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Dynamics of a homogeneous active dumbbell system
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We analyze the dynamics of a two-dimensional system of interacting active dumbbells. We characterize the
mean-square displacement, linear response function, and deviation from the equilibrium fluctuation-dissipation
theorem as a function of activity strength, packing fraction, and temperature for parameters such that the system is
in its homogeneous phase. While the diffusion constant in the last diffusive regime naturally increases with activity
and decreases with packing fraction, we exhibit an intriguing nonmonotonic dependence on the activity of the ratio
between the finite-density and the single-particle diffusion constants. At fixed packing fraction, the time-integrated
linear response function depends nonmonotonically on activity strength. The effective temperature extracted from
the ratio between the integrated linear response and the mean-square displacement in the last diffusive regime
is always higher than the ambient temperature, increases with increasing activity, and, for small active force,
monotonically increases with density while for sufficiently high activity it first increases and next decreases with
the packing fraction. We ascribe this peculiar effect to the existence of finite-size clusters for sufficiently high
activity and density at the fixed (low) temperatures at which we worked. The crossover occurs at lower activity
or density the lower the external temperature. The finite-density effective temperature is higher (lower) than the

single dumbbell one below (above) a crossover value of the Péclet number.

DOI: 10.1103/PhysRevE.90.052130

I. INTRODUCTION

Active matter is constituted by self-propelled units that
extract energy from internal sources or its surroundings and are
also in contact with an environment that allows for dissipation
and provides thermal fluctuations. The locally gained energy
is partially converted into work and partially dissipated into
the bath. The units can interact via potential forces or through
disturbances in the medium. This new class of (soft) matter is
the focus of intense experimental, theoretical, and numerical
studies for practical as well as fundamental reasons. Several
review articles summarize the current understanding of active
systems [1-9].

Due to the consumed energy, detailed balance is broken in
active matter, and these systems are inherently out of equilib-
rium. Natural examples are bird flocks, schools of fish, and
bacterial colonies. Artificial self-propelled particles have also
been realized in the laboratory by using, for instance, granular
materials [10,11] or colloidal particles with specific surface
treatments [12—14] and are especially suited for experimental
tests. Different models have been proposed to mimic these
systems. For instance, run-and-tumble motion is used to model
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Escherichia coli bacteria [5] while active Brownian particles
are used to model Janus colloidal particles [15].

Self-propulsion is responsible for many interesting, and also
sometimes surprising, collective phenomena. They include
the following: the existence of orientationally ordered states
in two spatial dimensions [16,17], spatial phase separation
into an aggregated phase and gaslike regions for sufficiently
large packing fractions in the absence of attractive interac-
tions [18-27], giant density fluctuations [19,22,28,29] and
accumulation at boundaries [30-32], spontaneous collective
motion [33], glassy features [34-37], unexpected rheological
properties [38], and nontrivial behavior under shear [39—43].

Active systems, being essentially out of equilibrium, also
pose many fundamental physics questions such as whether
thermodynamic concepts could apply to them in their original
setting or with simple modifications.

The effective temperature notion was proposed to describe
some macroscopic aspects of slowly relaxing macroscopic
physical systems, such as glassy systems and gently sheared
supercooled liquids [44,45]. This (potentially) thermodynamic
intensive parameter is defined as the parameter replacing
ambient temperature in the (multi) time-dependent fluctuation-
dissipation relations between induced and spontaneous out-
of-equilibrium fluctuations of the system. In systems with
multiple time scales special care has to be taken in the choice
of the time regime in which a thermodynamic-like parameter
could be extracted. More precisely, experience shows that
one may identify it in the time regime of (large) structural
relaxation, while at short time scales the microscopic dynamics
imposes the system’s fluctuations (be them quantum, active
or thermal). To retain a thermodynamic sense, the effective
temperature should also be measurable with suitable choices

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.90.052130

ANTONIO SUMA et al.

of thermometers such as well-chosen tracer particles and it
should be the same for all observables evolving in the same
time regime.

The effective temperature idea has been explored, to a
certain extent, in the context of active matter. The effective
temperature of a bacterial bath was estimated from the Stokes-
Einstein relation of a tracer particle in Ref. [46]. The effective
temperature notion was used to characterize crystallization
effects known to occur under large active forces [34,47,48] and
the emergence of collective motion [33]. The deviations from
the equilibrium fluctuation-dissipation theorem in equilibrium
were used to reveal the active process in hair bundles [49]
and model cells [50]. In biological systems the nature of the
microscopic active elements is difficult to study directly. The
fluctuation-dissipation relations could be useful to characterize
the active forces in active matter in general and in living cells
in particular. With this idea in mind, Ben-Isaac et al. analyzed
the perturbed and spontaneous dynamics of blood cells in
the laboratory and compared the outcomes to the ones of a
single-particle Langevin model with a special choice of the
statistics of the active forces analytically [51]. Similar ideas
were used in Refs. [52,53] to characterize motor activity in
living cells and actin-myosin networks.

We stressed the fact that the effective temperature is not
a static parameter in the sense that it cannot be read from
a system’s snapshot. It should be determined from dynamic
measurements in which the separation of time scales has
to be very carefully taken into account to obtain sensible
results [44,45]. Having said this, the effective temperature has
been found to play a role similar to ambient temperature in the
celebrated experiment of Perrin now performed with active
particles. Indeed, the sedimentation of an active colloidal
suspension of Janus particles under a gravity field exhibits
the same exponential density distribution as a standard dilute
thermal colloidal system. The only difference is that the
parameter that replaces the thermal system’s temperature in
the active case is equal to the effective temperature inferred
from an independent measurement of the long-time diffusive
motion of an active colloidal particle [14]. This problem was
studied analytically with a run-and-tumble model [54] and a
Langevin process for a tagged active pointlike particle with a
suitable choice of activity [55].

Deviations from the equilibrium fluctuation-dissipation
theorem, as well as other ways of measuring the effective
temperature by using tracers, were analyzed numerically by
Loi et al. in (relatively loose) systems of active pointlike
particles [56,57] and long molecules [57,58]. All these
measurements yielded consistent results. In this paper, we will
follow this kind of analysis in a model of active matter that we
now discuss.

