the particles) to the
whole volume. The next factor of nonideality is the interaction
between the particles and as shown in [13] it can be naturally
taken into account by a version of deformation.
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More recently it became clear that the possibility of real-
ization (of operator algebra) of composite bosons by deformed
bosons proven in [14] is naturally promoted to the elaboration
of the DBGM able to effectively account for the compositeness
of Bose particles (the compositeness makes them quasibosons,
differing from strict bosons). Finally, let us mention recent
work [15] that shows how to incorporate simultaneously two
different factors of nonideality: the compositeness of particles
and their interaction. That work motivated our present study.

Let us mention several versions of DBGMs and their
application to physical systems in different contexts. The
thermodynamics of the q-DBGMs was studied, e.g., in [16,17];
for the Bose condensation of the deformed gases see [18]. The
DBGMs and many-body systems of q bosons were applied
to phonon gas in 4He [10], to excitons in [19], and to a
study of pairing correlations in nuclei [20]. Some of the
DBGMs were applied when studying two-particle correlation
functions [11,21–24]. The extent or strength of deformation
of the models mentioned usually is characterized by one
or more deformation parameters. Until now, the question
about the relation between the deformation parameters and
the microscopic nonideality factors and their parameters
had remained opened and the microscopic analysis of the
correspondence between a physical system and its deformed
counterpart had still been absent.

In this work, similarly to [14], where the deformation
parameter for the realization of bifermionic composites (quasi-
bosons) by deformed bosons was related to the wave functions
of bifermionic states being realized, we establish the relation
between the deformation of a special (class of) DBGM and the
characteristics of the interaction along with compositeness of
particles of a gas, which the DBGM is implied to effectively
incorporate jointly. As the criterion of the effective description
(or realization) in the former case [14], the realizability of
quasibosonic operator relations was taken. In the present case
the proximity of the virial expansion of the equation of state
for the nonideal quantum gas to that of the DBGM is chosen
as such a criterion. The structure function characterizing the
DBGM of the effective description for the concreteness is
taken to be of the same special form as in [15], however,
the analogous consideration given below may concern a more
general situation. This structure function is the functional
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composition of those corresponding to effectively taking the
compositeness and interaction into account separately. The
most optimal form of such a functional dependence is also an
open question.

Among central issues of this paper is the temperature depen-
dence of virial coefficients. According to [4,13,15–18,25,26],
the virial coefficients within the DBGMs studied therein
depend only on the deformation parameter(s), which in our
interpretation are interrelated with nonideality factors and thus
should not depend on the temperature. On the other hand,
the virial coefficients for a gas with interaction manifest a
temperature dependence [27]. Just this problem is the focus of
the present work.

II. RELATION OF DEFORMATION PARAMETERS
TO THE INTERACTION BETWEEN QUASIBOSONS

AND TO THEIR COMPOSITENESS

We start with the recently obtained [15] deformed virial
expansion for the (μ̃,q)-deformed Bose gas whose thermo-
dynamics or statistical physics is given through the structure
function ϕμ̃,q(N ) (with the definition [N ]q ≡ 1−qN

1−q
),

ϕμ̃,q(N ) = ϕμ̃([N ]q) = (1 + μ̃)[N ]q − μ̃[N ]2
q . (1)

The structure function determines quantitatively how the
thermodynamics or statistical physics is deformed for that
or another system. Namely, in [15] the (μ̃,q)-DBGM is
constructed so that ϕμ̃,q(z d

dz
) replaces the derivative z d

dz
in

the known relation for the total number of particles given
through the partition function, i.e., N = z d

dz
ln Z, yielding the

definition for the deformed total number of particles in terms
of the nondeformed partition function

Ñ ≡ N (μ̃,q)(z,V,T ) ≡ ϕμ̃,q

(
z

d

dz

)
ln Z. (2)

All other deformed physical quantities are recovered using
the nondeformed version of the relations of the ideal quantum
Bose gas. For instance, for the second virial coefficient, which
is of interest for us herein, within the (μ̃,q)-DBGM we have
obtained [15]

V
(μ̃,q)

2 = −ϕμ̃,q(2)

27/2
= − (1 + q)(1 − μ̃q)

27/2
. (3)

In our treatment, the parameter q of ϕμ̃,q(N ) corresponds
to effectively taking the interparticle interaction into account
and μ̃ to composite-structure effects. Somewhat earlier, the
Arik-Coon structure function [N ]q was used to effectively
incorporate [13] the interaction between the particles of a gas
of elementary bosons.

