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We consider a quantum system A ∪ B made up of degrees of freedom that can be partitioned into spatially
disjoint regions A and B. When the full system is in a pure state in which regions A and B are entangled, the
quantum mechanics of region A described without reference to its complement is traditionally assumed to require
a reduced density matrix on A. While this is certainly true as an exact matter, we argue that under many interesting
circumstances expectation values of typical operators anywhere inside A can be computed from a suitable pure
state on A alone, with a controlled error. We use insights from quantum statistical mechanics—specifically the
eigenstate thermalization hypothesis (ETH)—to argue for the existence of such “representative states.”
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I. INTRODUCTION

In this paper we consider the following problem. Let |AB〉
be a pure state of the quantum system A ∪ B made up of
degrees of freedom that can be partitioned into spatially
disjoint regions A and B with A being the smaller subregion.
We wish to find a pure state on region A, |ψA〉, which we can
use for practical purposes to reproduce expectation values of
typical operators of interest in region A. We will call such a
state a “representative state” (RS) on A.

Evidently, proceeding axiomatically would require us to
define which operators are “typically of interest” and what
error is acceptable for “practical purposes.” With these defined
we can then ask for what states |AB〉 and bipartitions A and
B such an RS can be found. We will not try to carry out
such an exercise in the abstract. Instead we will use ideas
from quantum statistical mechanics, notably the equivalence of
ensembles and the eigenstate thermalization hypothesis (ETH)
[1–3] to discuss several broad classes of states for which one
can usefully define RSs. Possibly future work can fold our
concrete examples into a more general account.

The striking feature of an RS description of subsystems is
that it dispenses with the entanglement between the degrees
of freedom in A and those outside. This entanglement is at the
root of the exact description by means of the reduced density
matrix

ρA = TrB |AB〉〈AB|
which is the textbook prescription for describing a subsystem.
We are interested in replacing this exact description with an
RS description.

The intuition for why it may be possible to replace ρA with
a single state on A comes from writing ρA in the suggestive
form [4]

ρA = e−HE ,

which defines the entanglement Hamiltonian HE on A. In
this form, ρA is the canonical density matrix of HE at entan-
glement temperature TE = 1, and all physical observables in
A are derived from this ensemble: 〈OA〉TE=1 = Tr(ρAOA) =
Tr(e−HE OA). If HE is assumed to be “generic”—in the sense
that we can do quantum statistical mechanics with it—we can
replace canonical averages with a single quantum state via

the ETH. More concretely, the ETH assumes that eigenstate
expectation values (EEVs) of few-body observables computed
from individual eigenstates in an energy window match
canonical or microcanonical averages in the thermodynamic
limit. It follows that if HE satisfies the ETH, we can replace the
canonical ensemble of HE with eigenstates of HE drawn from
the right entanglement energy window. These states are the de-
sired “representative states.” Further, in cases where HE does
not satisfy the ETH (e.g., HE is integrable (free) or many-body
localized [5]), RSs can be found for a smaller, more restricted
class of observables in a manner to be discussed later. (We note
that in a previous paper [6] we have employed this strategy of
doing statistical mechanics with HE to study the limits of the
universality of the low-energy entanglement spectrum.)

In this article we will discuss three families of quantum
states for which an RS description can be provided. These are
(a) ground states of local quantum Hamiltonians, (b) highly
excited states (those with a finite energy density) of local
Hamiltonians, and (c) randomly picked states in Hilbert space.
For (a) and (b) we will consider subsystems A such that both
A and B are simply connected domains, while for (c) we will
consider arbitrary subsystems of A ∪ B. In all three cases we
use the number of spins or qubits in A, denoted by |A|, as our
control parameter with the implicit ordering 1 � |A| � |B|. In
this limit we will argue that we can reproduce the expectation
values of few-body operators1 on A to controlled accuracy by
means of RSs.

