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Detection of weak signals in memory thermal baths
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The nonlinear relaxation time and the statistics of the first passage time distribution in connection with the
quasideterministic approach are used to detect weak signals in the decay process of the unstable state of a
Brownian particle embedded in memory thermal baths. The study is performed in the overdamped approximation
of a generalized Langevin equation characterized by an exponential decay in the friction memory kernel. A
detection criterion for each time scale is studied: The first one is referred to as the receiver output, which is given
as a function of the nonlinear relaxation time, and the second one is related to the statistics of the first passage
time distribution.

DOI: 10.1103/PhysRevE.90.052146 PACS number(s): 05.40.−a

I. INTRODUCTION

Since its introduction by Benzi et al. in 1981, stochastic
resonance (SR) has been recognized as a paradigm for noise-
induced effects in driven nonlinear dynamic systems. This phe-
nomenon has been widely studied, from both the experimental
and the theoretical points of view, in a variety of systems in
fields as diverse as physics, chemistry, biology, and medicine
[1–14]. For any of these systems operating in noisy environ-
ments and subject to a periodic modulating signal—so weak
as to be normally undetectable—the mechanism of SR appears
when both the weak signal and noise enter in resonance,
increasing the detectability of the weak signal and the trans-
mission efficiency of information. Hence, SR is a phenomenon
capable of detecting and transmitting efficiently information
embedded in weak signals stemming from nonlinear systems
due to the presence of random noise. Practically all of the above
mentioned phenomena are essentially described in terms of the
one-dimensional Brownian motion in a potential field within
the high damping (diffusive) regime, thus admitting a descrip-
tion in terms of the Fokker-Planck, master, or Langevin-type
equations. The phenomenon of SR has also been generalized
to the Lévy flights [15,16] and recently observed in systems
characterized by a multiplicative noise with long jumps in the
context of generalized Langevin equation [17].

Alternative to SR, there exists another physical mechanism
capable of detecting weak signals in the study of relaxation of
nonequilibrium phenomena: It consists in the amplification
of a weak external signal by means of the decay of an
unstable state driven by stochastic fluctuations. To the best
of the authors knowledge, the study of the detection of weak
signals in the decay of unstable states was initiated in 1989
by Vemuri and Roy [18], who proposed that weak optical
signals can be detected via the transient dynamics of a laser,
much in the same way as the superregenerative detection in
radar receivers. The physical idea behind the detection of
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weak signals in the decay of unstable states is that weak
signals are greatly amplified when used to trigger the decay
process. The criterion proposed by Vemuri and Roy is referred
to as receiver output, which has been shown to be sensitive
to the presence of the weak signal. The authors’ idea was
immediately corroborated experimentally by measurements
of the statistics of the initiation time of an argon laser under
the influence of an attenuated He-Ne laser which produces
the injected signal [19]. Alternatively to those works, another
theoretical criterion to detect weak optical signals in the
switch-on process of a laser was given in [20] in terms of the
statistics of the first passage time distribution. The criterion
allows us to find a critical value of certain parameter denoted
as β for which the reduction of the mean first passage time
(MFPT) is greater or of the same order that the maximum
variance. Furthermore, the study given by Vemuri and Roy
was connected with the nonlinear relaxation times (NLRTs)
to detect also weak optical signals in the switch-on process
of a laser [21]. Recently, an alternative physical mechanism
to detect weak electrical signals was given. It deals with
the decay process of a charged Brownian particle under the
action of constant crossed electric and magnetic fields [22].
An interesting and surprising aspect of this physical system
is that its dynamic behavior is very similar to that followed
by the aforementioned laser system. The mechanism for the
detection process in this case is as follows. The particle is
initially located on the unstable state of the potential. Once
the decay process is initiated due to the internal fluctuations,
a weak external signal is then injected, thus accelerating the
decay process. The process suggests also the amplification of
the weak signal in order to be detected. The amplitude of the
external signal is less or of the same order than the noise, which
is also small. After the initial cooperative effect between both
the noise and the weak signal the dynamics is dominated by
the potential force.