Note that if, in addition to deformed thermodynamic rela-
tions, the structure function ϕμ̃,q(N ) describes some deformed
boson algebra related to the (μ̃,q)-DBGM studied herein,
certain ranges of admissible μ̃ and q hold. These can be
deduced from the condition ϕμ̃,q(n) � 0, n = 1, . . . ,Nmax,
which corresponds to non-negativity of the norm of deformed
boson Fock states (Nmax is the maximum occupation number).
In particular, the non-negativity of ϕμ̃,q(2) yields μ̃q � 1 and
q � −1. However, we do not appeal to the relation with a
deformed boson algebra.

Besides ϕμ̃,q(N ), one can take yet another version of
combining the two structure functions ϕμ̃(N ) and [N ]q , e.g.,
in the form ϕq,μ̃(N ) = [ϕμ̃(N )]q , or as a family with one more
parameter: tϕμ̃,q(N ) + (1 − t)ϕq,μ̃ for 0 � t � 1. We remark
that the treatment below can be extended to the case of an
even more general structure function ϕ(N ) when some of
the deformation parameters are responsible for interparticle
interaction and the others for the composite structure of
particles in the effective description.

A. Effective account for the particle-particle
interaction to (λ3/v)2 terms

As known, the deviation (from the ideal or noninteracting
case) of the second virial coefficient V2 due to the two-particle
interaction is expressed through the partial wave phase shifts
δl(k) and the bound state (if any) energies εB as follows [27]:

V2 − V
(0)

2 = −81/2
∑

B
e−βεB

− 81/2

π

∑′
l
(2l + 1)

∫ ∞

0
e−β�

2k2/m ∂δl(k)

∂k
dk.

(4)

Here B runs over bound states, l is the angular momentum
quantum number, and the summation is performed over even
l in the bosonic case and over odd l in the fermionic case.
In the low-energy approximation we retain in (4) only the
l = 0 summand (s-wave approximation). The corresponding
phase shift δ0(k) generally can be determined by solving the
Schrödinger equation for a specified interaction potential.
However, in the low-energy limit (when l = 1 effects are
negligible) the following expansion, known as the effective
range approximation, holds [28–30]:

k cot δ0 = −1

a
+ 1

2
r0k

2 + · · · ,

r0 = 2
∫ ∞

0
dr

[(
1 − r

a

)2

− χ2
0 (r)

]
, (5)

where a is the scattering length, r0 is the effective range
(radius), and χ0(r) is the radial wave function of the lowest
state multiplied by r . Since for some typical potentials
r0 depends only on the range and depth of the potential,
this expansion is sometimes called the shape-independent
approximation. For the shape-independent approximation
we find ∂δ0

∂k
= −a + (a − 3r0/2)a2k2 + O(k4). Putting this

derivative in (4) and performing integration, within the s-wave
approximation we obtain

V2 − V
(0)

2 = −81/2
∑
B

e−βεB + 2
a

λT

− 2π2

(
1 − 3

2

r0

a

)

×
(

a

λT

)3

+ O((a/λT )5), (6)

where λT ≡ λ = h/
√

2πmkBT is the thermal wavelength.
Below we give the explicit expressions for V2 − V

(0)
2 , or for the

pair a and r0 through which it is expressed in (6), for a number
of potentials (their definitions and some details are relegated to
the Appendix). For the hard-sphere interaction potential (A1)
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we have [27]

V2 − V
(0)

2 = 2
D

λT

+ 10π2

3

(
D

λT

)5

+ · · · , l = 0,2. (7)

For the constant repulsive potential (A3) and subsequent
potentials the corresponding quantities are given using [29].
So, we have

a = R

(
1 − tanh K0R

K0R

)
, r0 = 0. (8)

For the square-well potential (A5)

a = −R

(
tan K0R

K0R
− 1

)
,

r0 = R

(
1 − 1

K2
0 Ra

− R2

3a2

)
. (9)

For the anomalous scattering potential (A7)

a = R − tanh K0(R − r1) + (K0/K1) tan K1r1

K0[1 + (K0/K1) tan(K1r1)tanh K0(R − r1)]
. (10)

A somewhat awkward expression for r0 is omitted. For
scattering resonances (A9)

a = 



 + 1
R, r0 = 2

3


 − 1



R. (11)

For the modified Pöschl-Teller potential (A11), at integer λ,

a = 1

α

λ−1∑
n=1

1

n
, r0 = 2

3α

(∑λ−1
n=1 n−1

)3 −∑λ−1
n=1 n−3(∑λ−1

n=1 n−1
)2 . (12)

For the inverse power repulsive potential (A13)

a = r0
�(1 − 1/2η)

�(1 + 1/2η)

(
g

2η

)1/η

, η = n − 2

2
, (13)

and r0 can be found from (5) using (A15). With the data given
above, we have the deviation of the second virial coefficient
in Eq. (6) from that of the ideal Bose gas, for each of the
considered potentials (A1) and (A3)–(A13).

