
PHYSICAL REVIEW E 90, 052135 (2014)

Stochastic resonance in bistable spin-crossover compounds with light-induced transitions

Iurii Gudyma* and Artur Maksymov
Department of General Physics, Chernivtsi National University, 58012 Chernivtsi, Ukraine

Mihai Dimian
Department of Electrical Engineering and Computer Science, Stefan cel Mare University, 720229 Suceava, Romania

and Department of Electrical and Computer Engineering, Howard University, Washington, DC 20059, USA
(Received 22 August 2014; published 17 November 2014)

This article presents a theoretical prediction of stochastic resonance in spin-crossover materials. The
analysis of stochastic resonance phenomenon in a spin-crossover system is performed in the framework of
the phenomenological kinetic model with light-induced transition described by dynamical potential in terms of
the Lyapunov functions. By using numerical simulation of stochastic trajectories with white- and colored-noise
action, the evaluation of stochastic resonance is carried out by signal-to-noise ratio of the system output. The
corresponding signal-to-noise ratio features a two-peak behavior which is related to the asymmetric shape of the
dynamic potential. For the case of the Ornstein-Uhlenbeck process, the variations of resonance condition with
respect to different autocorrelation times are additionally studied.
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I. INTRODUCTION

Stochastic resonance (SR) is a cooperative phenomenon
arising from the interplay between deterministic and random
dynamics in a nonlinear system wherein the coherent response
to a deterministic monochromatic signal can be enhanced
by the presence of an optimal amount of noise. Since its
inception in 1981 [1], SR [2–6] has been found in various
systems including sensory neurons, mammalian neuronal
tissue, chemical solutions, lasers, Schmitt triggers, SQUIDs,
tunnel diodes, communications devices, etc. One of the main
characteristics used to identify SR phenomena is the signal-
to-noise ratio (SNR). The study of the SR phenomenon by
SNR, in the framework of linear-response theory based on
the rate equation approach, was developed by McNamara and
Wiesenfeld and presented in [7]. SNR is a commonly used
measure of the information content from the response of a
system. The phenomenon of stochastic resonance has attracted
considerable interest in the past decade due, among other as-
pects, to its potential technological applications for optimizing
the output SNR in nonlinear dynamical systems. The function
of SNR has a broad maximum for noise strengths chosen such
that the escape time from one potential well into the other of
the unmodulated system is comparable to the period of the
harmonic force. This nonmonotonic behavior of the SNR is
commonly referred to as SR. The common features to most of
the systems showing SR phenomenon are bistability and two
input signals—deterministic monochromatic periodic signal
and random forcing. Although SR was studied analytically
in some limit cases, the basic tool for its investigation is the
numerical simulation of stochastic differential equations.

SR has also been identified in various magnetic systems
[8–14]. In this paper we show that SR phenomenon also
happens in spin-crossover compounds, an example of bistable
magnetic molecular materials. Fe(II)-based spin-crossover
(SC) compounds are prototypic bistable magnetic molecular
systems. They possess two stable states with different total
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spin number S: the so-called high spin (HS) paramagnetic
state with S = 2 and the diamagnetic low spin (LS) one with
S = 0. The system can be switched from one state to another
by means of temperature, pressure, magnetic field, or light.
The occurrence of photoinduced spin transition is related
to the light-induced excited spin state trapping (LIESST)
effect [15]. The LIESST effect is an intra-atomic phenomenon
widely used for molecular magnets based on Fe(II) HS sites
[16]. The photoexcitation dynamics [17,18] and characteristic
sigmoidal relaxation have been reported for highly cooperative
systems and can be well described by a macroscopic evolution
equation. The major practical interest of this area of research
is related to the potential use of optical switching in data
storage and display devices. Physical properties of these
compounds undergo abrupt structural, optical, and magnetic
changes. Generally, the behavior of SC materials is caused by
magnetic transitions with spin multiplicity change in certain
compounds having the central transition metal ion (d4–d7

electron configuration) located in octahedral ligand.
The paper is organized as follows. In the next section we fo-

cus on the bistable properties of the spin-crossover complexes
induced by light irradiation. We first discuss the macroscopic
phenomenological model for light-induced transitions and its
application for SR phenomena. In Sec. III we analyze the SR
in spin-crossover compounds under white noise. The study of
SR in spin-crossover compounds driven by colored noise and
deterministic monochromatic forcing is considered in Sec. IV.
Finally, the conclusions are drawn in Sec. V.