In their simplest realization, active units are taken to be
pointlike. However, the importance of the shape and polarity
of the self-propelled particles for their collective behavior has
been stressed in the literature [59-63]. Active units, whether
synthetic or natural, are typically rodlike or elongated. This is
the case of most bacteria, chemically propelled nanorods, and
actin filaments walking on molecular motor carpets. The length
scale of these units is of the order of several micrometers.

A simple way to model a shortly elongated swimmer
is to use a dumbbell, consisting of two colloids linked by
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a Hookean spring (see Ref. [64] and references therein).
Such passive dumbbell models have been used to mimic the
viscolelastic behavior of linear flexible polymers suspended in
Newtonian fluids [65,66]. Hydrodynamic interactions between
dumbbell swimmers have been considered in Refs. [67-69].
In this study we add activity to Brownian dumbbells in the
form of a constant propulsive force acting on the direction
connecting the two beads. We include potential interactions
between the dumbbells but we do not impose any alignment
rule. This model was used to describe bacterial systems [70].
Compared with self-propelled spherical particle models, it
phase separates at smaller densities [24,25]. Clustering and
phase separation are here due to the out-of-equilibrium drive
exerted by the persistent local energy input that breaks detailed
balance. Moreover, together with spontaneous aggregation,
dumbbells break chiral invariance and rotate displaying ne-
matic order with spiral patterns.

We focus on the dynamic behavior in the homogeneous
phase of the two-dimensional system. We study its dynamic
properties at various fixed temperatures and dumbbell pa-
rameters as will be introduced below but for a broad range
of values of the surface density and strength of the active
force. We analyze the behavior of the single passive and active
molecule analytically and we later use molecular dynamics
simulations to study the many-body system. More precisely,
we compute the mean-square displacement, linear response
function, their relation, and its implications on the effective
temperature ideas [45] that we discuss in detail in the main
text.

The body of the paper is organized as follows. In Sec. II
we introduce the model. In Sec. III we give some details on
the numerical algorithm that we use to study the problem
numerically. Section IV is devoted to the study of the passive
dumbbell system, both in its single-molecule limit and many-
body case. In Sec. V we present the analysis of a single active
dumbbell molecule and in Sec. VI the one of a system of
interacting and active dumbbell molecules. Finally, in Sec. VII
we summarize our results and present our conclusions.

II. THE MODEL

A dumbbell is a diatomic molecule made of two spherical
colloids with diameter o, connected by a spring of elastic
constant k that one can mimic, in its simplest form, with
Hooke’s law,

Vu(r) = 1kr? (1)

with r the distance between their centers of mass (c.m.).
An additional repulsive force is added, derived from just
the repulsive part of a Lennard-Jones potential, that ensures
that the two colloids cannot overlap. This potential is called
Weeks-Chandler-Anderson (WCA) and it is given by [71]

Viea(r) = {(‘)/Lj(r) — Vui(re)

r <re
r>re

12 6
=[]

with
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where € is an energy scale and oy is, once again, the diameter
of the spheres in the dumbbell; . is the minimum of the
Lennard-Jones potential, 7. = 2'/%0,;. We neglect hydrody-
namic interactions.

The equation of motion for a single dumbbell immersed in
a liquid is the Langevin equation

_ Vealrij) (X — 1) +
Br,-j I",‘j

ma¥; = —y¥; — k(r; —r;) n (3
with i,j = 1,2 labeling the two spheres in the molecule, r;
the position of the i-th monomer with respect to the origin
of a Cartesian system of coordinates fixed to the laboratory,
r;j =r; —r;,and r;; = |r;;|. mq is the mass of each sphere in
the dumbbell and y is the friction coefficient. The Gaussian
noise has zero mean and it is delta-correlated,

(nia(2)) = 0, “4)

Mia(OMjp(t)) = 2ykpT8;;8458(t — 1), )

with kp the Boltzmann constant and T the temperature of an
equilibrium environment in which the dumbbells move. Letters
a,b label the coordinates in d dimensional space. Note that an
effective rotational motion is generated by the random torque
due to the white noise acting independently on the two beads.

We add now the active force to Eq. (3). It acts in the direction
of the spring linking the two colloids, i.e., in the direction f of
the straight line passing by the two centers of mass, and it is
constant in modulus. It reads

Fyt = Foe B (6)

Having established the single-molecule stochastic model,
we extend it to consider a system of N such biatomic molecules
in interaction immersed in a bidimensional space with surface
S. The molecule number density is ny; = N/S, and the surface
fraction is

Sa
¢=N 3 (N
with S, the area occupied by an individual dumbbell. The
spring is supposed to be massless and void of surface.
Therefore, in d = 2 we have S; = naj/Z.

In order to model the many-body system we introduce
an intermolecular potential and we slightly modify the in-
teraction between the spheres in the same molecule. The
interaction between dumbbells is purely repulsive and avoids
the superposition of different molecules, i.e., ensures the
excluded volume condition in the WCA way. We use then
a Lennard-Jones potential still truncated to have only the
repulsive part as in Eq. (2). The elastic potential between
spheres belonging to the same dumbbell is modified to be
of the finite extensible nonlinear elastic (FENE) kind to avoid
the unlimited separation of the colloids belonging to the same
molecule,

kr
— 75 (3

1= (2/r5)
The denominator ensures that the spheres cannot go beyond
the distance ry.

Ffene =
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FIG. 1. (Color online) A sketch of an active dumbbell molecule.