On the other hand, within the (ϕμ̃,q)-deformed Bose gas
model we have [15] [see also Eq. (3)]

V
(μ̃,q)

2 − V
(0)

2

∣∣
μ̃=0 = 2 − ϕμ̃,q(2)

27/2

∣∣∣∣
μ̃=0

= 1 − q

27/2
. (14)

By juxtaposing this with (6), we obtain

q = q(a,r0,T ) = 1 − 29/2 a

λT

+ 29/2π2

(
1 − 3

2

r0

a

)(
a

λT

)3

+ · · · + 25
∑
B

e−βεB , (15)

which constitutes one of our main results. Of course, this
formula should be appended with a and r0 taken, e.g., for the
chosen cases from (8)–(13) or for any other desired case.

The temperature dependence of the deformation parameter
in (15) appears somewhat unexpected since, in our interpreta-
tion, the deformation parameter characterizes the nonideality
of the deformed Bose gas model as a whole and T is its internal
parameter. One of the approaches to resolve this issue consists

in a modification of the very deformation in the deformed Bose
gas model. For instance, we can use the extended deformed
derivative (here z = eβμ is the fugacity and μ the chemical
potential)

z
∂

∂z
→ zD̃z ≡ ϕ

(
z

∂

∂z

)
+ χ

(
z

∂

∂z

)
∂

∂β
+ g(β)ρ

(
z

∂

∂z

)
,

(16)

with structure functions ϕ, χ , and ρ, in the relation

Ñ = zD̃z ln Z(0)

= ϕ

(
z

∂

∂z

)
ln Z(0) − χ

(
z

∂

∂z

)
U (0) − βg(β)ρ

(
z

∂

∂z

)
�

(0)
G .

Here Z(0), U (0), and �
(0)
G are the nondeformed partition

function, internal energy, and Gibbs thermodynamic potential,
respectively; (z,V,T ) serve as independent variables. Thus,
on the thermodynamics level, χ and ρ reflect the effect on the
total number of particles of the internal energy and the Gibbs
thermodynamic potential, which now appear on the same
footing as the logarithm of the grand partition function. The
corresponding analysis will be carried out in Sec. III below.

Remark. It is worth estimating the relative magnitude of the
terms −81/2∑

B e−βεB and 2 a
λT

in (6) at low-energy scattering
when bound states do exist. According to [29] we have the
following estimate for the binding energy in terms of scattering
data:

εB � − �
2

2ma2

(
1 + r0

a

)
.

Using this we arrive at

−81/2e−βεB + 2
a

λT

� −81/2 exp

[
�

2

2ma2kBT

(
1 + r0

a

)]
+ 2

a

λT

= −81/2 exp

(
1

4π

λ2
T

a2
(1 + r0/a)

)
+ 2

a

λT

< 0

for a/λT < 1. (17)

Thus, the binding energy term in (6) (if a bound state exists)
is dominating over 2 a

λT
for small a/λT .

B. Effective account for the compositeness
of particles up to (λ3/v)2 terms

Let us now evaluate the second virial coefficient in
the absence of an explicit interaction between quasibosons
(composite bosons). Note that the partition function from
which the second virial coefficient can be extracted, for the
system of composite bosons within a general framework,
was considered in [31]. Within our approach (which is both
effective and efficient), however, the task of obtaining the virial
coefficient(s) is completely tractable, leading, for the deformed
Bose gas, to exact results.