It is worth commenting that the study of relaxation pro-
cesses of nonequilibrium phenomena through the MFPT has
been formulated in the context of Langevin, Fokker-Planck, or
master equations to Markovian as well as non-Markovian pro-
cesses [20–46]. In particular, the study of the decay process of
the unstable states have been focused on different descriptions,
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namely, the evolution of the statistical moments of the relevant
variables in terms of Fokker-Planck equations [25,28], the
inverse probability current also in the context of Fokker-Planck
equation [29,30], or the study of time evolution of averages in
dynamical systems [31,33,34]. The works in [29–34] provide
a good description in the study of such transient stochastic
dynamics. However, the one which has proved to be the most
appropriate in the study of the detection of weak signals in the
decay of an unstable state is the so-called quasideterministic
(QD) approach [20–24], due to the following reasons. It has
been used appropriately in connection with the MFPT and
NLRT in the time characterization of such a decay process
in the physical situation commented above. It gives a precise
physical picture of the mechanism responsible for the decay of
the unstable state. The physical mechanism is twofold: Small
fluctuations change the initial condition in the surrounding
of the unstable state, and afterwards the deterministic motion
drives the system out of this state. This approach provides a
simple way to deal with arbitrary nonlinear unstable potentials
without using a Fokker-Planck formulation. On the other hand,
all the works related to the detection of weak signals in
the laser system and in the decay of Brownian particles are
basically formulated using the standard Langevin equation.
That is, the noise term in both cases is considered as the usual
thermal Gaussian white noise, a property of the Markovian
processes. Furthermore, in the case of the Brownian charged
particle the friction coefficient was considered as a constant
quantity. As far as we know, the study of the detection process
of weak signals in the decay of unstable states in thermal
baths with memory has not yet been reported elsewhere, and
this is precisely our goal in the present contribution. We
consider a Brownian particle in a one-dimensional bistable
potential embedded in a memory thermal bath characterized
by a generalized Langevin equation (GLE) with an exponential
decay in the friction memory kernel (Ornstein-Uhlenbeck
process). It is well known that, for all non-Markovian processes
characterized by a GLE with arbitrary friction memory kernel,
the fluctuation-dissipation relation holds [47,48], which allows
the system to reach the equilibrium state. The detection
process is studied in terms of the two aforementioned time
scales, which characterize the decay process of the unstable
state in the overdamped approximation of the GLE. In first
place we characterize the decay process of the unstable
state through the NLRT in connection with the QD ap-
proach. Then the receiver output is calculated as a function
of the time scale. To apply the second criterion in terms of
the MFPT the decay of the unstable state is characterized
through the statistics of this passage time using also the QD
approach.

Our work is structured as follows. In Sec. II we present the
GLE for the Brownian particle in a one-dimensional bistable
potential profile. Section III focuses on the calculation of
the NLRT for arbitrary nonlinear potential profile using the
QD approach. The receiver output is then calculated as a
function of the NLRT for the bistable potential. In Sec. IV
we calculate the statistics of the passage time distribution and
apply the corresponding criterion for the detection process
of weak signals. The conclusions of our work are given
in Sec. V and two appendixes complement the explicit
calculations.

II. GENERALIZED LANGEVIN EQUATION

We consider a Brownian particle of mass m embedded in a
thermal bath of temperature T and located on the unstable
state of a bistable potential V (x) = −(a0/2)x2 + (b0/4)x4,
with a0,b0 > 0. The GLE for the Brownian particle embedded
in a non-Markovian thermal bath and in the presence of a
constant external force Fe can be written as

ẋ = v, (1)

mẍ = a0x − b0x
3 + Fe −

∫ t

0
γ (t−t ′)ẋ(t ′)dt ′ + f (t), (2)

where γ (t − t ′) is the friction memory kernel, f (t) the
Gaussian fluctuating force with zero mean value 〈f (t)〉 = 0
that also satisfies the fluctuation-dissipation relation with
a correlation function 〈f (t)f (t ′)〉 = k

B
T γ (t − t ′), where k

B

is the Boltzmann constant and T the temperature of the
thermal bath. For non-Markovian dynamics the friction mem-
ory kernel is usually modeled as γ (t − t ′) = (γ0/τ )e−|t−t ′ |/τ ,
and so 〈f (t)f (t ′)〉 = (γ0kB

T /τ )e−|t−t ′ |/τ , which satisfies the
Ornstein-Uhlenbeck process, τ being the noise correlation
time (memory time of the non-Markovian dynamics) and
γ0 a constant (friction coefficient). For τ = 0 the Ornstein-
Uhlenbeck process reduces to one with a Gaussian white noise.
By introducing the variable [42]

η(t) = −γ0

τ

∫ t

0
e− (t−t ′)