The dynamic equations for one dumbbell in the system are
as follows:

mati(t) = —yri(t) — Frene(riiy1) + 1
N

J=0.j#i

VL, 1y
_w_J + FﬂCti1 (9)

Brij rij

ma¥ip1(t) = —yTip1(t) + Frene (T ig1) + 04

2N i+1,j
anca’ Fiy1,j
sJ
- E 9 +Facti7 (10)
=0, i1 Tit1,j Ti+l,j

with i =1,3,...,2N — 1 and Vyta = Viea(rij) with Viyea
defined in Eq. (2). The statistics of the noise p is Gaussian with
average and correlation given by Egs. (4) and (5), respectively.
As the active force’s direction lies along the molecular axis
it depends on the diatomic molecule but is the same for the
two atoms. This is the reason why we label it i in the two
equations above. Note that once the active force is attached
to a molecule a sense of back and forth atoms is attributed to
them (see Fig. 1). The active forces are applied to all molecules
in the sample during all their dynamic evolution. F, is a
time-dependent vector since, although its modulus is constant,
it does change direction together with the molecule’s rotation.
For each dumbbell F, is directed from the colloid i (tail) to
the colloid i + 1 (head). Note the difference between this kind
of activity and the random one used in Refs. [57,58] for the
numerical study of active polymers.

The Péclet number, Pe, is a dimensionless ratio between the
advective transport rate and the diffusive transport rate. For
particle flow one defines it as Pe = Lv/D, with L a typical
length, v a typical velocity, and D a typical diffusion constant
in the problem. We choose L — o4, v = F,/y, and D —

Dgf:n, = kgT /(2y) of the passive dumbbell [see Eq. (21)]; then

2Oﬂd Fact
Pe = . (11
kgT
Another important parameter is the active Reynolds number,
F,
Rey = =, (12)
o4y

defined in analogy with the usual hydrodynamic Reynolds
number Re = Lv /v, where v is the kinematic viscosity of a
given fluid, representing the ratio between inertial and viscous
forces. Here we set L — o4, v — Fy/y and v — yaj/md.

III. THE MOLECULAR DYNAMICS ALGORITHM

We solved the stochastic Langevin equation with an
algorithm due to Vanden-Eijinden and Ciccotti [72] that is
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exact to order (At)? with At the time step. We used a square
bidimensional box with periodic boundary conditions.

The units of mass, length, and energy are my, o4, and
€, respectively. The adimensional elastic constant is defined
as k* = kaf/e and we take a large value k* = 30 to avoid
the excessive extension of the dumbbell and also to prevent
vibrations. The length r( in the FENE potential is rendered
adimensional as r§ = ro/o4 and we used r; = 1.5. The ther-
mal energy is normalized by the energy scale in the Lennard-
Jones potential, kgT* = kgT /€. The friction constant has
dimensions of mass over time and we can make it adimensional
asy; =vy/vemy /O’dz. Physical realizations are usually in the
overdamped regime which is ensured by choosing a value of
v,/ such that Re,; < 1. We preferred to consider a model with
inertial terms in order to have access to the crossover between
ballistic and diffusive regimes. Concretely, we used y; = 10,
for which the molecular oscillations are strongly inhibited.
Finally, the adimensional temperatures kg T* are in the range
0.001-1. Once all parameters are expressed in terms of reduced
units we can effectively setmy = 0y = kg =€ = 1.

The optimal choice of the time step is delicate. We first
identified some relevant time scales in the problem and we
later chose Af. The time scale for the oscillations of the
free dumbbell is o = 2 /my/k = Zn/«/FdeUj/e (and
equals 1.14 for our choice of parameters). The inertial time
scaleis t; =mg/y = 1/y) \/mdadz/e (and equals 0.1 for our
choice of parameters). We will show below that there is another
time scale, typically longer, associated to the angular diffusion,
to = yR2J(2kpT) ~ vy /QkgT*)V mdoj/e, where we used
R & o4 the typical length of the dumbbell molecule. We
chose to work with At = #; /100 to see details of the ballistic
regime and At = 7,4 /100 to enter the later diffusive and active

regimes. Times are measured in units of v (ogmd) /€.

IV. PASSIVE SYSTEM

In this section we review the behavior of the passive
dumbbell single-molecule and interacting system, paying
special attention to the dependence of the dynamic regimes
on the surface fraction ¢.

A. Passive single dumbbell

One can simply show that the equation of motion for the
position of the center-of-mass, r., = (r; 4+ r2)/2, of a single
dumbbell governed by Eq. (3) under the same force f acting
on each bead is

2mgFem (1) = =2y ¥em (1) + 2£() + §(2), 13)

with the new noise §(¢) = #,(7) + 3,(¢) with vanishing aver-
age, (£,(1)) = 0, and correlation

(Ea(Ep(1) = 4y kpT 8ap8(1 —1'). (14)

This is the Langevin equation of a pointlike particle with mass
2my under a force 2f in contact with a bath with friction
coefficient 2y at temperature 7. Equivalently, one can divide
this equation by 2 and obtain a Langevin process for a pointlike
particle with mass m, under a force f in contact with a bath
with friction coefficient y at temperature 7 /2. From these
analogies one recovers several results on the statistics of the
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center-of-mass position and velocity. Under no external force,
f =0, the center-of-mass velocity is distributed according
to the Maxwell distribution for a particle with mass 2m, at
equilibrium at temperature T (or mass m, at temperature 7 /2).
The center-of-mass mean-square displacement between two
times ¢" and ¢ after preparation,

AX(t,t") = ([Fem (1) — Yem ()] (15)

can be calculated as

kgT\ (e 7" —e ')’
Az(t,/)szvg b )Q

 2my (v/ma)?
kgT kgT _ Yoy
+B_(t—t/)—mdf (1 — e m t))j|, (16)
14 14

where vy is the velocity of the particle at the initial time r = 0.
Given the inertial time

I =md/)/, (17)

one obtains different limits in relation to different values of
t and #’. At short times 0 < ¢ <t < f7, by expanding all
exponentials at small arguments, we obtain ballistic behavior,

A1) = dv} (t — 1) (18)

Atlong total times ¢ > ¢’ >> f; and short time delay (r — t') <
t7, one also obtains ballistic behavior,

kT
Aty =d 2B—md (t — 1), (19)

with the initial velocity v} replaced by its average in equi-
librium (v?) = kT /(2m4) (for a particle with mass 2my). In
both cases the time-delay dependence crosses over to diffusive
motion,

A*(1,t') =2dDP (1 — 1), (20)

for long time delay (+ —t') > t;, with a diffusion constant
taking the form

D, = kpT/2y). 1)

This is the diffusion constant used in the definition of the
Péclet number in Eq. (11).