II. MODEL

For this study, we chose the macroscopic phenomenological
model of photoinduced transitions described in terms of
competing photoexcitation and relaxation processes. The
dynamics of the spin-crossover system may be described by
the changes of fraction of HS molecules nH according to the
following evolution equation written in terms of transition rates
[19–21]:

dnH

dt
= β(1 − nH ) − nH exp(−αnH ) ≡ f (nH ). (1)
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Here, the first term β(1 − nH ) describes the photoinduced
transition from LS to HS system states with transition
probability per time unit β = I0σ/k∞

HL, where I0 is intensity
of light irradiation, σ is absorption cross section of optically
active element, and k∞

HL is the high temperature asymptotic of
the relaxation rates at the end of the process (T → ∞). The
second term gives the relaxation dynamics of a system without
light and is characterized by self-acceleration factor α, which
is determined by intermolecular interactions and is dependent
on temperature.

For a more comprehensive study of spin-crossover system
dynamics with additive noise action it is convenient to use the
dynamic potential, in terms of Lyapunov functions [22–24]:

dnH

dt
= −dU (nH )

dnH

+ ξ (t), (2)

where U (nH ) = − ∫
f (nH )dnH is the unperturbed potential

of the spin-crossover system. The nonequilibrium potential
U (nH ) is similar to the free energy in equilibrium phenomena
and characterizes the behavior of the processes in the system
[22]. Here ξ (t) is the additive stochastic term that describes
the Gaussian white-noise action with the intensity ε and obeys
the following statistical characteristics:

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = 2ε2δ(t − t ′). (3)

In the system with additive noise action, the transition
between its states is possible, but it is a very rare event unless
the values of noise intensity are comparable or larger than
the height of the potential barrier. When an external weak
periodic modulation is introduced in the system, the transition
between the system states may occur with some regularity for
the values of noise intensity lower than the potential barrier
height, i.e., the stochastic resonance takes place [2,5]. We
assume that the external periodic modulation can be introduced
in the experiment in various ways, such as the irradiation of
the sample by additional modulated source of light or the
modulation of the applied pressure. In this case the system
dynamics may be described in the following way:

dnH

dt
= −dU (nH )

dnH

+ A cos

(
2π

T
t + φ0

)
+ ξ (t), (4)

where A is the amplitude of periodic signal, T is its period,
and φ0 is the initial phase. The arbitrary phase φ0 can be
chosen to be zero. The model (4) with conditions (3) describes
the overdamped Brownian motion in the bistable asymmetric
potential subject to a small periodic forcing.

The evolution of the system with periodic forcing potential
driven by additive noise may be described by the linear
Fokker-Planck equation for the probability density, which, in
the Stratonovich interpretation, is the following [25,26]:

∂P (nH ,t)

∂t
= L̂P (nH ,t) − ∂

∂nH

A cos

(
2π

T
t

)
P (nH ,t), (5)

with the Fokker-Planck operator

L̂ = − ∂

∂nH

( − U ′
nH

(nH ) · ) + ε2 ∂2

∂n2
H

· (6)

Here, dots indicate where to put the objects upon which
the operator acts, while U ′

nH
represents the first derivative

of dynamic potential on nH . The value of P (nH ,t)dt is the
probability to find the spin-crossover system described by
the kinetic equation (4) in the position of phase space nH

at time t . Since the period T is relatively large, there is enough
time for the system to reach the local equilibrium during this
period, so the adiabatic limit [7] is valid. Consequently, a
quasistate regime is established and the probability distribution
of spin-crossover system states is given by the quasisteady
solution of Fokker-Planck equation (5). The corresponding
quasisteady solution is found to be

Pst(nH ,t) = N exp

[
−−U (nH ) + A cos

(
2π
T

t
)
nH

ε2

]
, (7)

where N is the normalization constant. If the control pa-
rameters of the system are chosen in such a way that leads
to a bistable behavior, the probability distribution gives two
peaks that coincide with the minima of the dynamic potential
corresponding to the LS and HS state.