The two-component quasibosons concerned here have the
following creation and annihilation operators [12,14]

A†
α =

∑
μν

�μν
α a†

μb†ν, Aα =
∑
μν

�
μν

α bνaμ, (18)
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where a†
μ,b†ν and aμ,bν are, respectively, the creation and

annihilation operators for the constituent fermions and the
set of matrices �μν

α determine the quasiboson wave function.
As a starting point we take the known general expression for
the second virial coefficient [27]

V2 = 1

2!V
[(Tr1e

−βH1 )2 − Tr2e
−βH2 ]. (19)

Here Tr1 denotes the trace over one-quasiboson states and
Tr2 over the states of two quasibosons; H1 and H2 are,
respectively, one- and two-quasiboson Hamiltonians. The
distinction between the second virial coefficients for the ideal
Bose and ideal Fermi gases is caused by the nilpotency of
the fermionic creation operators and consequently by the
nullification of the respective terms in Tr2e

−βH2 from (19).
Analogously, in the case of bifermionic quasibosons the
nonzero summands from Tr2e

−βH2 are determined by the
condition |(A†

α)2|0〉|2 	= 0. Let us calculate |(A†
α)2|0〉|2:

|(A†
α)2|0〉|2

=
∑

μ1μ2···ν ′
1ν

′
2

〈0|bν ′
2
aμ′

2
bν ′

1
aμ′

1
�

μ′
1ν

′
1

α �
μ′

2ν
′
2

α �μ1ν1
α �μ2ν2

α a†
μ1

b†ν1

× a†
μ2

b†ν2
|0〉

= 2
∑

μ1 	=μ2,ν1 	=ν2

(∣∣�μ1ν1
α

∣∣2∣∣�μ2ν2
α

∣∣2 − �
μ1ν2
α �

μ2ν1
α �μ1ν1

α �μ2ν2
α

)
= 2[1 − Tr(�α�†

α�α�†
α)]. (20)

The traces in (19) are calculated as follows:

Tr1e
−βH1 =

∑
k1n1

〈0|Ak1n1e
−βH1A

†
k1n1

|0〉 =
∑
k1n1

e−βεk1n1 , (21)

Tr2e
−βH2

= 1

2

∑
(k1n1)	=(k2n2)

〈0|Ak2n2Ak1n1e
−βH2A

†
k1n1

A
†
k2n2

|0〉

+ 1
∣
∣
(
A

†
k1n1

)2|0〉∣∣2

∑′

k1n1

〈0|(Ak1n1

)2
e−βH2

(
A

†
k1n1

)2|0〉

= 1

2

⎛
⎝∑

k1n1

e−βεk1n1

⎞
⎠

2

− 1

2

∑
k1n1

e−2βεk1n1 +
∑′

k1n1

e−2βεk1n1 .

(22)

Here k1,2 is the momentum quantum number, n1,2 contains
all the other quasibosonic quantum numbers, εk1n1 is the
energy of the quasiboson in the state |k1n1〉, and the prime
in
∑′ implies the summation over all the modes (k,n) for

which (A†
k,n)2|0〉 	= 0. Substituting (21) and (22) in (19) and

splitting εkn into kinetic energy �
2k2

2m
and internal energy εint

n as

εkn = �
2k2

2m
+ εint

n , we obtain

V2(T ) = 1

25/2

∑
n

e−2βεint
n

− λ3
T

V

∑′

kn

exp

[
− 2β

(
�

2k2

2m
+ εint

n

)]
. (23)

If for all the (k,n) modes (A†
k,n)2|0〉 	= 0, then perform-

ing the summation over k according to
∑

k e−2β(�2k2/2m) =
2−3/2V/λ3

T we obtain

V2(T ) − V
(0)

2 = − 1

25/2

(∑
n

e−2βεint
n − 1

)
. (24)

On the other hand, in the deformed case we have the (exact)
result [15] [see also Eq. (3)], i.e.,

V
(μ̃,q)

2 − V
(0)

2

∣∣
q=1 = 2 − ϕμ̃,q(2)

27/2

∣∣∣∣
q=1

= μ̃

25/2
(25)

from which, after juxtaposing, according to our interpretation,
with (24) we arrive at

μ̃ = μ̃
(
εint
n ,�μν

α ,T
) = 1 −

∑
n

e−2βεint
n (26)

(the dependence on �μν
α is retained for the general case). As

can be seen now, the obtained difference (24) is mainly related
to the internal energy of a quasiboson, not to its (nonbosonic)
commutation relations.