τ v(t ′)dt ′ + f (t), (3)

with

f (t) =
√

λ

τ

∫ t

0
e− (t−t ′ )

τ ξ (t ′)dt ′, (4)

and λ = γ0kB
T , the above GLE transforms into a set of three

coupled stochastic differential equations,

ẋ = v, (5)

mẍ = a0x − b0x
3 + Fe + η(t), (6)

η̇ = − 1

τ
η − γ0

τ
ẋ +

√
λ

τ
ξ (t), (7)

where ξ (t) is a Gaussian white noise with zero mean value
and a correlation function 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′). Here we
are interested in the characterization of the decay process out
of the unstable state in the overdamped approximation (high
friction limiting case) of Eqs. (6) and (7), which in this case
reduce to(

1 − a0

γ0
τ

)
ẋ + 3

b0

γ0
τx2ẋ = a0

γ0
x − b0

γ0
x3 + Fe

γ0
+ λ

γ0
ξ (t).

(8)
We also consider the dynamics for which the condition (1 −
a0
γ0

τ ) � 3 b0
γ0

τx2 holds. In this case

ẋ = āx − b̄x3 + F̄e + λ̄ξ (t), (9)

where ā = a/(1 − aτ ), b̄ = b/(1 − aτ ), F̄e = Fe/γ0(1 − aτ ),
and λ̄ = √

λ/γ0(1 − aτ ), with a = a0/γ0 and b = b0/γ0. It
should be noticed that a0/b0 = ā/b̄. Equation (9) represents
an equivalent Markovian dynamics for the stochastic process,
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in the diffusive regime, described by Eq. (2) and reduces to a
Markovian one by taking τ = 0.

III. NLRT AND QD APPROACH

In this section we use the NLRT criterion and focus on the
dynamic relaxation of the average 〈x2(t)〉, where 〈· · · 〉 stands
for the average taken on both the noise realizations ξ (t) and
the initial conditions, which are considered distributed with a
specific probability distribution function. In the absence of the
external force Fe, the quantity 〈x2(t)〉 evolves from an initial
value 〈x2(0)〉 to its corresponding steady-state value 〈x2〉st .
The NLRT is defined as [21,22,27,28]

T =
∫ ∞

0

〈x2(t)〉 − 〈x2〉st
〈x2(0)〉 − 〈x2〉st dt. (10)

This time scale, along with the QD approach, makes it possible
to characterize not only the complete dynamical relaxation
of Eq. (8) but also the relaxation processes associated with
arbitrary nonlinear unstable potentials, the bistable potential
being just a particular case. We introduce a more general
definition of a deterministic nonlinear unstable state in terms
of the scalar variable r ≡ x2. The deterministic dynamics for
this variable then reads as

dr

dt
= f(r), f(r) = r(rst − r)

C0 + rg(r)
, (11)

where C0 = rst /2ā is the steady-state value and g(r) > 0 is a
polynomial. The function f(r) has two roots: One is at r = 0,
which corresponds to the unstable state such that f′(r)|r=0 > 0,
and the other root is at r = rst , corresponding to the stable
state and thus f

′(r)|r=rst
< 0. The deterministic evolution of

Eq. (8) without the external force must be compatible with
Eq. (11) for a particular expression of g(r). The connection
between the NLRT and the QD approach can be achieved
by assuming that r(0) ≡ x2

0 = h2 is a random variable which
plays the role of an effective initial condition responsible
for the decay of the unstable state towards its steady state
characterized by the value r(∞) ≡ x2

st = rst . In Fig. 1 we plot
the temporal evolution of the mean value 〈x2(t)〉 from its initial
unstable state to its corresponding steady state; once this latter
is attained, the process stops at Tc and can thus be considered
a quench time which will be later employed to compute the
RO. This process is presented for various τ values and it can
be readily appreciated that, as τ increases, the critical value Tc

diminishes.
After substituting Eq. (11) into Eq. (10) and assuming

distributed initial conditions such that 〈r(0)〉 = 0, we get, in
terms of r,

T =
∫ ∞

0

〈r(t)〉 − 〈r〉st
〈r(0)〉 − 〈r〉st dt = 1

rst

〈 ∫ rst

h2

rst − r

f(r)
dr

〉

= 1

2ā

〈
ln

(
rst

h2

)〉
+ 1

rst

〈 ∫ rst

h2
g(r)dr

〉
. (12)