In detail, we start with a free-fermion system for which
HE is known to be free (and hence integrable) [7]. While this
is a “nongeneric” case which does not permit us to use the
full machinery of ETH, it nonetheless provides a transparent
illustration of our ideas for a special class of operators that
are “orthogonal” to the conserved quantities. We consider RS
descriptions of both the ground state and highly excited states
of the free-fermion system. We then generalize our results to
ground and excited states of generic gapped, local quantum
Hamiltonians. In this case, we provide evidence that HE will
also be generic and we can use the ETH to argue for the RS.
Finally, we consider randomly picked vectors in Hilbert space

1One question we leave open is the meaning of “few,” where the
corresponding question regarding ETH is still open.

1539-3755/2014/90(5)/052133(6) 052133-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.052133


KHEMANI, CHANDRAN, KIM, AND SONDHI PHYSICAL REVIEW E 90, 052133 (2014)

where the RS can be obtained quite directly. We conclude with
some comments on generalizations and open questions.

II. FREE FERMIONS

We begin with a gapped free-fermion model in two
dimensions which illustrates the ideas and errors involved
in a representative states description. Consider the dimerized
hopping model in two dimensions:

H = −
∑
i,j

txi,i+1 c
†
i,j ci+1,j + ty c

†
i,j ci,j+1 + H.c., (1)

where ci,j are fermionic operators on sites (i,j ) of a two-
dimensional (2D) square lattice, the hopping in the x direction,
txi,i+1, alternates between 1 ± δ, and ty is the hopping in the
y direction. The Hamiltonian is readily diagonalized in mo-
mentum space, and there are two bands with momenta in the
reduced Brillouin zone. At half filling, the model is gapped for
either ty < δ < 1 or δ > 1 and ty < 1.

The entanglement Hamiltonian for free-fermion systems is
itself quadratic [7]:

ρA = 1

Z
e−HE , HE =

|A|∑
i=1

εif
†
i fi, (2)

where the operators fi live in A and are related to the
original fermionic operators by a canonical transformation,
and Z = TrρA. The single-particle entanglement energies {εi}
are easily calculated through their monotonic relation with the
eigenvalues ξi of the correlation matrix Crr′ ≡ 〈c†rcr′ 〉 restricted
to region A:

εi = ln

(
1 − ξi

ξi

)
. (3)

Evidently, HE is also integrable, with the set of conserved
quantities f

†
i fi .

We will show that we can find representative states in
A that reproduce canonical averages computed using ρA.
However, the RS cannot be used to reproduce all few-body
observables in A. Since HE is integrable (and thus nongeneric
for the purposes of the ETH), we must restrict ourselves to
few-body observables that are roughly uniformly “spread”
over all conserved quantities in HE . As our underlying Hamil-
tonian is translationally invariant, we expect that momentum
conservation is broken in HE by boundary effects alone so that
the f

†
i fi have a fair degree of locality in momentum space. This

indicates that operators which are local in real space are good
candidates for an RS description and we study these below.

We do this in turn for the system at zero and finite
temperatures.

A. T = 0

Pick a set of parameters ty and δ such that the Hamiltonian
H is gapped at half filling. At zero temperature, the system
is in the ground state of H on A ∪ B. We trace over half the
system with the entanglement cut along the y axis to obtain ρA

and HE in the usual fashion. Gapped ground states are believed
to satisfy an area law for the entanglement entropy [8]:

SE = −Tr ρA ln ρA ∼ sLd−1
A ,

where LA is the linear size of region A and d is the spatial
dimenson. In d = 1, a rigorous proof of the above scaling exists
[9,10]. The entanglement entropy is the thermal entropy of HE

at TE = 1; as this scales only with the area of the boundary,
HE is morally a (d − 1)-dimensional Hamiltonian whose low-
energy excitations live on the boundary between A and B.

The many-body eigenstates of HE are Slater determinants in
terms of the f operators in (2). For spatially local observables,
the canonical ensemble of HE at TE = 1 can be replaced
by individual eigenstates: we pick representative states |ψA〉
by filling single particle states f

†
i |0〉 with the Fermi-Dirac

(FD) probability distribution at TE = 1 and μE = 0. Thus the
representative states lie in an energy window that scales as√

Ld−1
A about the mean entanglement energy 〈HE〉TE=1.

