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Re-examining the self-contained quantum refrigerator in the strong-coupling regime
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We revisit the self-contained quantum refrigerator in the strong-internal-coupling regime by employing the
quantum optical master equation. It is shown that strong internal coupling reduces the cooling ability of the
refrigerator. In contrast to the weak-coupling case, strong internal coupling could lead to quite different and even
converse thermodynamic behaviors.
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I. INTRODUCTION

Thermodynamics is one of the four pillars of theoretical
physics and provides us with an essential way to study the
thermodynamic process such as the heat engine, which can
be dated back to Carnot [1]. When we consider the physical
nature down to the quantum level, quantum thermodynamics,
which is the intersection of thermodynamics and quantum me-
chanics, provides a new approach to investigating microscopic
physics. Quantum thermodynamics has attracted more and
more interest such as in Refs. [2–4] and references therein.
In particular, the quantum heat engine has been extensively
studied [5–12]. It was shown that the quantum heat engine
is remarkably similar to the classical engines which obey
macroscopic dynamics, and Carnot efficiency has been a
well-established limit for some quantum heat engines [13–17].
A lot of work has been done especially related to quantum
analogs of Carnot engines [18–22], while some other cycles
such as Otto cycles [23–26] and Brownian motions [27] have
also been covered with considerable progress. All the above
provide microscopic alternatives for testing the fundamental
laws of thermodynamics and deepening our understanding of
quantum thermodynamics.

Recently, the concept of the self-contained quantum refrig-
erator has been raised for questions about the fundamental
limitation on the size of thermal machines and their relevant
topics [28–32]. It is shown that “self-contained” means that
(i) all degrees of freedom of the refrigerator are taken into
account; (ii) no external source of work is allowed; and (iii) in
particular, time-dependent Hamiltonians or prescribed unitary
transformations are not allowed. However, the key of their
model is that they required the interaction (the coupling)
among their three qubits to be weak enough, but the coupling
and the decay rate are of the same order. In other words,
the self-contained refrigerator works in the regime of weak
internal coupling. Since the three-qubit interaction is the
vital driving mechanism for cooling, could a strong internal
interaction (coupling) provide more effective power?

In this paper, we revisit the same model proposed in
Ref. [28] in the strong-internal-coupling regime. We employ
the quantum optical master equation (QOME) to study the
steady-state heat currents and the cooling efficiency. As the
main result, we find that strong internal coupling has a negative
effect on the cooling ability. The thermodynamic properties
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of such a model could also be different from, and even
opposite to, those in the weak-internal-coupling regime. In
addition, it is shown that our results will be consistent with
those in Ref. [28] (weak internal coupling) if we reduce the
internal coupling strength, although our master equation, in
principle, is only suitable for strong internal coupling. This
implies that the validity of the application of the quantum
master equation deserves further consideration. This paper
is organized as follows. In Sec. II, we briefly introduce the
interacting mechanism of the refrigerator and derive the master
equation. In Sec. III, we present our main results and do some
necessary analysis. Finally, Sec. IV presents the conclusions.

II. THE MODEL AND THE MASTER EQUATION

The refrigerator we consider here is made up of three atoms,
denoted, respectively, R, C, and H . The free Hamiltonian of
the three-atom system is given by

H0 = HR + HC + HH, (1)

where Hμ = ωμ

2 σ z
μ, ωμ, μ = R, C, and H , is the transition

frequency of atom μ, and σ z = |e〉〈e| − |g〉〈g|, with |e〉 and
|g〉 denoting the excited state and the ground state, respectively.
In particular, in order to guarantee the resonant interaction, it
is required that ωR = ωH + ωC . Suppose that the interaction
of the three atoms is described by the Hamiltonian HI ,

HI = g(σ+
H σ−

R σ+
C + σ−

H σ+
R σ−

C ), (2)

with g the coupling constant, σ+ = |e〉〈g|, and σ− = |g〉〈e|;
then the Hamiltonian of the closed system reads