The logarithmic term is the universal and relevant contribution
arising from the time characterization of the decay process
in the linear regime of the nonlinear potential, wherein the
stochastic fluctuations are dominant. The last term comes from
the nonlinear contributions of the potential away from the
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FIG. 1. (Color online) Time evolution for the mean value 〈x2(t)〉
for different values of the correlation time τ in the presence (solid
symbols) and absence (open symbols) of the external force field: τ =
0 (circles), τ = 3 (triangles), and τ = 7 (squares). Vertical dashed
lines indicate the approximate critical values Tc = 250 and 420
corresponding to instances τ = 7 with and without field, respectively
(see text for more details). Simulations were performed over 104

initial conditions, with a0 = 0.5, b0 = 0.0625, γ0 = 20, λ = 10−5,
and, for the corresponding point set, Fe = 10−2.

initial unstable state. As stated by the QD approach, in the
nonlinear regime the dynamical evolution of the particle is
practically deterministic and the stochastic fluctuations are
irrelevant; thus, h → 0. Under these circumstances, the NLRT
becomes

T = 1

2ā

〈
ln

(
rst

h2

)〉
+ C

NL
, (13)

where C
NL

is a constant which is calculated through

C
NL

= lim
h→0

1

rst

∫ rst

h2
g(r)dr, (14)

which accounts for nonlinear contributions and is a model-
dependent quantity. The time scale given by Eq. (13) character-
izes the complete dynamical relaxation of arbitrary nonlinear
unstable potentials in terms of the relaxing quantity 〈r〉. The
first term of Eq. (13) can be explicitly calculated using the QD
approach, which relies on the linear approximation of Eq. (9)
and reads as

ẋ = āx + F̄e + λ̄ξ (t). (15)

The solution of this linear equation, assuming the initial
condition x(0) = 0, is x(t) = h(t)eãt , where

h(t) =
∫ t

0
e−ās[F̄e + λ̄ξ (s)]ds. (16)

According to the QD approach [20–23], the process h(t) plays
the role of an effective initial condition and, as time increases,
it becomes a Gaussian random variable (GRV). This is indeed
the case since, for small values of both the noise intensity
and F̄e,

lim
t→∞

dh(t)

dt
= lim

t→∞ e−āt [F̄e + λ̄ξ (t)] → 0. (17)
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Thus, at large times h(∞) = h, where h is a GRV. In this case
the process x(t) becomes a QD one such that

x2(t) = h2e2āt . (18)

In this linear approximation Eq. (18) can also be written, taking
into account the whole process, as x2(t) = h2e2āt θ (ti − t) +
x2

st θ (t − ti), where θ (t) is the step function. After substitution
of this expression into Eq. (13) and a time integration
we obtain, in the linear approximation, that the NLRT
is

T
L

= 1

2ā

〈
ln

(
rst

h2

)〉
− C

L
, (19)

and C
L

= (1/2ā)[1 − 〈h2〉/rst ]. This time scale can be calcu-
lated from the marginal probability density P (h), which is the
Gaussian distribution function given by

P (h) = 1√
2πσ 2

e−(h−〈h〉)2/2σ 2
, (20)

with σ 2 ≡ 〈h2〉 − 〈h〉2 being the variance. From Eq. (16) it
can be shown that

〈h〉 =
∫ ∞

0
e−ãt F̃edt = Fe

a0
, (21)

〈h2〉 = 〈h〉2 + λ̄2
∫ ∞

0

∫ ∞

0
e−ā(t+t ′)〈ξ (t)ξ (t ′)〉dtdt ′

= 〈h〉2 + λ/γ 2
0

a(1 − aτ )
, (22)

and therefore σ 2 = D/a(1 − aτ ) = De/a, where De =
D/(1 − aτ ), D = λ/γ 2

0 = k
B
T /γ0 being Einstein’s diffusion

coefficient and De an effective diffusion coefficient. To
calculate the constant C

L
we need to evaluate the mean

value 〈h2〉. It is clear that 〈h2〉 = σ 2 + F 2
e /a2

0 , which can
be neglected for small noise and small amplitude of the
external force. Hence, the constant C

L
can be approximated by

C
L

= 1/2ā. As shown in Eq. (A7) of Appendix A, the linear
time scale (19) can be written as