Drawing states using the FD distribution ensures that
averages for operators Â computed using the ensemble of
RSs agree with the canonical average of HE . However, there
are fluctuations from eigenstate to eigenstate within the energy
window which can be shown to scale as

〈Â〉TE=1 = 〈ψA|Â|ψA〉 + O

(√
1

Ld−1
A

)
. (4)

The scaling follows from the expansion of the Â in the mode
occupation basis: Â = 1

Ld−1
A

∑
i n̂ia(i), where n̂i = f

†
i fi and

a(i) is a smooth function of the mode index i. In each RS,
n̂i = 0,1, while the probability that n̂i = 1 is given by the
FD distribution. Further, the occupation numbers of different
modes in the RS ensemble are uncorrelated. Thus, Eq. (4)
follows from the central limit theorem. Observe that the
fluctuations go to zero in the infinite volume limit for d > 1.

We now present numerical evidence supporting our claims.
For simplicity, we study expectation values of local density
operators Âi = c

†
i,0ci,0, though more complicated m-local

operators could also be considered. Note that translation
invariance is preserved along the y direction so operators are
only labeled by i, their position along the x axis. The main
plot in Fig. 1(a) shows 〈ψA|Âi |ψA〉 for 100 000 representative
states |ψA〉 randomly picked with FD probabilities. We work in
a system of length L = 256 and LA = 128, and consider Âi for
all sites i along the x axis. The red line is the canonical average
〈Âi〉TE=1 = Tr ρAÂi . We see that the EEVs in representative
states 〈ψA|Âi |ψA〉 follow the canonical average 〈Âi〉TE=1 quite
closely, with the error being maximum for operators near
the boundaries of A. This is consistent with the picture that
the O(Ld−1) eigenstates of HE that contribute to canonical
averages resemble the starting ground state in the bulk of A and
only differ on the boundary. Figure 1(b) (blue circles) shows
the standard deviation of 〈ψA|Âi |ψA〉 for i at the boundary of

A for various system sizes, confirming the
√

1
Ld−1 scaling of

the error posited in (4). Finally, Fig. 1(c) shows that for a fixed
system size, the error decreases exponentially with distance
from the boundary.

We note that even though we picked representative states by
filling single-particle orbitals with Fermi-Dirac probabilities at
TE = 1, our results also apply to other reasonable prescriptions
for picking RSs. For example, we can equally consider all
states in some fixed O(1) window about 〈HE〉TE=1 and with
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FIG. 1. (Color online) (a) 〈ψA|c†i ci |ψA〉 plotted against the position i for 100 000 randomly picked representative states |ψA〉 in a dimerized
free-fermion system of linear dimensions L = 256, LA = 128 and temperature T = 0. The thick, red (grey) line denotes the canonical average.
The error is maximum for boundary operators. Inset: Same results for a system at temperature T = 1. In this case there is no discernible
difference in the variance between boundary and bulk operators consistent with the volume law. (b) Standard deviation of 〈ψA|c†i ci |ψA〉 for i

at the boundary at T = 0 (blue circles), i at the boundary at T = 1 (green squares), and i deep in the bulk at T = 1 (red stars) plotted against

system size. The best-fit lines confirm the
√

1
Ld−1 scaling of the error for boundary operators at T = 0, and the

√
1

Ld scaling for both boundary

and bulk operators at finite T . (c) Standard deviation of 〈ψA|c†i ci |ψA〉 as a function of position i, showing exponential decay with distance from
the boundary.

some fixed spread in particle number. This prescription will

still give a
√

1
Ld−1 scaling of the error, but now with an improved

coefficient.

B. T > 0

We repeat the analysis of the previous subsection, now
starting with |AB〉 as an excited eigenstate of the hopping
Hamiltonian H . We work at a finite physical temperature T =
1, and we can construct |AB〉 by filling single-particle orbitals
with Fermi-Dirac probabilities at T = 1 and μ = 0. However,
for computational ease, we prefer to start with the Gibbs state
on A ∪ B instead of individual eigenstates. It is easy to check
that selecting RSs for the Gibbs state and excited eigenstates
are equivalent up to an error of O(1/Ld ).