The structure function ϕμ̃,q(N ) with q = q(a,r0,T ) and
μ̃ = μ̃(εint

n ,�μν
α ,T ) is chosen for the goal of the effective ac-

count (in certain approximations) for the factors of interaction
and of the composite structure of particles of a gas. Let us
emphasize that the direct microscopic treatment may lead to
a quite different relation between the second virial coefficient
incorporating both factors (interaction and compositeness) and
the virial coefficients involving only one nontrivial factor.
The functional composition as in (1) may not already hold,
nevertheless, the linear part of the Taylor expansion of V

(μ̃,q)
2

in small ε = q − 1 and μ̃ may coincide with the corresponding
part found from the microscopic treatment. It is clear that the
modification of deformation according to (16) may lead to a
quite different dependence of deformation parameters on the
characteristics of the interaction and compositeness.

Let us note that the major deformation structure function ϕ

in (16) is a general one. The choice ϕ(z ∂
∂z

) = ϕμ̃,q(z ∂
∂z

) results
in the formulas (14) and (25) for the virial coefficient V2.
Clearly, other choices for ϕ in (16) will result in another form of
respective virial coefficient V2 and the respective temperature
dependence.

III. MODIFICATION OF THE DERIVATIVE z d
dz

AIMED TO YIELD TEMPERATURE-DEPENDENT
VIRIAL COEFFICIENTS

As already mentioned, we can obtain temperature-
dependent deformed (i.e., within the deformation-based ap-
proach) virial coefficients, say, by performing the extension of
the deformed derivative [see (16)]. The functions ϕ, χ , and ρ

should not depend on the temperature. The term g(β)ρ(z ∂
∂z

) is
introduced in order to reflect the ambiguity in the (left or right)
position of ∂/∂β, i.e., to cover the terms such as ∂

∂β
χ (z ∂

∂z
). This

can be verified by means of the commutation relation

[∂/∂β,f (z∂/∂z)] = −β−1(z∂/∂z)f ′(z∂/∂z). (27)

The noncommutativity of the derivatives ∂/∂β and z∂/∂z is
observed after presenting z∂/∂z as β−1∂/∂μ, where μ is the
chemical potential (recall that z = eβμ).
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Applying the deformed derivative (16) to the known
expansion for the partition function

ln Z(0)(z,V,T ) = V

λ3
T

∞∑
n=1

zn

n5/2
,

we obtain the series for the deformed (represented by a tilde)
total number of particles

Ñ = zD̃z ln Z(0)(z,V,T )

= V

λ3
T

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z − 3/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn

n5/2
. (28)

The deformed partition function is then recovered as

ln Z̃ = (d/dz)−1Ñ

= V

λ3
T

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z − 5/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn

n7/2
. (29)

Expanding fugacity as z = z0 + z1
λ3

T

ṽ
+ z2( λ3

T

ṽ
)2 + · · · , denot-

ing by ṽ = Ñ
V

the deformed specific volume, and remembering
that zi = zi(T ), i = 0,1, . . . , after substituting the resulting
expansion into (28) we obtain the relation

λ3
T

ṽ
=

∞∑
n=0

Rn(T ; ϕ,χ,ρ)

(
λ3

T

ṽ

)n

, (30)

where the coefficients at the same powers of λ3
T

ṽ
on the left-

and right-hand sides should be

R0 ≡
∞∑

n=1

{ϕ(n) + β−1[nχ (n) ln z0 − 3/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn
0

n5/2
= 0, (31)

R1 ≡ z1

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z0 − 1/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn−1
0

n3/2
= 1, (32)

R2 ≡
(

z2

z1
− 1

2

z1

z0

)
P1 + 1

2

z2
1

z0

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z0

+ 1/2χ (n) + nχ ′(n)] + g(β)ρ(n)} zn−1
0

n1/2
= 0, (33)

etc. Similarly, for the deformed equation of state P̃ V
kBT

= ln Z̃,

using (29) we find the virial λ3
T /ṽ expansion

P̃

kBT
= 1

λ3
T

Ṽ0(T ; ϕ,χ,ρ) + ṽ−1
∞∑

n=1

Ṽn(T ; ϕ,χ,ρ)

(
λ3

T

ṽ

)n−1

(34)
with virial coefficients

Ṽ0 ≡
∞∑

n=1

{ϕ(n) + β−1[nχ (n) ln z0 − 5/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn
0

n7/2
= 0, (35)

Ṽ1 ≡ z1

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z0 − 3/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn−1
0

n5/2
= 1, (36)