T
L

= T 0
L

+ 1

2ā
ψ(1/2) − 1

2ā
I, (23)

where

I = e−β2
ψ(1/2) + e−β2

√
π

∞∑
n=1

ψ

(
n + 1

2

)


(
n + 1

2

)
(2β)2n

(2n)!
,

(24)

with β2 = 〈h〉2/2σ 2 = (Fe/γ0)2/2aDe and

T 0
L

= 1

2ā

{
ln

(
ax2

st

2De

)
− ψ(1/2) − 1

}
(25)

being the linear approximation of the NLRT in the absence
of the external force (β = 0) and ψ(1/2) = −2 − ln 2 the
digamma function [49]. On the other hand, from Eqs. (13),
(19), and (23) we can conclude that the NLRT for arbitrary
nonlinear unstable potentials in the one-dimensional case reads
as

Te = T0 + 1

2ā
ψ(1/2) − 1

2ā
I, (26)

where

T0 = 1

2ā

{
ln

(
ax2

st

2De

)
− ψ(1/2)

}
+ C

NL
(27)

is the NLRT in the absence of the external force. In the
particular case of a bistable potential, the deterministic
equation associated with Eq. (11) without the external force
can be written as dr/dt = 2ār(rst − r)/rst , with rst ≡ x2

st =
a/b = a0/b0. It is clear that g(r) = 0, and thus the NLRT in
this case is the same as Eq. (26) and T0 is the same as (27)
with C

NL
= 0.

Receiver-output

Following the methodology of Ref. [22] (where the def-
initions of Ae and A0 are made) we can also calculate
the receiver-output ratio R = Ae/A0 through the relaxation
process of the bistable potential (C

NL
= 0) in the presence of

a constant force field. According to Fig. 1, the receiver-output
can be expressed in terms of the NLRT given by Eqs. (26)
and (27). This relation can be achieved if the NLRT (12) is
approximated by

T =
∫ ∞

0

〈r(t)〉 − 〈r〉st
〈r(0)〉 − 〈r〉st dt 


∫ Tc

0

〈r(t)〉 − 〈r〉st
〈r(0)〉 − 〈r〉st dt, (28)

where Tc is determined from the behavior of 〈x2(t)〉, as was
done in Fig. (1). This approximation makes sense if Tc � KT0,
where T0 is the same as Eq. (27) and K = 1.5. If we make
〈r(0)〉 = 0, it can be shown from Fig. 1 that the RO can be
written as

R = Te − Tc

T0 − Tc

= 1 + T0 − Te

Tc − T0
. (29)

Thus, the RO is only a function of Te and T0 and, according
to Eqs. (26) and (27), it is finally given by the following
expression:

R = 1 + I − ψ(1/2)

2ā(Tc − T0)
. (30)

This theoretical result is plotted in Fig. 2 as a function of the
external force Fe for representative τ values and compared with
numerical simulation results, with an excellent agreement in all
depicted instances. In the Markovian case (τ = 0) the detection
process is initiated at an approximate critical value of Fe ≈
1.28 × 10−6, less than the considered non-Markovian cases
Fe ≈ 1.67 × 10−6 and Fe ≈ 1.95 × 10−6 corresponding to the
values τ = 3.0 and τ = 7.0, respectively. This result indicates
that, as the memory time of the non-Markovian dynamics
increases, a corresponding growth in the critical value of the
parameter Fe is obtained.

IV. STATISTICS OF THE PASSAGE TIME DISTRIBUTION
AND QD APPROACH

The other criterion for the detection of weak signals we
mentioned in the Introduction of this work is related to the
statistics of the first passage time distribution. As shown below,
for the application of this criterion it is sufficient to know
the time characterization of the unstable state in the linear
approximation of the bistable potential profile. However, the
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FIG. 2. (Color online) Receiver output given by Eq. (30) as a
function of the external force Fe for τ = 0 (solid line), τ = 3 (dashed
line), and τ = 7 (dot-dashed line) compared to numerical simulation
results (circles, triangles, and diamonds for that same set of τ values).
Same a0, b0, γ0, and λ values as in Fig. 1.

criterion also works if the time characterization takes into
account nonlinear potential profiles. Herein we study both
ensuing time scales. We begin with the linear approximation
to Eq. (9) for which the x variable is restricted in the interval
−R � x � R, R being a prescribed reference value chosen
proportional to the steady value of the bistable potential in
the absence of the external force; hence, R = C0xst , with 0 <