The entanglement entropy for such finite-temperature states
shows a volume law scaling SE ∼ sLd

A, and HE acts as a
genuine d-dimensional Hamiltonian with excitations living
everywhere in the bulk of A. This changes the scaling of
various estimates in the previous section from Ld−1 to Ld ,
leading to an improved convergence. Since HE is still a
free-fermion Hamiltonian, we pick RSs according to FD
probabilities at TE = 1, μE = 0 as before.

The inset in Fig. 1(a) shows 〈ψA|Âi |ψA〉 for 10 000
randomly picked representative states |ψA〉 in a system of
linear dimensions L = 256, LA = 128. In this case, the spread
in eigenstate expectation values appears equal for operators at
all positions. Boundary operators are not special, consistent
with the volume law for the entanglement entropy of excited
states. Figure 1(b) (boxes and stars) shows the standard
deviation of 〈ψ |Âi |ψA〉 for sites i lying deep in the bulk of A

and on the boundary, confirming the
√

1
Ld scaling of the error

in both cases. Note the improvement in the convergence of the
EEVs at the boundary compared to the zero-temperature case.

In summary, we have found RSs |ψA〉 in free-fermion
systems that typically reproduce the EEVs of spatially local

observables computed with ρA in A. The typical error in
replacing ρA with |ψA〉 scales as O(

√
1/L

deff
A ), where deff is the

effective dimensionality of HE and equals d − 1 at T = 0 and
d for T > 0. For T > 0, the convergence is independent of the
distance from the boundary, while at T = 0 the convergence is
exponentially suppressed with the distance from the boundary.
Thus, the boundary operators at T = 0 exhibit the slowest
convergence with system size LA. Three aspects deserve
reemphasis. First, not all states drawn from the FD distribution
at TE = 1 (or from an energy window about TE = 1) are good
RSs. The scaling of error results are for typical states drawn
from such ensembles. Second, the convergence depends on
the choice of ensemble for the RS, and can be optimized.
Third, for this free-fermion example, RSs can be found only
for a restriced class of few-body operators that live in position
space and are spread over all conserved quantities.

At this point, it is instructive to delineate two systematic
trends in error estimates. The first is the scaling of error
with system size as a function of temperature. We have
seen that the effective dimensionality of HE changes from
deff = d − 1 at T = 0 to deff = d for T > 0. Since the error
scales with deff , the RS description for a given system is
more accurate at higher temperatures. In the second case, we
keep the temperature (and hence deff) fixed and compute the
dependence of the error on some physical parameter � in the
Hamiltonian. In particular, we can imagine tuning � in a way
that evolves the ground-state of H (�) from a product state
to a more generic area-law entangled state. In this case, the

error scales as c(�)
√

1
Ldeff

, where c(�) is parameter dependent
and depends on the coefficient s of the entanglement entropy
scaling SE ∼ sLdeff . For product states, |ψ〉 = |A〉|B〉, both s

and c(�) are zero, consistent with the fact that the best RS is
simply |A〉 with no error.

Before moving on to more generic examples, let us
briefly consider the implications of our free-fermion study
for disordered, localized entanglement Hamiltonians that also
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fail to satisfy ETH. If HE is noninteracting and Anderson
localized [11], its eigenstates are localized in position space.
Analogous to the free-fermion example, we now expect few-
body operators in a suitably defined “momentum” space to
have an RS description.2 Many-body localized HE deserve
further thought, but here again we might expect to find RSs for
observables that are spread over the local integrals of motion
[12,13] of HE .

III. GENERIC EIGENSTATES

The previous section provided a transparent illustration
of representative states for the case where |AB〉 is a Slater
determinant eigenstate of a free-fermion Hamiltonian. Now
we turn to eigenstates of more generic, local quantum Hamil-
tonians which will not be Slater determinants. For such states,
we expect HE to be nonintegrable and we can bring the full
machinery of quantum statistical mechanics and ETH to bear
on our RS description. This has three important consequences:

(1) Representative states can be used to reproduce expec-
tation values of a much wider class of few-body operators.
Unlike the free-fermion case, we are no longer restricted to
operators orthogonal to conserved quantities.