The analysis of stochastic resonance phenomenon was
carried out by analyzing the signal-to-noise ratio (SNR), that
was found as the ratio between the first Fourier component
of the output power spectral density at the angular frequency
ω = 2π/T and the level of the background noise at the same
frequency. The standard SNR definition reads as follows:

SNR =
∫ ω+�ω

ω−�ω
S(z)dz∫ ω+�ω

ω−�ω
SN (z)dz

. (8)

Here, S is the spectral power of the resulting signal in
the neighborhood of the frequency ω, whereas SN is the
spectral power of the noise level at the same frequency.
Qualitatively, power spectral density S(ω) may be described
as the superposition of a background power spectral density
SN (ω) and a structure of δ spikes centered at ω = (2n + 1) 2π

T

with n = 0, ± 1, ± 2, . . . . The studying of SR phenomenon
by SNR lies on SNR increase for a periodically modulated
system with random noise, and relative to that, observed with
no externally injected noise. Therefore, the SNR measures how
much the system output contains the input signal frequency ω.
The ways to define SNR for the systems with different dynamic
potential are considered in [27].

For our system, the SNR was computed from the stochastic
experiments by finding the average Fourier transform over the
ensemble of simulated stochastic trajectories. This scheme of
calculating SNR is closer to the experimental ones [28–31].

III. SR IN SPIN-CROSSOVER COMPOUNDS
DRIVEN BY WHITE NOISE

As previously shown, the evolution of the spin-crossover
system may be described by the dynamic potential in terms of
Lyapunov function [22–24,32]. The various kinetic properties
of LS and HS species of spin-crossover compounds lead to
the asymmetrization of system potential from which diverse
responses on external perturbation of physical fields are
generated for stable and metastable states [32]. In this context,
the problem of stochastic resonance can reveal very interesting
and important properties for nonlinear spin-crossover systems.
The LIESST long-lived metastable HS states have been
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FIG. 1. Deterministic dynamic potential (a) and its changes due to the periodic forcing signal with the amplitude A = 0.005 (b). Hereinafter
the other parameters of periodic signal are T = 10000 and φ0 = 0.

observed in various Fe(II) spin-crossover systems [33]. The
performed simulations use the parameters that characterize
[Fe(ptz)6](BF4)2 but they can reflect the behavior of a wide
range of Fe(II) spin-crossover systems. Thus a dynamic
potential with the same values of the potential wells is used in

this study, corresponding to the light intensity β = 0.0811 and
the self-acceleration factor α = 5.14. The positions of LS state
(nH = 0.15) and HS state (nH = 0.88) are asymmetric relative
to the unstable point of the dynamic potential (nH = 0.45), as
reflected by Fig. 1(a). Although the depths of potential wells
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FIG. 2. (Color online) Evolution of the system perturbed only by the periodic signal with amplitude A = 0.005 (a), only by noise with
intensity ε = 0.015 (b), and for simultaneous action of periodic signal with amplitude A = 0.005 and noise with intensities ε = 0.006 (c) and
ε = 0.015 (d). The system steady states are at nH = 0.15 for LS configuration and nH = 0.88 for HS configuration (dash lines).

are the same, the dynamic potential cannot be regarded as
completely symmetric, and the asymmetric behavior of the
system is still preserved.

Besides the action of the control field, we add the small
external periodic signal that modulates the system potential.
Depending on the phase of the periodic signal, a system state
may change from stable to metastable, and vice versa, as shown
in the Fig. 1(b). The chosen amplitude of periodic force is
insufficient to overcome the potential barrier defined by the
value of control parameter β = 0.0811 and does not provide
the transitions between the states, i.e., the deterministic system
oscillates around its steady LS state or HS state, depending on
the initial position of the system, with the period T of harmonic
force.

The situation cardinally differs for the system with additive
noise. The nonstationary dynamics of the system with periodic
forcing and noise action is described by Eq. (4). This stochastic
differential equation may be solved numerically by using
Heuns methods [24,34]. The Heuns algorithm is based on the
second-order Runge-Kutta–type method, and integrates the
stochastic equation (4) by the following recursive formula:

nH (t + h) = nH (t) + h

2
[F (nH (t)) + F (y(t))] + ε

√
h

2
u(t),

(9)
y(t) = nH (t) + F (nH (t))h + ε

√
2hu(t).