C0 < 1 and xst = √
a/b = √

a0/b0. In this case, the Langevin
dynamics is the same as Eq. (15) and, by applying the QD
approach, it is shown that the random passage time required
by the Brownian particle to reach the reference value R2 is
then

t = 1

2ā
ln

(
R2

h2

)
. (31)

The statistics of this passage time distribution is given by
both the MFPT, denoted by 〈t〉, and its variance, defined
by 〈(�t)2〉 ≡ 〈t2〉 − 〈t〉2. Both quantities can be calculated
from the moment generating function (MGF) G(2āν) =
〈e−2āνt 〉 = 〈(R2/h2)−ν〉. This function and the statistics of
the first passage time distribution are explicitly calcu-
lated in Appendix B, showing that the MFPT is given
by

〈t〉
L

= 〈t〉0
L

− e−β2

ā

∞∑
n=1

(β)2n

n!

n∑
k=1

1

2k − 1
, (32)

where the parameter β is the same as defined before and

〈t〉0
L

= 1

2ā

{
ln

(
aR2

2De

)
− ψ(1/2)

}
(33)

is the MFPT in the absence of the force field (β = 0). The
variance is then

〈(�t)2〉 = 1

4ā2
ψ ′(1/2) + 1

ā2
e−β2

∞∑
n=1

β2n

n!

(
n∑

k=1

1

2k − 1

)2

− 1

ā2
e−β2

∞∑
n=1

β2n

n!

n∑
k=1

1

(2k − 1)2

− 1

ā2

[
e−β2

∞∑
n=1

β2n

n!

n∑
k=1

1

2k − 1

]2

, (34)

where ψ ′(1/2) = π2/2 = 4.934. To deal with nonlinear con-
tributions, we use again Eq. (11) and its connection with the
QD approach to show that the nonlinear passage time reads as

t =
∫ R2

h2

dr

f(r)
=

∫ R2

h2

C0 + rg(r)

r(rst − r)
. (35)

Its mean value can be written as 〈t〉
NL

= (1/2ā)〈ln(R2/h2)〉 +
K

NL
, where K

NL
takes into account the nonlinear contribution

of the potential profile such that

K
NL

= lim
h→0

[
1

2ā

∫ R2

h2

dr

rst − r
+

∫ R2

h2

g(r)

rst − r

]
. (36)

For the bistable potential g(r) = 0 and K
NL

=
(1/2ā) ln[1/(1 − M2)], with M2 = R2/x2

st . The MFPT
including the nonlinear contributions can be shown to be

〈t〉
NL

= 〈t〉0
NL

− e−β2

ā

∞∑
n=1

β2n

n!

n∑
k=1

1

2k − 1
, (37)

where now

〈t〉0
NL

= 1

2ā

{
ln

[
ax2

stM
2

2(1 − M2)De

]
− ψ(1/2)

}
(38)

is the nonlinear MFPT in the absence of the external force.
Notice that M measures how close the particle is from its the
stationary-state value, notwithstanding that it never reaches
that value, contrary to what happens with the NLRT given by
Eq. (26). The variance remains the same as Eq. (34). The result
given in Eq. (38) without the external field can be compared
with those obtained in other works in the Markovian case. This
case means that De = D in Eq. (38) and then it has exactly the
same algebraic structure than that calculated by Haake et al.
[26] and also the one given by Eq. (16) in [29]. On the other
hand, in way similar to that studied in [29], when the absorbing
barrier is removed, the point x can cross the point x = ±R any
number of times and in any direction; in this case a study of
the terms in the inverse probability current [29,30] must be
performed. This study leads to an unexpected effect called
noise delayed decay, wherewith the stochastic fluctuations
can considerably increase the decay time of unstable and
metastable states. A fact which can be considered elsewhere
in the context of the GLE. The method in [29] has been
developed to calculate the NLRT for any fluctuation intensity
and arbitrary potential profile, but without the external force
field. In the particular case of small fluctuations, the NLRT
coincides with the MFPT. The NLRT defined in [29] has
been calculated for the symmetric bistable potential and
other potential profiles. For the symmetric bistable potential
it has been shown that, for small noise intensity such that
q � �(xm), with q being the noise intensity, xm = ±√

a/b,
and �(xm) = −a2/4b as the depth of the potential profile, the
NLRT given by Eq. (15) in [29] coincides with the MFPT
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calculated by Haake et al. [26] and given in Eq. (16) of the
same Ref. [29], as expected. In conclusion, when we use the
QD approach, which is valid for small noise intensity, in
the time characterization of the decay of the unstable state,
this relaxation process is bounded by fixed and absorbing
barriers, so that the inverse probability current becomes
negligible.