Ṽ2 ≡
(

z2

z1
− 1

2

z1

z0

)
Ṽ1 + 1

2

z2
1

z0

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z0

− 1/2χ (n) + nχ ′(n)] + g(β)ρ(n)} zn−1
0

n3/2
, (37)

etc. The equalities in (35) and (36) are imposed in order that
the virial expansion (34) reproduces the corresponding limit
of the classical ideal gas. One of the solutions of (31) and (35)
is z0 = 0. Let us dwell on this case. The deformed equation
of state P̃ = P̃ (λ3

T /ṽ) [see (34)] can be written in the implicit
parametric form [see (28) and (29)]

λ3
T

ṽ
=

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z − 3/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn

n5/2
, (38)

P̃

kBT
= 1

λ3
T

∞∑
n=1

{ϕ(n) + β−1[nχ (n) ln z − 5/2χ (n) + nχ ′(n)]

+ g(β)ρ(n)} zn

n7/2
. (39)

The value z = z0 = 0 corresponds to λ3
T /ṽ|z=0 = 0 as z ln z →

0 at z → 0 in (38). Consider the first derivative of (39) by λ3
T /ṽ,

namely,

∂(P̃ /kBT )

∂
(
λ3

T

/
ṽ
) = ∂(P̃ /kBT )/∂z

∂
(
λ3

T

/
ṽ
)/

∂z
= 1

λ3
T

∑∞
n=1

{
ϕ(n) + β−1

[(
n ln z − 3

2

)
χ (n) + nχ ′(n)

]+ g(β)ρ(n)
}
(zn/n5/2)∑∞

n=1

{
ϕ(n) + β−1

[(
n ln z − 1

2

)
χ (n) + nχ ′(n)

]+ g(β)ρ(n)
}
(zn/n3/2)

−→
z→0

1

λ3
T

ϕ(1) + β−1
[
χ (1)

(
ln z − 3

2

)+ χ ′(1)
]+ g(β)ρ(1)

ϕ(1) + β−1
[
χ (1)

(
ln z − 1

2

)+ χ ′(1)
]+ g(β)ρ(1)

−→
z→0

1

λ3
T

.
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For the second derivative we obtain

∂2(P̃ /kBT )

∂
(
λ3

T

/
ṽ
)2 =

(
∂2(P̃ /kBT )

∂z2

∂
(
λ3

T

/
ṽ
)

∂z
− ∂(P̃ /kBT )

∂z

∂2
(
λ3

T

/
ṽ
)

∂z2

)/[
∂
(
λ3

T

/
ṽ
)/

∂z
]3

= λ−3
T {ϕ(1) + β−1[χ (1)(ln z − 1/2) + χ ′(1)] + g(β)ρ(1)}−3{β−2χ2(1)z−1 − 2−3/2β−2χ (2)χ (1) ln2 z

+ 2−5/2β−1[−ϕ(2)χ (1) + 5/2β−1χ (2)χ (1) − g(β)χ (1)ρ(2) − 2ϕ(1)χ (2) − 2g(β)χ (2)ρ(1) − 2β−1χ (1)χ ′(2)

− 2β−1χ ′(1)χ (2)] ln z − 2−5/2[ϕ(2)ϕ(1) − 5/2β−1ϕ(2)χ (1) + g(β)ϕ(2)ρ(1) + 5/2β−1ϕ(1)χ (2)

+ g(β)ϕ(1)ρ(2) − 17/4β−2χ (1)χ (2) + 5/2β−1g(β)χ (2)ρ(1) − 5/2β−1g(β)χ (1)ρ(2) + g2(β)ρ(1)ρ(2)

+β−1ϕ(2)χ ′(1) + 2β−1ϕ(1)χ ′(2) + 2β−2χ ′(1)χ ′(2) + 5/2β−2χ (2)χ ′(1) − 4β−2χ ′(2)χ (1)

+ 2β−1g(β)χ ′(2)ρ(1) + β−1g(β)χ ′(1)ρ(2)]}. (40)

As it is seen from this last expression, for the second deformed virial coefficient Ṽ2 = 1
2λ3

T
∂2(P̃ /kBT )
∂(λ3

T /ṽ)2 to be finite at z → z0 = 0

we have to require χ (1) = 0. Then

Ṽ2 = −2β−1χ (2) ln z + ϕ(2) + β−1
[

5
2χ (2) + 2χ ′(2)

]+ g(β)ρ(2)

27/2[ϕ(1) + β−1χ ′(1) + g(β)ρ(1)]2
.