Here, F (nH ) = f (nH ) + A cos( 2π
T

t) is the force derived
from the bistable potential; h is the integration time step;
u(t) represent the Gaussian distributed random number with
variance one obtained by the Box-Muller algorithm and a
pseudo-random-number generator [35].

The set of numerical solutions of Eq. (9) for each time
step forms the sample stochastic trajectory, which describes
the instantaneous position of the system in phase space.
Figure 2 displays particular trajectories of the system for
initial conditions corresponding to the LS or HS state: for
periodic forcing with amplitude A = 0.005 and zero noise
intensity ε = 0 (a); zero periodic forcing amplitude A = 0
and noise intensity ε = 0.015 (b); for simultaneous actions
of periodic signals with amplitude A = 0.005 and noise
with intensity ε = 0.006 (c) and for simultaneous actions of
periodic signals with amplitude A = 0.005 and noise with
intensity ε = 0.015 (d). In the deterministic (a) and noisy
(b) dynamics with indicated parameters, the oscillations take
place around the minima of the potential U (nH ) representing
the steady states of the system. The simultaneous action of
the periodic signal and the noise leads to transitions be-
tween the states, as shown in Fig. 2(c), and some kind of regular
transition behavior becomes possible even for a subthreshold
periodic signal, as shown in Fig. 2(d). For small noise intensity
the system oscillates around the steady HS state by the period
of deterministic signal up until the favorable conditions for
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FIG. 3. (Color online) SNR versus additive noise intensity for
fixed values of periodic signal amplitude.

transition appear. For unchanged conditions after transition,
the system finally oscillates separately around the LS state
if the noise intensity is sufficiently low, and transition may
occur only as a very rare event. With further increasing of
noise intensity the system becomes able to leave the LS state
and transitions between the states are observed [see Fig. 2(d)].
In this case the system dynamics is partially synchronized
with the periodic signal showing specific behavior for HS
and LS state. As we can see further, the occurrence of such
regular transitions assisted by noise represents the stochastic
resonance phenomenon.

The trajectories starting from the LS and HS state are dif-
ferent due to the potential asymmetry, previously mentioned.
For the stochastic case, the probabilities of population LS and
HS states are unequal, although the depths of potential wells
are the same, because the shape of the potential wells are
different (see Fig. 1). That also generates different passage
times between the two potential wells.

We characterize the SR phenomenon by SNR (8) obtained
from numerical simulations carried out over an ensemble of
300 sample trajectories with 100 000 time steps each. The
resulting SNR of the system was found as an average of SNR
obtained for each trajectory calculated by Eq. (9) with initial
condition nH (0) = 1. Due to the unequal states response to the
external perturbation, the system is sensitive to the choice of
the initial value for numerical simulations [see Figs. 2(a)–2(c)].
However, the system behavior presented in Fig. 2(d) does not
depend on initial conditions. For the sake of presentation, we
show the simulations of system kinetics initialized from the
more sensitive HS potential well. The resulting dependence of
SNR on the noise intensity is presented in Fig. 3 for several
values of the periodic signal amplitude. As we can see from
these plots, the behavior of SNR is quite different from the
one obtained for the classic symmetric double-well potential,
where a single peak in the SNR curve is observed. Due to the
asymmetry of the potential well, this spin-crossover system
features two resonant noise intensities for a specific range of
periodic amplitude. The apparition of a second peak in the
SNR curve has been previously shown in [36] in the case
of a periodically forced system subject to the simultaneous
influence of additive and multiplicative noise. In the mentioned

work, the asymmetrization of the system dynamic potential is
the result of multiplicative noise action. More sophisticated
theory of phenomenon based on noise-induced transition
and SR is known as double stochastic resonance [37]. This
term emphasizes that additive noise causes a resonancelike
behavior in the structure, which in its own turn is induced by
multiplicative noise.