Weak signal detection

The statistics of the first passage time given by Eqs. (34)
and (37) can now be used to establish the other criterion for
the detection process of weak signals. It makes it possible to
find a critical value of β parameter (recall that the β parameter
is proportional to the external force to be measured) for which
the reduction of the MFPT is greater than or of the same order
as the maximum variance, that is [20,21],

[〈t〉βc
− 〈t〉β=0]2 � 〈(�t)2

β=0〉. (39)

The value for βc found through this criterion will tell us
the weak external forces which can be measured, and, in
fact, they must satisfy the condition Fec < Fe. It should be
noticed that the difference on the left hand side leads to
the same result for linear (32) or nonlinear (37) MFPT. The
variance for β = 0 is simply 〈(�t)2

β=0〉 = ψ ′(1/2)/4ā2 and
therefore the critical value βc can be calculated from the
condition (

e−β2
c

∞∑
n=1

β2n
c

n!

n∑
k=1

1

2k − 1

)2

� ψ ′(1/2)

4
. (40)

It should be said that Eq. (40) can also be written in terms of
the first derivative of the hypergeometric Kummer function;
then the condition to determine the critical value for β reads{

1F
(1,0,0)
1

[
0,1/2, − β2

c

]}2 = ψ ′(1/2)

4
. (41)

Its numerical solution, up to the Mathematica tool precision,
gives βc = 1.36 543 and the external force to be measured can

be obtained as F 2
ec = 2aλβ2

c

(1−aτ ) . Now it is clear that the external
signal, which can be measured by means of this criterion,
depends on the noise correlation time: The bigger time τ drives
to a bigger external critical force Fec. It should be recalled that
the factor (1 − aτ ) > 0 must be maintained; otherwise, the
treatment is not valid.

V. CONCLUDING REMARKS

By assuming an exponential decay in the friction memory
kernel and extending the number of stochastic variables, the
GLE (1) and (2) are transformed into an equivalent Markovian
process given by Eqs. (5)–(7). By assuming also the restriction
1 − aτ � 3bτx2 for the dynamics, these equations reduce
in the overdamped approximation to the nonlinear Langevin
Eq. (9), wherein all the Markovian parameters a, b, Fe/γ0,
and λ/γ 2

0 have been rescaled by the non-Markovian factor
1/(1 − aτ ). The decay of the unstable state of a Brownian
particle in this case has been achieved through two time scales,
namely, the NLRT and MFPT, along with the QD approach.
Both have been expressed for arbitrary nonlinear unstable

potential, for which a bistable one is just a particular case.
A criterion for each time scale is used when the decay process
is taken place in the bistable potential profile. The RO as a
function of the non-Markovian NLRT is given in Eq. (30) and
it has been compared with the numerical simulation results
for different τ values. As shown in Fig. 2, the bigger the
correlation time τ drives to an increase in the critical value
for the parameter β, and an easier way for the external force
Fe to be measured. Similar behavior is obtained when we
applied the statistics of the MFPT distribution. We emphasize
that the criterion established in Eq. (40) gives the same result
for linear (32) or nonlinear (37) MFPT, whereas the RO is
strictly given as a function of the NLRT. An interesting point
we would like to make in these Concluding Remarks regards
the study of the detection of weak oscillatory signals in the
decay process of the unstable states of Brownian particles.
This problem has already been considered in [24] to detect
weak oscillatory optical signals in the transient dynamics of
a class-A laser, in which the resonance effect is known to
exist. The study for a Brownian particle in the presence of
crossed electric and magnetic fields will be considered in future
works.

Finally, we note that the study of the decay process in terms
of the inverse probability current [29,30], the time evolution of
averages in dynamical systems driven by noise [31,32], can,
in principle, be extended to the case of Brownian particles
embedded in memory heat baths using the GLE with an
exponential decay in the friction memory kernel.