HS = H0 + HI . (3)

Here we set the Planck constant and Boltzmann’s constant to
be unit, i.e., � = kB = 1. In the framework of self-contained
refrigerator [28,30], all the atoms should interact with a
reservoir, respectively, instead of a real working source. So
we let atom H be connected with a hot reservoir, with the
temperature denoted by TH ; atom R be in contact with a
“room” reservoir of temperature TR; and atom C interact with
a cold reservoir of temperature TC . Thus It is naturally implied
that TH > TR > TC . Here we assume that all the reservoirs
consist of infinite harmonic oscillators with closely spaced
frequencies νμk and annihilation operators bμk . Note that the
subscript μ labels the atom which the corresponding reservoir
interacts with. Thus one can write the total Hamiltonian of the
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open system as

H = HS +
∑

μ

(Hμ0 + Hμ), (4)

where Hμ0 = ∑
k

νμkb
†
μkbμk is the free Hamiltonian of the μth

reservoir, and

Hμ =
∑

k

fμk(b†μkσ
−
μ + bμkσ

+
μ ), (5)

with fμk denoting the coupling constant, describes the in-
teraction between the μth atom and its thermal reservoir.
From Eq. (4), i.e., the total Hamiltonian, in principle, one can
obtain all the dynamics of the refrigerator and the reservoirs.
To do so, we have to derive a master equation that governs
the evolution of the system of interests. Next, we follow the
standard procedure [33,34] to find such a master equation.

Since the refrigerator (excluding the reservoirs) is a com-
posite quantum system, the first step is to diagonalize the
refrigerator Hamiltonian HS . It is shown that the diagonalized
HS can be written as HS = ∑

εi |λi〉〈λi |, where the eigenvalues
are given by

[ε1,ε2, . . . ,ε8] = [ωR,ωH ,g,−ωC,ωC,−g,−ωH ,−ωR],
(6)

and |λi〉 denote the corresponding eigenvectors, with the con-
crete form omitted here. In HS representation, the Hamiltonian
H can be rewritten as

H =
8∑

i=1

εi |λi〉〈λi | +
∑
μ,j

(Hμ0 + H ′
μj ), (7)

where

H ′
μj =

∑
k

fμk(b†μkVμj (wμj ) + bμkV
†
μj (wμj )), (8)

with Vμj (wμj )) denoting the eigenoperators of the refrigerator
Hamiltonian HS such that [HS,Vμj (wμj )] = −wμjVμj (wμj )
and wμj standing for the eigenfrequency. In particular, Vμj (νj )
can be explicitly given as

V11 = |λ5〉〈λ1| + |λ8〉〈λ4|, w11 = ωH , (9)

V12 = 1√
2

(|λ3〉〈λ2| + |λ7〉〈λ6|), w12 = ωH − g, (10)

V13 = 1√
2

(|λ7〉〈λ3| − |λ6〉〈λ2|), w13 = ωH + g, (11)

V21 = 1√
2

(|λ3〉〈λ1| − |λ8〉〈λ6|), w21 = ωR − g, (12)

V22 = |λ4〉〈λ2| + |λ7〉〈λ5|, w22 = ωR, (13)

V23 = 1√
2

(|λ8〉〈λ3| + |λ6〉〈λ1|), w23 = ωR + g, (14)

V31 = 1√
2

(|λ3〉〈λ5| + |λ4〉〈λ6|), w31 = ωC − g, (15)

V32 = 1√
2

(|λ4〉〈λ3| − |λ6〉〈λ5|), w32 = ωC + g, (16)

V33 = 1√
2

(|λ2〉〈λ1| + |λ8〉〈λ7|), w33 = ωC, (17)

where wμj > 0 is implied; otherwise, Vμj = V
†
μj . Suppose

that the system and their reservoirs are initially separable and
the initial states of the reservoirs are the thermal equilibrium
states. In particular, we assume that the coupling between
the system and the reservoirs is weak enough. Based on the
Born-Markovian approximations, one can derive the master
equation as

ρ̇ = LC[ρ] + LR[ρ] + LH [ρ], (18)

where the dissipators read

Lμ[ρ] =
∑

j

Jμ(−wμj )[2Vμj (wμj )ρV
†
μj (wμj )

−V
†
μj (wμj )Vμjρ(wμj ) − ρV

†
μj (wμj )Vμj (wμj )]

+ Jμ(wμj )[2V
†
μj (wμj )ρVμj (wμj )

−Vμj (wμj )V †
μj (wμj )ρ − ρVμj (wμj )V †

μj (wμj )].