In our case, the two peaks in the SNR curve arise from
different potential barrier height for LS and HS metastable
phases of the dynamic potential and are a consequence of the
system behavior described by Fig. 3 from [32]. The additive
noise influence is similar to the action of temperature in
thermodynamic equilibrium systems and leads to the effective
reducing of the depths of potential wells together with its
barrier height. The slope of the potential well for the HS state
undergoes a more drastic change in comparison to the one
for the LS state. The resonance intensity for the lower noise
value corresponds to the escape from the HS metastable state
as is indicated in Fig. 2(c). Due to a higher potential barrier
of the LS state, the value of this intensity is not enough for a
reverse transition. With further increasing of noise intensity,
the transitions between LS and HS states take place [see
Fig. 2(d)]. Thereby another peak for higher noise intensity is
observed where more favorable conditions for transitions are
realized. Thus there is a window of amplitude values for the
periodic signal where two peaks in the SNR characteristic are
observed. For the periodic amplitude lower than A = 0.0035
and higher than A = 0.0055, only one resonance intensity
appears, but the system dynamics for each case is different.
For low periodic amplitudes, the peak on the SNR curve
corresponding to small noise intensity cannot be observed due
to the fact that its value is merged with the background ones.
For high periodic amplitude, the metastable state is not realized
and, consequently, the behavior of the spin-crossover system
is similar to the one obtained for a monostable overdamped
system [26].

The position of the SNR peaks is also dependent on the
signal amplitude A. This dependence is presented in Fig. 4
for several noise strengths. The SNR shows a maximum as a
function of modulation amplitude of the input periodic signal.

0.005 0. 010 0. 015
0
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1000

1500

SNR

A

FIG. 4. (Color online) SNR versus modulation amplitude of pe-
riodic signal. Here, the white-noise strength is kept constant at
the values ε = 0.01 (black squares), ε = 0.015 (red circles), and
ε = 0.02 (blue triangles).
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With the increasing of the modulation amplitude A to a higher
level, the SNR reaches the saturation. As one can see, the
decrease in noise intensity ε leads to the increase of the SNR
maximum, which is also shifted toward higher modulation
amplitude. In addition, the SNR peak becomes sharper.

IV. SR IN SPIN-CROSSOVER COMPOUNDS
DRIVEN BY COLORED NOISE

For the real spin-crossover compounds, the noise spectrum
may have a large but finite bandwidth, i.e., the noise is
colored. When an additive stochastic term is colored, the
evolution equation of the system becomes intractable unless
some assumptions are made regarding the noise nature. We
consider here the Ornstein-Uhlenbeck (OU) process [38–40],
which can be intuitively interpreted as a Brownian particle
diffusing in a parabolic potential. Now the system dynamics
may be described by the following equation:

dnH

dt
= −dU (nH )

dnH

+ A cos

(
2πt + φ0

T

)
+ η(t), (10)

where the noisy relaxation process η(t) satisfies the stochastic
differential equation:

dη(t)

dt
= − 1

τ
η(t) + ε

τ
ξ (t), (11)

with the autocorrelation time of noise τ representing the degree
of noise coloration. The Ornstein-Uhlenbeck (OU) process
η(t) with constant intensity ε2 has an exponential correlation
function in the following form:

〈η(t)η(t ′)〉 = ε2

τ
exp

(
−|t − t ′|

τ

)
. (12)

The autocorrelation time is also related to the cutoff frequency
characteristic to the Lorentzian power spectrum of OU noise:

Sη(ω) = 2ε2

τ 2ω2 + 1
. (13)

The correlation of white stochastic term ξ , with zero mean,
between times t and t ′ > t is 〈ξ (t)ξ (t ′)〉 = 2δ(t ′ − t). If we
replace the term η(t) in Eq. (11) by its expression (10) one
obtains the following general form of the kinetic equation for
the system dynamics:

τ
dn2

H

dt2
+ γ (nH ,τ )

dnH

dt
− F (nH ) = εξ (t). (14)

This is the equation of the stochastic nonlinear oscillator. For
the system with simultaneous actions of periodic force and
noise, the nonlinear damping function reads

γ (nH ,τ ) = 1 − τ

[
df (nH )

dnH

− 2π

T
A sin

(
2π

T
t

)]
. (15)

By using similar techniques for calculating SNR as in
Sec. III, we found the SNR dependence on the intensity of
the colored noise for the system dynamics described by Eq.
(14). Sample results are shown in Fig. 5 for A = 0.003 at fixed
values of autocorrelation time τ .