(2) Fluctuations in EEVs for states that are close in energy

are exponentially suppressed as O(e−L
deff
A ), where deff =

d (or d − 1) is the effective dimensionality of HE for states
obeying the volume (or area) law for the entanglement entropy
[3,14]. This is to be contrasted with the free-fermion case
where conserved quantities led to a much larger fluctuation of
O(

√
1/L

deff
A ) from eigenstate to eigenstate.

(3) The total error in replacing ρA with |ψA〉 scales as
O(1/L

deff
A ) for reasons that will be explained below. Again, this

is to be compared to a larger error that scales as O(
√

1/L
deff
A )

for the free-fermion case.
Points 2 and 3 above warrant further elucidation. If HE

satisfies the ETH, then EEVs of an operator Â are hypothesized
to have the form [2,15]

〈n|Â|n〉 = A(E) + e−S(E)/2f (E)Rn, (5)

where |n〉 are eigenstates of HE with entanglement energy
eigenvalue E and S(E) is the entropy (computed using HE)
at E. Here, A(E),f (E) are smooth functions of E and Rn is
a random sign. Since S(E) ∼ sL

deff
A , Eq. (5) implies that the

dominant contribution to the EEVs comes from A(E). Thus,
the EEVs vary smoothly with energy between neighboring
eigenstates and fluctuations between eigenstates (∼e−S/2) are
exponentially suppressed, which is the content of point 2.
Equation (5) is the fundamental assumption of ETH, and the
steady state properties under unitary evolution by HE and the
emergence of statistical mechanics as the correct equilibrium
description follow from it.

Turning now to point 3, observe that

〈Â〉TE=1 = TrAe−HE

Tr e−HE
=

∫
dE eS(E)−EA(E)∫

dE eS(E)−E
+ O(e−S/2),

2Translation invariance is broken by disorder. By “momentum”
we just mean a set of variables obtained by an appropriate Fourier
transform of the position coordinates.

where the integral is over the entanglement energies. For d >

1 and deff > 0, S(E) and E are extensive in LA. Thus, the
integrals can be evaluated by steepest descent and expanding
about the saddle point gives

〈Â〉TE=1 = A(〈E〉) + O

(
1

L
deff
A

)
, (6)

where 〈E〉 = 〈HE〉TE=1 is the mean entanglement energy.
Let us now put together the various ingredients. First,

a reasonable, operator-independent prescription for picking
representative states involves drawing eigenstates of HE with
some probability in an energy window �E about 〈E〉. For
example, �E ∼

√
L

deff
A if states are drawn with canonical

probabilities, or we can equally well pick a fixed O(1) energy
window. If A(E) varies systematically with E, then

A(E) 
 A(〈E〉) + dA
dE

(
�E

L
deff
A

)
(7)

for energies within �E of 〈E〉, and we have been careful to
include the fact that we are interested in local operators that
depend on the energy density. To optimize the error in the RS,
let’s specify an O(1) energy window so the second term in
Eq. (7) scales as O(1/L

deff
A ). Then, from Eqs. (5), (6), and (7),

we get that

〈Â〉TE=1 = 〈n|Â|n〉 + O

(
1

L
deff
A

)
(8)

when |n〉 are eigenstates of HE lying within �E of 〈E〉. This
is the statement of point 3 with |n〉 acting as the representative
states |ψA〉.3

As in the free-fermion case, we would like to support
our claims with numerical evidence for some example cases.
Proceeding as before would require numerically obtaining
eigenstates of generic, interacting Hamiltonians, which is
severely limited by system size. Instead, our strategy will
be to obtain HE for a particular example wave function and
present evidence of its non-integrability by examining its level
statistics. This provides strong, albeit indirect, evidence since
our result, Eq. (8), follows more or less axiomatically from
nonintegrability and ETH.