The length of the dumbbell molecule, R(¢) = r; — r;, with
r; and r; the position of the centers of the two spheres, is
also a fluctuating quantity. For the parameters used one shows
that (R(¢)) approaches Ro, = 0.96 = o,. The angular degrees
of freedom can also be simply analyzed, especially under the
assumption that R(#) is constant, which is rather accurate since
R(t) does not fluctuate more than 3% around its mean value.
In this approximation one finds that the angle diffuses with an
angular diffusion constant equal to

D, = 2ksT/(yR%,). (22)

The linear instantaneous response, R, quantifies the effect
of a small impulsive perturbation, say h(z”) applied at time
t”, on the dynamics of the system of interest. For a dumbbell
moving in a plane, the a-th component of the center-of-mass
position perturbed by a force acting on its b-th component,
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from time ¢ until time ¢, is

(rgm_(z))h=(rgm_(ﬂ))+ / dt” Ryp(t,t") hp(t”).  (23)

t

Equivalently,

8<rg.m4(t)>h

Rap(t,t) =
p(1,1) Sy ()

(24)

Motivated by the interpretation of Eq. (13) that keeps the
temperature of the noise unaltered and equal to 7, we take
the perturbation to the center-of-mass to be h(t") = 2f(¢").
In order to focus on the long time limit of interest, ¢ > ¢,
and to simplify the expressions, we drop the inertia term from
Eq. (13). In this limit, the center-of-mass position is given by

1 t
Fem (1) = Yem (1) + > / dr" 20t + E(M]. (25)

The total linear response to a steplike perturbation that is
applied from ¢’ to ¢, with independent components 2 f,, on each
Cartesian spatial direction such that §Q2f,(t"))/8Q2 f,(t")) =
Sab, 18 then

t
d
x(t,t) z/ dt" Ry, (t,t") = 5 @t —1). (26)
v

Summation over repeated indices was used to go from the
second to the third member of this equation. Comparing now
to the mean-square displacement, A%(z,t"), one finds that in
the diffusive regime

2kpT x(t,t') = A*(t,1"), 27)

and both functions depend on the two times only through
their difference, ¢ — ¢’. This relation is the same as the one
for a pointlike Brownian particle in contact with a bath at
temperature 7. We will use it as a reference to define the
effective temperature from deviations in which the bath tem-
perature is replaced by another parameter. (The comparison
between x and the time derivative of the correlation function
between the position measured at different times, which in
equilibrium is proportional to the inverse temperature of the
bath, yields a nontrivial relation that violates the equilibrium
fluctuation-dissipation theorem for an unconfined Brownian
particle [73].)

A numerically convenient way to extract the linear response
from Eq. (23), especially useful for the interacting systems
studied in the following, consists in taking the perturbing
forces f to be uncorrelated with the center-of-mass position and
random, with zero mean, [ f,] = 0, and correlation, [ f, f;] =
f2845. Multiplying Eq. (23) by 2 f. and taking the average over
their distribution one finds

[(rem@)2f] = (2f)2/ dt" Rac(t,1"). (28)

Setting a = ¢ and summing over components one obtains

[rem @2 ]

@ry @

x(t,t") =
Then one derives from Eq. (25)

1
[(renM2fa] = 3 Saa Q) (t 1), (30)
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which yields
n_ 4 /
x@.r) =~ —1), (€29)
14

consistently with Eq. (26).

The way in which we probe the linear response of the
interacting system is by applying a force of modulus 2 f in
a random direction to the center of mass, and not on the
rotational and vibrational degrees of freedom, which gives
a linear response proportional to 1/(2y) in the case of a
single passive dumbbell. Averaging over different angles, one
recovers a result proportional to 1/(2y). To obtain the linear
response to independent perturbations applied on the spatial d
directions, that is to say x, we simply multiply the result by d.

B. Passive many-body dumbbell system

In order to study the many-body system we performed
numerical simulations in the form described in Sec. III. We
averaged over 100 different realizations of a system with linear
size | = 100 and adimensional temperature 7" = 0.001 (to
make the notation lighter here and in what follows we avoid the
asterisks to denote adimensional parameters). Measurements
were done after an equilibration time of order feq = 10%,
starting from an initial random configuration of our system,
in both the position of the center of mass and the angular
direction of the dumbbells, and we show data gathered until a
time equal to 10°.

First, we studied a very loose system, with ¢ = 0.01
(data not shown). From the analysis of the system’s global
mean-square displacement we found that the ballistic regime
ends at the inertial time #; = mq/y =~ 0.1 when it crosses over
to a diffusive regime. The ballistic regime is characterized
by A%(t) > d(v*)t* with (v?) = kT /(2mg) the thermal ve-
locity of a Brownian particle with mass 2mq4, which for the
parameters used takes the value (v?) ~ 5x 10~*. The diffusion
constant in the free-diffusive regime is very close to the one of
the single passive dumbbell, D, 1, =~ Dg?n. ~5%x107°.

Next, we studied systems with five higher surface fractions:
¢=0.1, 0.2, 0.3, 0.4, 0.5, see Fig. 2. We found that,

102 F r r r
100 B "v_,/»;" 7
-2 .m""
a 10 - x// B
< L
7
-4 pd
1007 F / i
0=0.1 —
0.2
/ 0.3
10°F / 0.4 - A
/ , . . 0.5
1072 10° 102 10% 108
t

FIG. 2. (Color online) Mean-square displacement as a function
of the delay time hereafter called + measured after #' = 100 in a
system of interacting passive dumbbells with the surface fractions
given in the key at 7 = 0.001 (double logarithmic scale).
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6X10_5 T T T T

5x107°

4x107°

A% /2dt

3x107° F S -
2x10°F \ 1

1x107° | \ -

=
1/t

FIG. 3. (Color online) Rescaled mean-square displacement in
systems of interacting passive dumbbells with the surface fractions
given in the key. The data in Fig. 2 are divided by 2dt and presented
as a function of 1/¢ to identify the diffusive regime as a plateau
with height given by the diffusion constant. The single-passive-
dumbbell diffusive constant takes the value DY%, = 5x 10~ for these
parameters, consistently with the trend of the numerical results for
the many-particle system.

as in the single-molecule case, the ballistic regime crosses
over at t; =my/y = 0.1 to a first free diffusive regime,
approximatively in the interval 1 <t < 10%, that is now
followed by a second diffusive regime that feels the effect of
the dumbbell concentration [74]. Quite naturally, the dynamics
slows down for denser systems, as shown by the spread of
curves at the late stages in the plot.