(19)

The spectral density in Eq. (19) is given by

Jμ(wμj ) = γμ(wμj )n̄(wμj ), (20)

Jμ(−wμj ) = γμ(wμj )[n̄(wμj ) + 1], (21)

where n̄(wμj ) is the average photon number, which depends
on the temperature of the reservoir; i.e.,

n̄(wμj ) = 1

e
wμj

Tμ − 1
. (22)

Here we suppose that γμ(wμj ) = γμ is frequency independent,
for simplicity. In addition, we employed the rotating-wave
approximation, which implies γμ � |ωμ − ων ± 2g|,g. This
condition requires that the master equation is only suitable
for large g. However, so far there has not been an explicit
constraint on the degree to which g is larger than γμ

[34,35].

III. RESULTS AND DISCUSSION

In order to study the thermodynamical behavior of the
stationary state, we will find the stationary-state solution ρS

of the master equation given by Eq. (18). To do so, we let ρS

have the vanishing derivative on t ; i.e.,

ρ̇S = 0. (23)

Thus we arrive at the equations

M|ρ〉 = 0, (24)

ρS
ij = 0, i �= j, (25)

where |ρ〉 = [ρS
11,ρ

S
22,ρ

S
33,ρ

S
44,ρ

S
55,ρ

S
66,ρ

S
77,ρ

S
88]T is the vector

made up of the diagonal entries of the stationary density matrix
ρS , and

M =
3∑

μ=1

Mμ. (26)
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In order to give the explicit expression for Mμ, we first define
some new quantities mij , i,j = 1,2,3, as

m11 = 2J11 ⊗ (1+ ⊗ 1+ + 1− ⊗ 1−), (27)

m12 = 1 ⊗ C23(J12 ⊗ 1−)C†
23, (28)

m13 = J13 ⊗ (1+ ⊗ 1− + 1− ⊗ 1+), (29)

m21 = (1+ ⊗ J21 ⊗ 1+ + 1− ⊗ J21 ⊗ 1−), (30)

m22 = 2(1+ ⊗ J22 ⊗ 1− + 1− ⊗ J22 ⊗ 1+), (31)

m23 = C13(J23 ⊗ 1 ⊗ 1+)C†
13, (32)

m31 = C21(1− ⊗ J31 ⊗ 1)C†
21, (33)

m32 = (1+ ⊗ 1− + 1− ⊗ 1+) ⊗ J32, (34)

m33 = 2(1+ ⊗ 1+ + 1− ⊗ 1−) ⊗ J33, (35)

where

1 =
(

1 0
0 1

)
, 1± = 1 ± σz

2
, (36)

and Cjk , j,k = 1,2,3, denotes the control-not gate, with j

standing for the control qubit and k representing the target
qubit. For example,

C12 = (1 ⊕ σx) ⊗ 1. (37)

In addition, Jμj in Eqs. (27)–(35) is a matrix with its entries
corresponding to the spectral density. It can be explicitly
represented by

Jμj =
(−Jμ(−wμj ) Jμ(wμj )

Jμ(−wμj ) −Jμ(wμj )

)
. (38)

Based on Eqs. (27)–(35), Mμ can be explicitly written as

Mμ =
∑

j

mμj . (39)

Mμ apparently includes three terms which are related to three
atoms, respectively. Using the definition of the heat current
[34,36], we can find that the heat current subject to the μth
reservoir reads

Q̇μ = Tr{HSLμ[ρS]} = 〈ε|Mμ|ρ〉. (40)

It is obvious that Q̇μ corresponding to Mμ is uniquely
determined by the steady state |ρ〉. It is fortunate that Q̇μ can
be explicitly calculated, because Eq. (23) can be analytically
solved. However, the concrete form of |ρ〉 is so tedious that
we cannot write it here. Therefore, in the subsequent part, we
have to give a numerical analysis based on the analytical |ρ〉
(even though it is not given here).