APPENDIX A: NLRT IN THE LINEAR APPROXIMATION

The NLRT given by Eq. (19) of Sec. III, along with C
L

=
1/2ā, can be written as

T
L

= 1

2ā
[ln(α2rst ) − 〈ln(α2h2)〉 − 1], (A1)

where α2 = 1/2σ 2. To evaluate the mean value I ≡
〈ln(α2h2)〉, we use Eq. (20) and define the variable z = αh

as well as the parameter β = α〈h〉 in such a way that the mean
value can be written as I = I1 + I2, where

I1 = 1√
2πσ 2

∫ 0

−∞
ln(α2h2)e−α2(h−〈h〉)2

dh

= e−β2

√
π

∫ +∞

0
ln z2e−z2−2βzdz, (A2)

I2 = 1√
2πσ 2

∫ +∞

0
ln(α2h2)e−α2(h−〈h〉)2

dh

= e−β2

√
π

∫ +∞

0
ln z2e−z2+2βzdz. (A3)

For each integral it can be shown that [49]

I1 = e−β2

2
√

π

∞∑
k=0



(
k + 1

2

)
ψ

(
k + 1

2

)
(−2β)k

k!
, (A4)

I2 = e−β2

2
√

π

∞∑
k=0



(
k + 1

2

)
ψ

(
k + 1

2

)
(2β)k

k!
. (A5)
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After some algebra it can be shown that

I = e−β2
ψ(1/2)

+ e−β2

√
π

∞∑
n=1

ψ

(
n + 1

2

)


(
n+1

2

)
(2β)2n

(2n)!
, (A6)

and therefore Eq. (A1) can be written as

T
L

= 1

2ā

{
ln

(
x2

st

2σ 2

)
− ψ(1/2) − 1

}
+ 1

2ā
ψ(1/2) − 1

2ā
I, (A7)

where ψ(1/2) = −γ − 2 ln 2 = −1.936, γ = 0.577 being the
Euler constant.

APPENDIX B: STATISTICS OF THE FIRST PASSAGE
TIME DISTRIBUTION

The statistics of the passage time distribution can be
calculated from its first and second moments, defined by
〈2āt〉 = −dG(2āν)/dν|ν=0 and 〈2āt2〉 = d2G(2āν)/dν2|ν=0,
respectively, which are, in turn, defined in terms of the
MGF G(2āν) = 〈(R2/h2)−ν〉, which, in this particular case,
is expressed as

G(2āν) = R−2ν

√
2πσ 2

∫ ∞

−∞
h2νe−(h−〈h〉)2/2σ 2

dh. (B1)

To evaluate this integral we use the same change of
variable as above, that is, z = αh, and define G(2̃aν) =
[(α2R2)−ν/

√
π ][J1 + J2], where

J1 = e−β2
∫ ∞

0
z2νe−z2−2βzdz

= e−β2

2

∞∑
n=0

(−1)n(2β)n

n!


(
ν + n + 1

2

)
, (B2)

J2 = e−β2
∫ ∞

0
z2νe−z2+2βzdz

= e−β2

2

∞∑
n=0

(2β)n

n!


(
ν + n + 1

2

)
. (B3)

After some algebra it can be shown that

G(2āν) = G0(2āν)e−β2
∞∑

n=0

(ν + n + 1/2)

(ν + 1/2)

(2β)2n

(2n)!
, (B4)

G0(2āν) = (α2R2)−ν(ν + 1/2)/
√

π being the MGF in
the absence of the external force and β2 = α2〈h〉2 =
(Fe/γ0)2/2aDe. After some straightforward algebra it is not
difficult to show that the MFPT reads as

〈2āt〉 = ln

(
aR2

2De

)
− ψ(1/2)

− 2e−β2
∞∑

n=1

(β)2n

n!

n∑
k=1

1

2k − 1
. (B5)

The variance of the passage time is 〈(2ā�t)2〉 = 〈(2āt)2〉 −
〈2āt〉2. Again, after some algebra and using another identity
for all natural numbers (n = 1,2,3, . . .) ψ ′(n + 1/2) =
ψ ′(1/2) − 4

∑n
k=1 1/(2k − 1)2, with ψ ′(1/2) = π2/2 =

4.934, it can be shown that

〈(2ā�t)2〉 = ψ ′(1/2) + 4e−β2
∞∑

n=1

β2n

n!

(
n∑

k=1

1

2k − 1

)2

− 4e−β2
∞∑

n=1

β2n

n!

n∑
k=1

1

(2k − 1)2

− 4

[
e−β2

∞∑
n=1

β2n

n!

n∑
k=1

1

2k − 1

]2

. (B6)
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