In Fig. 3 data are represented in such a way that the last
diffusive regime appears as a plateau at 1/ — 0 with height
equal to the diffusive constant. The diffusive constant in the
interacting regime, normalized by the one of the center of
mass of the free passive dumbbell, fofn‘, is plotted in Fig. 4
against the surface fraction. For comparison we also similarly
display normalized data obtained for a system of colloids
coupled to the same thermal bath and interacting via the
WCA potential (2). Within numerical accuracy the colloidal
and dumbbell systems have the same behavior until ¢ < 0.3
while the dumbbell data are slightly above the colloidal ones
for larger values of ¢. We find very good agreement with the
prediction of Tokuyama and Oppenheim (TO),

Dom(¢) 1

= (32)
Dem(0) ~ 14 H(®)
with
Hg) = 26@F @)
T 1=b(p)  1+2c(e)
_ b(@) c(@) 2+ c(9)] 33)
[1 4 c(@)] [1 — b(@) + c(@)]
and
b() = /99/8 c(¢)=11¢/16, (34)

derived from a perturbative calculation for low-concentrated
colloidal systems [75]. This expression has no free parameters.
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FIG. 4. (Color online) Upper panel: In linear-log scale, the dif-
fusion constant of an interacting system, as a function of surface
fraction ¢, in four cases: the passive dumbbell system displayed
with (green) crosses x; the passive colloidal system shown with
(red) pluses +; and the active dumbbell system with F,, = 0.001
and F, = 0.1 drawn with (pink) triangles A and (blue) squares [,
respectively. In all cases the systems are in contact with the same
thermal bath at temperature 7 = 0.001 and interact with the same
WCA potential given in Eq. (2). Lower panel: In double linear scale,
the same data relative to its single-particle limit, as a function of
surface fraction ¢. The solid line represents the analytic prediction
by Tokuyama-Oppenheim (TO) for a colloidal system with the same
parameters [75].

The agreement is very good for all surface fractions for
colloids, and until ¢ >~ 0.3 for dumbbells (continuous line in
the figure) if we use the three terms above in the expansion.
For denser systems the shape of the molecules starts playing
a role. We stress that the comparison is made between
normalized curves. The third and fourth sets of data in this
figure correspond to systems of active dumbbells and will be
discussed in Sec. VL.

V. ACTIVE SINGLE MOLECULE

We turn now to the dynamics of a single active molecule as
a reference case for the interacting system to be discussed in
the next section.
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Take a single active molecule constrained to move in
two-dimensional space. The length of the molecule is not
altered by the active force and it still approaches Ry = 0.
From the Langevin equation for the center-of-mass position
that acquires a forcing term one calculates the average square
velocity of the center of mass. For ¢ >> ¢, the stationary value
for its a-th component is given by

(ﬁ(we—LPﬂ+—£L{
c.m.a 2my )/(% + %)
k Tiin
= , 35
m, (35
with the inertial and angular time scales
my 1 yaj
tH=—, ti=—= , 36
1 y a Da 2kBT ( )

that will find a clear meaning when studying the mean-square
displacement below.

The formula (35) gives an expression to what is called the
kinetic or granular temperature [76—78] of the system. Quite
naturally, Ty, = T for F,¢ = 0. Note that Ti;, depends on the
two time scales #; and ¢,. It approaches

kpT +1;FL [y for
kgT + taFaZm/y for

In our problem #, > t; and the relevant limit is

ta >> tlv

ke Tiin ::{ >t
1 a-

(37

kgTiin = kpT + ’;LgFazct'
Moreover, for the parameter values later used in the simulation,
mq/y* = 0.01.

After some simple calculations one finds that the mean-
square displacement of a single dumbbell molecule moving
on a plane under the longitudinal active force has an initial
ballistic regime for times shorter than the inertial time scale ;.
Beyond this time scale, the overdamped limit takes over and
inertia can be neglected. One can then quite easily derive the
time behavior of the self-diffusion. For times shorter than the
angular time scale #, one finds

2

A%(t) ~2dDM 1+ <%) t* (38)
with Dg?n. = kpT/(2y) the diffusion constant of the passive
diatomic molecule (see also Ref. [79] where a similar cal-
culation for an active ellipsoid has been performed). Within
this regime one can still identify two subregimes. For times
shorter than 1* = 2d D%, 2/ F2, the first term dominates and
the dynamics is diffusive as in the absence of the active force.
If, instead, times are longer than #* the dynamics becomes
ballistic again and it is controlled by the active force. For
even longer times, going beyond ?,, a new diffusive regime
establishes,

A%*(t) ~2dDy t, (39)

with a diffusion constant that depends on the active force and
ind = 2 is equal to

1 [ Fu\° 1
DA=D%J+§(fj > (40)
a
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In order to make the parameter dependence explicit we call
this diffusion constant,

2
mw@¢=mzﬁzp+1(%“)}, @1)

2y 2\ kT

with R replaced by o,. This expression shows a dependence
on the square of the Péclet number that will later appear in the
effective temperature as well. The reason why the dynamics
slow down in this last regime although there is still the active
force acting on the dumbbell is that the angular motion goes
against the translational one. All these regimes are summarized
in

ballistic — diffusive — ballistic — diffusive
1 r* t,

with the time scales #; and ¢, introduced in Eq. (36).

Note that the “intermediate” time scale ¢* is inversely
proportional to the square of the active force, F,;2, and can
go below the inertial time scale #; for sufficiently strong
nonequilibrium forcing or beyond 7, for sufficiently weak one.