The system behavior under the influence on the colored
OU noise features a relatively different SNR dependence on
noise intensity than the one previously obtained for systems
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20000

30000
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n H n H

time stepstime steps

FIG. 5. (Color online) Changes of SNR with the increasing of
the colored-noise intensity for fixed values of the autocorrelation
time τ and modulation amplitude A = 0.003. Here the curve marked
by squares (black online) is for τ = 10, circles (red online) are for
τ = 30, and triangles (blue online) are for τ = 50. The insets show
the sample trajectories for the noise intensity ε = 0.025.

with white noise. For small autocorrelation time, only one
peak in SNR dependence is observed; but with the increase
of τ , a second peak arises. The appearance of a second
peak for small intensities of noise is related to the intrawells
transition of the system that is illustrated in Fig. 2(c). More-
over, the increase of autocorrelation time τ shifts the peaks
of the SNR curve towards larger values of noise intensity
and the SNR rises for all noise values. These increased
values are related to the cutoff of the power spectrum, which
leads to a lower contribution of noise in SNR. According to
Eq. (13), for high autocorrelation time, the larger value of noise
intensity is necessary to observe the SR phenomenon. In the
insets of Fig. 5, we present two sample trajectories calculated
for τ = 10 and τ = 50 corresponding to the noise intensity
ε = 0.025, which is the resonant noise intensity for τ = 10.

For a more comprehensive characterization of SNR be-
havior, we present the dependence of SNR on both ε and
τ in Fig. 6. As it is illustrated in this figure, the increase
of τ generates the shifts of SNR peaks, marked by spheres,
towards higher ε, while a higher modulation amplitude leads
to an increase of the SNR value. If the amplitude of the periodic
signal is sufficiently high, the peak corresponding to intrawells
transition becomes higher than the other one describing the
resonance interwells transitions. This may be explained by the
unequal sensitivity of LS and HS states on the same modulation
signal and noise, which was illustrated in Fig. 2. As one can
see, for the fixed noise intensity and the modulation amplitude,
the system oscillations around the HS steady state are larger
than those around the LS one.

In Fig. 7, we depict the dependence of noise intensity
values ε of SNR peaks on the autocorrelation time of noise
τ for several values of periodic amplitude A. Here, the
curves marked by squares and circles (black online) are
obtained for periodic signal with amplitude A = 0.003, left
and right triangles (red online) are for A = 0.0035, and up and
down triangles (blue online) are for A = 0.004. These curves
show the typical maxima that represent the fingerprint of the
stochastic resonance phenomena. For a large amplitude of the
periodic signal one can see two peaks of SNR. The situation
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FIG. 6. (Color online) Dependence of SNR on ε and τ . Here,
the amplitude of periodic force is A = 0.003 for (a) and A = 0.005
for (b).

is different for a small periodic amplitude, where only one
peak is observed for small τ , but the second peak becomes
apparent for higher autocorrelation times. The increasing of
autocorrelation time τ reduces the contribution of the noise,
according to Eq. (13), and a second peak corresponding to the
intrawells transition appears. As one can see from Fig. 7, with
the increase of τ , the shift of resonance noise intensity for the
LS state is more evident than the one for the HS state. This is
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0.030
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τ

FIG. 7. (Color online) Behavior of SNR on ε and τ . Here, the
amplitudes of periodic signal are A = 0.003 (black squares and
circles), A = 0.0035 (red left triangles and right triangles), and
A = 0.004 (blue up triangles and down triangles).

related to a greater sensitivity of the HS state to the external
influence, in contrast to the LS one, as mentioned above.

V. SUMMARY AND DISCUSSION

We have developed a theory for SR in spin-crossover
compounds with photoinduced transitions. Based on the
numerical simulation of the Langevin kinetic equation with
a periodic modulating signal, we have analyzed the SNR in
the case of white- and colored-noise actions.

The specific asymmetric dynamic potential of the spin-
crossover system leads to unusual behavior during the SR
phenomenon. The different responses of the LS and HS states
to the external actions generate two peaks in SNR curves
which correspond to various resonant noise intensity. The
double-peaks behavior of the system is clearly observed only
for a specific range of modulation amplitude. Similar behavior
is observed in systems with colored-noise action, but it is
influenced by the noise autocorrelation time. The increasing of
noise autocorrelation time generates the shifting of SNR peaks,
which correspond to the intrawells and interwells transitions,
towards a higher noise intensity but with different shifts.

It is important to note that the concepts proposed in this
paper may be also applied for other real bistable systems with
an asymmetric dynamic potential.
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