To this end, consider the Rokhsar-Kivelson (RK) Ising wave
function [16],

|AB〉 =
∑

σ

e−Ecl/2|�σ 〉, (9)

where Ecl defines the classical anisotropic Ising model for
spins σ z

i,j = ±1 on sites (i,j ) of a 2D square lattice

−Ecl(�σ ) =
∑
i,j

βx

(
σ z

i,j σ
z
i,j+1

) + βy

(
σ z

i,j σ
z
i+1,j

)
. (10)

The probability of a given configuration is e−Ecl (�σ ). Thus, the
quantum RK wave function reproduces classical probabilities

3One can improve matters for a single operator by carefully selecting
an RS which reproduces its exact expectation value to higher accuracy
but not for the full set we wish to reproduce.
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FIG. 2. (Color online) Level spacing ratio statistics of HE for the
Rokhsar-Kivelson state (green crosses) (9) compared to the Poisson
(red dashed line) and GOE (black solid line) distributions. The
statistics clearly look GOE consistent with a nonintegrable HE . This is
to be contrasted with the Poissonian statistics of the integrable transfer
matrix (blue dots) Tσi ,σj

in (11). r refers to the ratio of subsequent
level spacings, and P (r) is the probability of obtaining a given r . The
GOE form is derived in Ref. [21].

in the z basis. The RK wave function is the ground state of a
local Ising-symmetric parent Hamiltonian HRK(βx,βy), which
is quantum critical on the same critical line as the classical 2D
Ising model [17–19]: sinh(2βc

x) sinh(2βc
y) = 1. To compute

HE , we place the system on a cylinder of length Lx and
circumference Ly and trace out half the cylinder with the cut
parallel to the y axis. The system obeys a perfect area law and
SE ∼ sLy . For simplicity, we take the limit Lx → ∞. We can
rewrite |AB〉 in the more convenient form

|AB〉 =
∑
σL

∑
σR

√
TσL,σR

〈σR|λ〉〈λ|σL〉
λ2

|σL〉|σR〉

≡
∑
σL

∑
σR

MσL,σR
|σL〉|σR〉, (11)

where σL (σR) labels the spins in the column immediately
to the left (right) of the entanglement cut in A (B), and
|σL〉 (|σR〉) is the RK Ising wave function in A (B) with the
boundary spins fixed to be σL (σR). Tσi,σj

is the (integrable)
transfer matrix of the 2D Ising model. It is 2Ly dimensional,
“transfers” from column to column, and the indices σi/j label
the states of the Ly spins in columns i/j of the lattice. λ is
the largest eigenvalue of T with corresponding eigenvector
|λ〉. The entanglement Hamiltonian is related to the matrix M

though HE = − ln(M†M) and the entanglement energies are
obtained via a singular value decomposition of the matrix M .

Figure 2 shows the statistics of the ratio of adjacent level
spacings of the transfer matrix Tσi,σj

, and the entanglement
Hamiltonian for a paramagnetic system of size Ly = 16 and
with βx = βy = 0.43.4 Level spacings of integrable systems
are known to show Poissonian statistics, while those of

4The entanglement Hamiltonian has translation, Ising, and inversion
symmetry. We break translation symmetry by using open boundary

nonintegrable systems show Gaussian orthogonal ensemble
(GOE) statistics [20]. The figure clearly shows that HE is
nonintegrable, even though it is so closely related to the
integrable transfer matrix.

In general, we expect generic states to give generic, nonin-
tegrable entanglement Hamiltonians which are suspectible to
the analysis of this section.

IV. RANDOM STATES

Another limit in which we can apply the idea of representa-
tive states is when |AB〉 is a randomly picked pure state with
respect to the Haar measure on the Hilbert space of A ∪ B. In
this sense, one can find RSs for almost all states.

For simplicity, we consider the “random sign” states
introduced in Ref. [22] below, although the same results also
apply to states drawn from the Haar measure on the space of
unit vectors in the entire Hilbert space as the reader can readily
check.

Let |cAB〉 represent a state in the computational basis on
A ∪ B. In this basis, we define the set of “random sign” states
via

|AB〉 = 1√
NA∪B

∑
cAB

sgn(cAB)|cAB〉, (12)

where the sgn function is a random variable that equals ±1
with equal probability over the NA∪B configurations in Hilbert
space. We use NL to denote the Hilbert space dimension of
region L. Hence for spin 1/2 systems, NA∪B = 2N , where N

is the total number of sites in the system, NA∪B = NANB , and
|cAB〉 = |cA〉|cB〉.