The generic features described in the previous paragraph
can be seen in Fig. 5, especially in the curves for Fy =
0.1, 0.01, where t* <, and the regimes separated by t*
are distinct. r* goes below #; for the largest active force
Faee = 1 used in Fig. 5 for which the data shown have already
reached the second ballistic regime and crossover, at #,, to the
last diffusive regime. At the other extreme, for the smallest
active force F,o = 0.001 the time scale t* is very large going
beyond the time scale 7,. The data show the first ballistic
regime, the crossover to the first free-diffusive regime, and
a very smooth crossover to the last diffusive regime with
a different diffusion constant. There is no second ballistic

106 - Fact:]' o=

FIG. 5. (Color online) Mean-square displacement of active
dumbbells for various values of F, given in the key at temperature
T = 0.001 and linear size of the system / = 100. The behavior of
a single dumbbell is shown with thinner lines while the one of a
system of interacting dumbbells with ¢ = 0.1 is shown with thicker
lines. The average has been taken over 200 thermal histories. The
inertial and angular time scales are signaled with vertical black lines
at t; = 0.1 and ¢, = 5000, respectively. The floating time scale #* is
proportional to the inverse square active force, F,.. See the text for
a discussion of its effect.
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regime in this case. For the intermediate active forces, Fy =
0.1, 0.01, the four regimes can be observed in the data curves.
The numerical results yield values for the crossover times,
diffusion constants, and velocities in the ballistic regimes that
are indistinguishable—within numerical accuracy—from the
analytic predictions.

A similar crossover in the mean-square displacement was
observed in systems and models of spherical particles. On
the theoretical side, reference to such a crossover is made
in Refs. [19,26,79]. In Ref. [80] the dynamics of artificial
swimmers made of polystyrene microspheres coated with
platinum on one size, while keeping the second half as the
nonconducting polystyrene, was studied. In this system, the
platinum catalyzes the reduction of a “fuel” of hydrogen perox-
ide to oxygen and water propelling the particles in a preferred
direction. Particle tracking was used to characterize the particle
motion as a function of hydrogen peroxide concentration. At
short times, the particles move predominantly in a directed
way, with a velocity that depends on the concentration of the
fuel molecules, while at long times the motion randomizes and
becomes diffusive, with a diffusion constant that also depends
on the fuel concentration. The analytic results for the single-
dumbbell mean-square displacement are consistent with the
experimental results. A similar crossover was also observed in
the motion of beads propelled by adsorbed bacteria [81] and
in bacterial baths [46].

Another, independent, probe of the dynamics of an out-of-
equilibrium system is the displacement induced by applying
a small constant external force to one (or more) tagged
particle(s) in the system as follows:

d N
x(t) = NGTR ; (2f; - remi(0)

__d RO+ ra @)
ONQf)? 2 <2f’ 2 >

i=1,3,5,..2N
d 2N
_ (€ 1) (42)
NESfP ;

This equation generalizes (29) to the many-body system.

The perturbing force f; = €; f is applied to every monomer
(in the same way as the active force) at time ¢y and kept constant
until the measuring time ¢. f is its modulus and €; its direction
which is uniformly distributed and is the same for the two
monomers of a given dumbbell. In the case of a single active
dumbbell N = 1 and one finds again

x)=d2y) "t (43)

aresult that is independent of the activation force F,.. We will
write it as

x(0) =dpu(Foei,p = 0) 1 (44)

with u(Faet,¢ = 0) = u(Foer = 0,0 = 0). Using the relation
between mean-square displacement, A2, and induced dis-
placement, x, in equilibrium, 2kgT x (t) = A2(¢) for all 1, to
define a possibly time-dependent effective temperature out of
equilibrium,

2kp Terr(t) x (1) = A%(2), (45)
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one finds, in the late diffusive regime t > ¢,,
_ DalFat =0)

kg Tes(t kpTet(Foet, = 0) = 16
BTet(t) = kpTefr(Fact, = 0) i (Fond = 0) (46)
that becomes
1/ Foog\2
frfe ==t [1 T2 ( /::Td> ]
12

We can arrive at the same result by defining T from the
Einstein relation between diffusion constant and mobility.
We stress the fact that T.i takes a constant value in this
late diffusive regime. Note the different bath-temperature
dependence in T and Tyi,. We reckon also that Tegr > Tiin
and that the two expressions coincide in the (unphysical) case
t; > t,. For the parameter values later used in the simulations
kpTer = kgT + 0.5 F2,/(kpT) and the factor in the F2, term
in kg Teir equals 10 at T = 0.05 (while the one in kg Ty, is only
0.01).

The response-displacement relation in a stochastic model
for an active particle was studied in [51]. In this paper,
an overdamped Langevin equation for a randomly kicked
pointlike particle with a variable number of kicking motors
producing pulses of force =+ f acting at Poisson distributed
times during intervals of duration At, and in contact with
a thermal environment, was analyzed. In the low-frequency
limit (long time delays) the effective temperature approaches
a constant Ter — T + N, f2AT?/(x + AT) with N, the
number of motors and t the averaged waiting time between
the pulses. The dependence on f; is similar to the dependence
on Pe? that we find for the single active dumbbell.

Again from the T, perspective, Szamel [55] studied a
different model in which the self-propulsion of a single point-
like active particle is modelled as a fluctuating force evolving
according to the Ornstein-Uhlenbeck process, independently
of the state of the particle. The particle moves in a viscous
medium that is assumed to force overdamped motion. The
free diffusion properties of the particle lead to an effective
temperature defined from an extension of the Einstein relation
linking the diffusion coefficient of the free particle to the
variance of the fluctuating term in the Ornstein-Uhlenbeck
process for the active force and the friction coefficient of
the medium. The mobility and self-diffusion of an active
Janus particle were monitored with microtracking by Palacci
et al. [14] to infer from them the effective temperature. In
both cases, as for our active single dumbbell, the effective
temperature increases with the activation parameter as Pe”.

Palacci et al. [14], Tailleur and Cates [18,54], and Szamel
[55] measured and calculated the stationary probability distri-
bution of the active particles’ positions in a linear external
potential (mimicking gravity) in a regime such that the
sedimentation velocity is small with respect to the swimming
velocity. They found an exponential form that corresponds
to a Boltzmann distribution under gravity, with the parameter
associated to the sedimentation length given by the equilibrium
one with the temperature being replaced by the effective one
of the free active particle. Szamel also studied whether the
ambient temperature is simply replaced by the single-particle
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effective one in the position probability distribution function
of the Ornstein-Uhlenbeck active particle under a different
external potential and found that this is not the case [55].