First, we would like to consider the weak-coupling case,
i.e., g ∼ γμ . Based on Eq. (40), we plot the heat currents in
Fig. 1. Here we suppose that ωH = 3 and ωC = 1, so ωR = 4.
In addition, we let the room temperature be 21 K and the
temperature of the cold reservoir be 18 K. (Of course, if the
other parameters are chosen, one will get similar results.)
When the temperature of the hot reservoir is low, the heat
will flow into the cold reservoir. So the cold atom C is
heated. However, with the temperature of the hot reservoir
increasing, one can find that all the heat currents will become
0 simultaneously when TH = Tv = ωH

ωR
TR

− ωC
TC

� 22.24 K (as long
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FIG. 1. Heat currents Q̇μ[J/s] versus TH [K] in the weak-
coupling regime. Solid line, Q̇C ; dashed line, Q̇H ; and dash-dotted
line, Q̇R . Here g = 0.001ωH . In particular, we set γ = 0.001ωH

throughout the paper.

as the coupling g and the decay rate γ are small enough.). This
virtual temperature Tv is just consistent with Ref. [32], which
is closely related to Ref. [28]. In addition, one can also see that
the heat currents increase with an increase in TH . That is, the
thermodynamic machine works as a refrigerator. An obvious
feature is that the heat currents subject to the hot reservoir
and the cold reservoir have the same direction (sign) and the
sign is determined by the virtual temperature Tv . However,
if ωR

TR
= ωC

TC
, one will find that no matter how large TH is,

Q̇C is always less than 0. In addition, we also consider the
efficiency of the quantum refrigerator, which is illustrated in
Fig. 2. Here the efficiency η is defined by η = Q̇C

Q̇H
, which

was studied in detail in Ref. [30]. In a simple way, it can
be understood that, by extracting heat (current) Q̇H from the
hot reservoir, we are able to extract heat (current) Q̇C from the
cold reservoir while dumping heat (flow) Q̇R into the reservoir
R. It was also shown that η for the self-contained refrigerator
in Ref. [28] was given by ωC

ωH
. Taking the current parameters

0 200 400 600 800 1000
333.32

333.322

333.324

333.326

333.328

333.33

333.332

333.334

T
H

η

× 10−3

FIG. 2. Efficiency η of the refrigerator versus TH [K] in the
weak-coupling regime. The efficiency changes slightly and it can
be considered to be almost invariant within a good approximation,
which is also supported by Fig. 5.
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FIG. 3. Heat currents Q̇C[J/s] versus TH [K] for different cou-
pling constants. From top to bottom, g = 0.001ωH , g = 0.1ωH ,
g = 0.2ωH , g = 0.25ωH , g = 0.3ωH , and g = 0.35ωH . The straight
line represents zero heat current.

into account, it should be η = 1
3 . From our Fig. 2, at first

glance, the efficiency seems to have a peak somewhere. But
one further finds that, to some acceptable approximation, η

can be considered to be invariant with TH and just equal to 1
3 .