Likewise, the requirement of finiteness leads to χ (2) = 0 and
thus to

Ṽ2 = − 1

27/2

ϕ(2) + 2β−1χ ′(2) + g(β)ρ(2)

[ϕ(1) + β−1χ ′(1) + g(β)ρ(1)]2
. (41)

The obtained general formula involves dependence on the
choice of deformation [through the values ϕ(k), χ ′(k),
and ρ(k), k=1,2, of the structure functions ϕ, χ , and ρ

from (16)].
In some situations it may be more convenient to deal with

virial z expansions. Say, for the total number of particles we
have

N (z,V,T ) = V

λ3
T

[
z + 2

(
1

25/2
− 2

a

λT

)
z2 + · · ·

]

� zD̃z

{
V

λ3
T

(
z + 1

25/2
z2 + · · ·

)}
. (42)

Using this last expression we can compare the result of the
microscopic treatment with the action of the deformation. On
the right-hand side of (42) we have exactly the right-hand side
of (28). Taking there χ (n) = 0, n = 1,2, . . . (as the simplest
variant to exclude singularity at z → z0 = 0), and comparing
the first two terms with the corresponding ones on the left-hand
side of (42) we arrive at the relations

ϕ(1) + g(β)ρ(1) = 1, (43)

ϕ(2) + g(β)ρ(2) = 2(1 − 27/2a/λT ). (44)

From these we find

g(β) = 29/2(a/λT0 − a/λT )ρ−1(2),

ϕ(1) = 1, ρ(1) = 0, (45)

where T0 is defined from ϕ(2) = 2(1 − 27/2a/λT0 ).
The first example of the respective deformed derivative is[

z
d

dz

]
q

+ (λT0/λT − 1)(q − 1)

(
z

d

dz
− 1

)
, (46)

where

q = 1 − 29/2a/λT0 . (47)

Note that the form of the latter is very natural: It shows that the
extent (magnitude) 1 − q of deformation is just proportional
to the scattering length a divided by λT0 .

A more general case is the (μ̃,q)-deformed one, for which

zD̃z = ϕμ̃,q

(
z

∂

∂z

)
+ (λT0/λT − 1

)
(q − 1)

(
z

d

dz
− 1

)

− 2

∑
n e

−2βT ′
0
εint
n − e−2βT εint

n

1 −∑n e
−2βT ′

0
εint
n

μ̃

(
z

d

dz
− 1

)
, (48)

q = 1 − 29/2a/λT0 , μ̃ = 1 −
∑

n

e
−2βT ′

0
εint
n . (49)

The comparison of Eqs. (47) and (49) shows the difference
between the two situations. In the former, only the interaction
is effectively taken into account, while in the latter, more
general, case both factors, the interaction and compositeness,
are involved.

We remark that besides the modified deformed derivative
(16), its further extensions may be considered, e.g.,

zD̃z ≡ ϕ

(
z

∂

∂z

)
+ χ

(
z

∂

∂z

)
h

(
∂

∂β

)
+ g(β)ρ

(
z

∂

∂z

)
+ · · · .

(50)
For the commutator [h(∂/∂β),f (z∂/∂z)] we obtain[

h

(
∂

∂β

)
,f

(
z

∂

∂z

)]
=

∞∑
k=1

β−k

k!
Qk

(
z

∂

∂z

)
h(k)

(
∂

∂β

)
, (51)

where Qk(x) ≡ (−1)kx−k(x2 d
dx

)kf (x). So, since the ambigu-
ity in the position of h( ∂

∂β
) is still present, the terms with higher

derivatives h(i)( ∂
∂β

) may enter the ellipsis in (50).

IV. CONCLUSION

In the analysis of the second virial coefficient of the
nonideal Bose gas from the viewpoint of the role of important
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factors of nonideality such as the interaction of particles and
their compositeness, we have found an explicit expression
for V2 − V

(0)
2 given through the scattering length a and the

effective radius r0 of the interaction. The latter result, when
compared to the virial coefficient (14) of the deformed Bose
gas, has led us to one of our main formulas (15). Though
the dependence of the deformation parameter on a and r0 is
rather expected, the T dependence encountered is somewhat
of a surprise. With the goal of finding a reasonable explanation
and to justify the appearance of the T dependence in q, we
developed the appropriate extension of the very starting point
of the procedure to deform the thermodynamics. The main step
consists in adopting the modified derivative (16) or its more
general version (50) involving additional structure functions.
In a similar way, when we deal with compositeness and derive
the relation (26) for μ̃ = μ̃(εint

n ,�μν
α ,T ), the appearance of

the temperature dependence in the effective description can be
described by the use of Eq. (16) as well, however with different
structure functions involved. Besides the above-considered
extension of the deformation, the possibility remains to obtain
another consistent deformation of a Bose gas with temperature-
dependent deformed virial coefficients.