VI. ACTIVE MANY-BODY DUMBBELL SYSTEM

The collective behavior of an ensemble of dumbbell
molecules in interaction and under the effect of active forces is
very rich [24,25]. In this section we first describe some general
features of this behavior in the homogeneous phase. Later we
will focus on the evaluation of the diffusion constant, linear
response, and effective temperature.

A. Homogeneous phase

Active dumbbell systems exhibit a transition between a
phase at small Péclet number, which includes the passive
limit, and a phase with stable aggregates of dumbbells, not
existing without activity, at high Péclet number. A schematic
representation of the phase diagram is given in Fig. 6. We
will not discuss the details of this phase diagram here but
we simply state that we will work with sufficiently low Péclet
number so as to stay in the region that we call the homogeneous
phase although clustering phenomena, which will be important
for the effective temperature, are already present. Typical
configurations for the two phases are also shown in Fig. 6. In
the aggregated phase the clusters reach the size of the system,
while in the homogeneous phase they remain of finite size and
are not stable. The phase separating kinetics in the phase with

1.0 T T T

0.8 |-

0.6

0.4

0.2

0 50 100 150 200

FIG. 6. (Color online) Schematic phase diagram of the dumbbell
system. Inside the curve, at high Péclet numbers, the system
undergoes phase separation into two phases characterized by two
different densities. Here, typically, large and stable clusters are
observed, as shown in the snapshot on the right. The dumbbells
are frozen and point preferentially towards the center of the cluster.
The enlargement shows the border of such a cluster, with the green
part, corresponding to the head of the dumbbells, pointing inside,
and the tails (red part) pointing outside. For small Péclet numbers
the system does not show the formation of such large clusters and a
typical configuration is presented. The location of the transition line
is based on the results of simulations with F,., = 1 (see Refs. [24,25]
for further details); the right snapshot is taken at 7 = 0.01 and the
one on the left at 7 = 0.05.
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FIG. 7. (Color online) Clustering effects in the active many-body
system. Density is ¢ = 0.4, temperature is 7 = 0.05, and from
left to right and top to bottom the active forces are F, = 0.01,
0.1, 0.3, 0.5, 0.7, 1. The side of the box is / = 100.

large-scale aggregation was studied in Ref. [24]. One can also
observe that, while in the clusters of the homogeneous phase
the dumbbells are not stuck and can move, they are frozen
inside the aggregates in the high-Péclet phase.

Figure 7 shows six typical snapshots of the system, all at
the same density ¢ = 0.4 and temperature 7 = 0.05 but for
different active forces, F,, = 0.01, 0.1, 0.3, 0.5, 0.7, 1 (in
reading order). The corresponding Péclet numbers vary in the
interval [0.4,40] which is well inside the homogenous phase
in the phase diagram of Fig. 6. In the four last snapshots, i.e.,
beyond F,, ~ 0.3, we start seeing clustering effects. Their
presence becomes less relevant moving away from the critical
surface in parameter space. Configurations of the system for
different densities at fixed active force strength are shown in
Fig. 8.

In Fig. 9 we show the static structure factor,

N

S(q) = % D (e, (48)

i=1

of a system with ¢ =0.1 (upper panel) and ¢ = 0.4
(lower panel) for different active forces, Fy = 0.01,
0.1, 0.3, 0.5, 0.7, 1, following the line code given in the keys.
The positions r; here are taken to be the ones of the two beads in
the diatomic molecule. This function characterizes the strength
of density fluctuations at a length scale of the order of 27 /q.
Letus first discuss the data for ¢ = 0.4 (lower panel). For small
active force strength, F,,; = 0.01, the system is very close to a
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FIG. 8. (Color online) Clustering effects in the active many-body
system. In all snapshots the active force strength is F,, = 0.5 and the
temperatureis 7 = 0.05, while the densities are ¢ = 0.1, 0.2, 0.3, 0.4
(in reading order). The side of the box is [ = 100.

simple fluid made of diatomic molecules. Consequently, two
peaks are visible in the curve. One represents the molecule
elongation, i.e., the distance between the two beads in the
dumbbell, and it is located at ¢ >~ 6.21, which corresponds to
£ ~ 1. The other one signals the typical distance between beads
belonging to different dumbbells and is located at ¢ =~ 3.5, that
is to say, £ ~ 1.79. For increasing values of the active force,
clustering is favored, and molecules in them tend to be closer
to each other. Therefore, the first peak (at longer distances in
real space) progressively disappears while the second one (for
distances of the order of £ >~ 1) increases its weight. However,
the most important new feature in the curves is the appearance
and growth of the structure factor close to vanishing g. We note
that the curves intercept at ¢ ~ 2.26 and that the curves move
upwards with increasing Fye for g smaller than this value. This
increase quantifies the presence and growth of the clusters with
increasing activity. The larger values of the structure factor at
small g observed for F,e; > 0.3 correspond to the clustering
effects observed in this range of F, in Fig. 7.

Similar features in the structure factor were observed ex-
perimentally in Ref. [82] and numerically in Refs. [19,26,79].
In the dilute polymer melt active sample studied in Ref. [57]
no such important increase of the low-¢q structure factor was
observed and the conclusion was that active forces were
making the sample more compact but uniformly, with no
clustering effects. The special g values for the dumbbell system
with packing fraction ¢ = 0.1 are as follows: the molecular
elongation peak is here located at g >~ 6.67, the curves
intercept at g >~ 1.48, and the second peak at F,,, = 0.01 is
not really visible.

Although we have not shown it analytically, the probability
distribution functions (pdf) of the velocity components is well
represented by a Gaussian pdf with a kinetic temperature given
by Eq. (35) for small values of ¢, as long as phase separation
does not occur. These pdfs are shown with continuous and
dashed lines in Fig. 10. Increasing the surface concentration,
jamming effects slightly reduce the overall Ty;y.
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FIG. 9. (Color online) The structure factor of the active sample
with ¢ = 0.1 (upper panel) and ¢ = 0.4 (lower panel) for different
active force strengths given in the key. See the text for a discussion.