The peak is explained in the next part. All this evidence shows
that in the weak-coupling regime, the treatment with respect
to the QOME shows good consistency with the results given
in Ref. [28]. This could imply that the QOME is not sensitive
to the rotating-wave approximation corresponding to g � γμ

in this case, which could mean that the QOME is valid here.
Now let us turn to our main results, i.e., g � γμ. To determine
the influence of the coupling strength g, we keep ωμ and γμ

invariant and plot the heat currents in Fig. 3 at different values
of g. One will immediately see that a large g directly leads
to the suppression of the heat current Q̇C . Compared with the
case of weak coupling, the high-temperature TH could have a
negative effect on the cooling of the cold atom. It is obvious that
atom C cannot be cooled if the coupling strength g is too high,
which is opposite to the case of the weak-internal-coupling
regime. In particular, given TC , TR , and all the frequencies, one
sees that cooling only happens within some range of TH , which
is also shown in Fig. 4. Thus the direct conclusion is that strong
coupling is not beneficial to cooling from the refrigerator point
of view. In addition, one also finds that the heat currents do not
meet at a single point (temperature), which is quite different
from the weak-coupling case. The heat currents do not change
their direction simultaneously. In particular, the heat current
Q̇C seems not to be directly relevant to the virtual temperature
Tv . The machine becomes a refrigerator only when Q̇C > 0,
where one will find TH � 27.25 K �= 22.24 K = Tv . For a
refrigerator, the efficiency depends on the coupling constant
g. The numerical results are given in Fig. 5. It is shown that
the efficiency will become higher if g decreases. It will arrive
at a constant efficiency (η = Q̇C

Q̇H
= ωC

ωH
= 1

3 ) when it reaches
the weak-coupling limit. However, the efficiency will change
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FIG. 4. Heat currents versus TH [J/s] in the strong-coupling
regime. Here g = 0.3ωH and γ = 0.001ωH . The dotted line rep-
resents the zero heat current and the other lines denote the same heat
currents as in Fig. 1. Q̇C is first pushed in the positive direction and
then suppressed back to the negative direction.

with TH if it is still in the strong-coupling regime. The peak of
the efficiency mainly results from the suppression of cooling
induced by strong coupling. In particular, the suppression
becomes strong for large TH . When the reservoir H is hot
enough, it can be heated instead of cooled, which can be
obviously found for g = 0.3ωH . When the internal coupling
becomes weak, the suppression will be weakened. If it is
weak enough, the suppression will not be so apparent that
the peak can be neglected to some good approximation, which
is illustrated in Fig. 2. When ωR

TR
= ωC

TC
, one also finds that, no

matter what the coupling constant is, it is impossible to make
a refrigerator. However, from a different angle, we find that in

0 100 200 300 400 500
−0.1

0

0.1

0.2

0.3

0.4

T
H

η

FIG. 5. Efficiency η versus TH [K] with different coupling con-
stants. The lower straight line corresponds to zero efficiency. From
top to bottom, the lines correspond to g = 0.001ωH , g = 0.1ωH , g =
0.15ωH , g = 0.2ωH , g = 0.25ωH , and g = 0.3ωH . In particular, η =
const. within acceptable approximations for g = 0.001ωH , which is
consistent with Fig. 2.
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FIG. 6. Heat currents Q̇C[J/s] versus TH [K] for different cou-
pling constants. Here we let TC = 10 K and TR = 40 K in order to
satisfy ωC

TC
= ωR

TR
= 1

10 . The upper straight line represents zero heat
current. From top to bottom, the lines correspond to g = 0.001ωH ,
g = 0.1ωH , g = 0.2ωH , g = 0.3ωH , g = 0.4ωH , and g = 0.5ωH ,
respectively.

the weak-coupling limit, Q̇C is reduced if we increase TH . On
the contrary, when the coupling is strong, Q̇C becomes large
with increasing TH . This is shown in Fig. 6.

IV. CONCLUSIONS

In summary, we have revisited the self-contained refrig-
erator in the strong-internal-coupling regime by employing
the QOME. We find that strong internal coupling reduces the
cooling ability. In particular, in this regime, the considered
machine demonstrates quite different (and even converse)
thermodynamic behaviors compared with that in Ref. [28].
In addition, we find that the QOME provides results consistent
with Ref. [28] in the weak-internal-coupling regime, even
though the rotating-wave approximation, in principle, does
not allow weak internal coupling. This could shed new light
on the validity of the master equation.
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