As a further direction of research let us point out the unified
microscopic treatment of the second virial coefficient when
both factors of the compositeness and interaction are present
simultaneously. Note that the corresponding dependence
V2 = V2(a,r0,ε

int
n , . . . ,T ) may be different from that obtained

above and thus leads to some other structure functions of
deformation.
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APPENDIX: EXAMPLES OF THE
INTERACTION POTENTIAL

Here we present a number of examples of the interaction
potentials and respective phase shifts or scattering length or
effective radius through which the second virial coefficient in
(4) or (6) is expressed.

1. Hard-sphere interaction potential

The hard-sphere interaction potential is given by

U (r) =
{+∞, r < D

0, r > D.
(A1)

Direct calculation using (4) yields (see, e.g., [27])

V2 − V
(0)

2 =
⎧⎨
⎩

2 D
λT

+ 10π2

3

(
D
λT

)5 + · · · , l = 0,2 (Bose case)

6π
(

D
λT

)3 − 18π2
(

D
λT

)5 + · · · , l = 1 (Fermi case).
(A2)

2. Constant repulsive potential

The constant repulsive potential is defined by

U (r) =
{
U0 > 0, r < R

0, r > R.
(A3)

The respective l = 0 phase shift and scattering length are then
given as (for this and further examples see, e.g., [29])

δ0 = kR

(
tanh K0R

K0R
− 1

)
,

a = R

(
1 − tanh K0R

K0R

)
, (A4)

where K2
0 = 2mU0

�2 and r0 = 0 [see also Eq. (8)]. The difference

V2 − V
(0)

2 can be calculated using (6) as in the previous case
(this concerns also the rest of the examples).

3. Square-well potential

The square-well potential has the definition

U (r) =
{−U0 < 0, r < R

0, r > R.
(A5)

The scattering length and effective radius are equal to

a = −R

(
tan K0R

K0R
− 1

)
,

r0 = R

(
1 − 1

K2
0 Ra

− R2

3a2

)
, (A6)

with K0 defined as in the previous example.

4. Anomalous scattering potential

In this case

2m

�2
U (r) =

⎧⎪⎨
⎪⎩

−K2
1 , 0 � r < r1

+K2
0 , r1 � r � R

0, R � r.

(A7)

For the l = 0 phase shift we have

δ0 = −kR

+ arctan

{
kR

κR

tanh κ(R − r1) + κr1(tan Kr1/Kr1)

1 + κr1(tan Kr1/Kr1)tanh κ(R − r1)

}
,

(A8)

where κ2 = K2
0 − k2 and K2 = K2

1 + k2.
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5. Scattering resonances

The corresponding potential is

U (r) = �
2

2m




R
δ(r − R). (A9)

The phase shift δ0 is given as

tan(kR + δ0) = tan kR

1 + 
(tan kR/kR)
. (A10)

6. Modified Pöschl-Teller potential

The potential is

U (r) = −�
2α2

2m

λ(λ − 1)

cosh2 αr
. (A11)

The respective phase shift δ0 reads

δ0 = arctan
2k̃

λ
− arctan

(
cot

πλ

2
th πk̃

)

+
∞∑

n=1

{
arctan

2k̃

λ + n
− arctan

2k̃

n

}
, k̃ = k

2α
. (A12)

7. Inverse power repulsive potential

The inverse power repulsive potential

U (r) = �
2

2m

g2

r2
0

( r0

r

)n

, (A13)

for which the scattering length and the wave function of the
lowest state (through which the effective radius is expressed)
are respectively given as

a = r0
�(1 − 1/2η)

�(1 + 1/2η)

(
g

2η

)1/η

, η = n − 2

2
, (A14)

χ0 = C
√

r/r0K1/2η

(
g

η
(r/r0)−η

)
, (A15)

where Kν(z) is the modified Hankel function.

8. First Born approximation

Finally, let us present the expression for the lth phase shift
in the first Born approximation

δl � −2mk

�2

∫ ∞

0
U (r)[jl(kr)]2r2dr, (A16)

where jl is the spherical Bessel function. However, its
applicability is quite restricted and the respective validity
conditions reduce to the ones on U (r) of the first Born
approximation.
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