For observables Ĉ in some finite bounded region C ⊂ A it
is a straightforward application of the central limit theorem to
show that

〈AB|Ĉ|AB〉 = 〈Ĉ〉TE=1 = Tr ρAĈ = Tr ρC Ĉ

= Tr∞Ĉ + O

( NC√
NA∪B

)
, (13)

where ρC is the reduced density matrix of region C and
Tr∞ Ĉ = 1

NA∪B

∑
cAB

〈cAB |Ĉ|cAB〉 is the infinite temperature

canonical average of observable Ĉ. Observe how 〈Ĉ〉 is just
Tr∞ Ĉ up to exponentially small corrections in the system size
LAB . Hence our randomly picked states behave like infinite
temperature states on the full system. Our first guess might be
to use the results of the previous section on generic eigenstates
to find representative states for |AB〉. However, those results
do not apply here since ρA ∼ I (up to exponentially small
corrections in L) for such random-sign states, and HE = 0 is
highly degenerate and nongeneric.

Fortunately we can get around this problem by simply
taking a representative state on region A, |ψA〉, which is itself
a random sign state. The same considerations as above imply

conditions, and take the even sector with respect to both Ising and
inversion symmetries to access the largest matrix size for level spacing
statistics. The statistics are the same for each symmetry sector and do
not depend on the boundary condition.
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that in such a state

〈ψA|Ĉ|ψA〉 = Tr∞Ĉ + O

( NC√
NA

)
, (14)

which says that 〈Ĉ〉 in representative states is again Tr∞ Ĉ up to
exponentially small corrections in LA. Thus, the RS captures
the same physics as the canonical ensemble of HE if the size
of region C is much smaller than that of A. For a finite region
C, the error in replacing the canonical ensemble with the RS
is exponentially small in the size of A.

Note that unlike the previous two sections, we were able to
pick RSs for random-sign states without taking into account
the specific state |AB〉. This is because of the particularly
simple form that all observables take in these states. However,
lest the reader be worried that these states are just trivial, we
note that subsystems of such randomly picked states are close
to maximally entangled with their environment, as evidenced
by the work of Page [23].

V. CONCLUDING REMARKS

In this paper we have demonstrated that for few-body
observables, the reduced density matrix of a subsystem A

entangled with a larger system can be replaced by a “rep-
resentative” pure state on A alone for three different classes
of states: low entanglement ground states of local quantum
Hamiltonians, highly entangled randomly picked states, and
highly excited eigenstates of local quantum Hamiltonians
which interpolate between these two limits in the amount
of bipartite entanglement they exhibit. The error in such a
replacement is well controlled and quantified for these families
of states, and vanishes as the volume of A approaches infinity.
We have provided both numerical data and general arguments
from quantum statistical mechanics and the ETH in support of
this picture. Further, we expect that when HE is nongeneric
with respect to the ETH, the RS description should continue to

hold for a limited set of observables, and we have demonstrated
this explicitly for free fermions.

Future work could provide a more general account of
classes of states |AB〉 that do, and do not, lend themselves
to a description of this kind. Natural generalizations include
applying these ideas to states |AB〉 with topological or
symmetry-breaking order, and the reader can readily verify that
the RS description naturally generalizes for local observables
in these cases.

The ideas in this paper present an interesting hierarchical
onion-like picture. We can replace a pure state on A ∪ B with
a pure state on A alone, which in turn can be replaced by a
pure state on a subset A1 ⊂ A, which itself can be replaced
by a pure state on A2 ⊂ A1, and the process can be continued
ad infinitum in the limit that the volume of each subsystem
approaches infinity.

Finally, we observe that the RS description is not entirely an
exercise in the abstract. Isolated quantum systems in pure states
form the starting point in the description of many physical
phenomena. Isolated systems are of course an idealization
since some degree of entanglement with the environment is
inevitable, in which case the system is properly described
by a density matrix. Our work suggests that the pure state
description is still useful, with an error that vanishes as the
system is made larger.
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