In essentially out-of-equilibrium systems with nonpotential
forces that drive the dynamics, such as driven granular
matter [76-78], vortex lattices [83], and the active matter we
study here, the kinetic temperature should be higher than the
ambient temperature. In our case we measured Ty, =~ 0.05 for
Fot = 0.01 and F,; = 0.1, so Tyxin =~ T in these two cases.
For the strongest F, used, Fy = 1, we measured Ty, =
0.0596 > T. We can compare this value to the one expected
for the single active dumbbell under the same conditions,
according to Eq. (35): Tlfi‘;gle 2~ 0.06, which is very close to
the value measured for the ensemble.

B. Mean-square displacement and asymptotic diffusion
1. Very low temperature

In order to appreciate the effects of the dumbbell inter-
action, in Fig. 5 we showed with thicker lines the mean-
square displacement in the active dumbbell system with
¢ = 0.1 and the same four values of the active force Fy =
0.001, 0.01, 0.1, 1 used in the single-dumbbell case. Data
for single and collective systems under the same active force
are shown with the same color and line style. For the two
smaller applied forces, F,q = 0.001, 0.01, we do not see any
difference in A2 between the single and interacting case in this
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FIG. 10. (Color online) Pdf of the horizontal component of the
center-of-mass dumbbell velocity, v m.,, in a system with ¢ = 0.1 at
T = 0.05, for three values of the active force, F,; = 0.01, 0.1, 1. Data
are shown in linear-log scale. The values of the kinetic temperature,
Tiin = 0.0500, 0.0501, 0.0596, respectively, used in the Gaussian fit
shown with continuous and dashed lines are very close to the result
for a single molecule; see Eq. (35). At ¢ = 0.3, for the same set of
active forces, we have checked that the pdf is also well represented
by a Gaussian distribution with Ty, given by Eq. (35).

scale. For the two larger forces, F, = 0.1, 1, the interaction
between the molecules slows down the dynamics in the sense
that the mean-square displacement of the interacting system,
at the same time lag, is smaller than the one for the single
molecule. For the forces F, = 0.001, 0.01, 0.1 we still
see the angular time scale ¢,, a feature that does not exist
in models of pointlike active particles as the ones studied
in Refs. [26,56,57]. Note that for F,: =1 and such a low
temperature, 7 = 0.001, the system is in the phase-separated
phase, the velocity-component pdf is no longer Gaussian (not
shown), and the mean-square displacement is much slower
than in the single-molecule case.

A first presentation of the diffusion constant, D4 (Fy,®),
obtained by studying the system at the different surface
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fractions at a very low temperature, 7 = 0.001, and for the
active forces, Fy, = 0.1,0.001, was given in Fig. 4. In this plot
D 4(Fy,¢) was normalized by the center-of-mass diffusion
constant of a single active molecule under the same conditions,
DA(Fye,0). At Foe = 0.1, the data falloff from 1 at ¢ =0
very quickly as soon as ¢ > 0. At this very low temperature
and relatively high active force small clusters appear and the
diffusion properties are altered by them. On the other hand, at
F,.t = 0.001 the data are close to those for the passive system
but they lie above them. They are not well represented by the
TO expression and, moreover, they give a first indication of
nonmonotonic dependence of the normalized data with the
active force, which we will discuss in more detail below when
using a higher bath temperature.

2. Working temperature

We will show in the following results for a higher tempera-
ture, T = 0.05, such that, for all the active forces considered,
the system is in the homogeneous phase, even though, as
shown, nontrivial fluctuation effects are clearly observable at
sufficiently high values of F,. We also studied the system at
other higher temperatures, obtaining results similar to those
found at T = 0.05. (The values of the effective temperature
found at 7 = 0.1 will be reported in Table I.)

The diffusion constant in the last diffusive regime of the
active system is shown, as a function of active force, in Fig. 11
for five densities, ¢ = 0.1, 0.2, 0.3, 0.4, 0.5. Dp(Fyet,¢) Was
extracted from the analysis of the mean-square displacement
in the late r > 1, regime. The figure demonstrates that
D 4(Fyt,¢) decreases with increasing ¢ and increases with
increasing F,.. The analytic expression for the single-particle
limit, ¢ = 0, given in Eq. (41) is added with a continuous
(orange) line. Clearly, the finite density induces a reduction
of the diffusion constant for all F,,. A quadratic fit of the
data for ¢ = 0.2, which conserves the F2, dependence of
the single-particle limit, is shown with a dashed (red) line.
More precisely, the form used is D4(0,0.2) +aF2, with
D 4(0,0.2) = 0.00153 obtained from the passive data at this
temperature and a = 0.273 for ¢ = 0.2 (green crosses x).
Had we left the F,; = O intercept as a free parameter in this

TABLE I. Values of T, from the analysis at different active forces and system’s densities at 7 = 0.05 and 7 = 0.1.

T =0.05
Fact ¢ = ¢=01 ¢:03 (/):OS
0.001 0.0500 0.0499 0.0488 0.0502
0.01 0.0509 0.0498 0.0502 0.0522
0.1 0.142 0.152 0.179 0.223
0.5 2.35 2.51 2.59 2.44
1 9.27 9.68 7.83 6.56

T =0.1
Fu 6= $=0.1 =03 =05
0.001 0.100 0.102 0.100 0.097
0.01 0.100 0.100 0.100 0.101
0.1 0.146 0.158 0.167 0.201
0.5 1.25 1.34 1.56 1.77
1 4.71 5.03 5.10 4.92
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FIG. 11. (Color online) The diffusion constant in the active sys-
tem at 7 = 0.05, Ds(F,,9), as a function of F,, for five values
of the system’s surface fraction given in the key. Normal scale is
used. The continuous (orange) line is the analytic expression for
¢ =0, see Eq. (41). The dashed (red) line is a fit of the data
to the form D4(0,0.2) + aFazcl with D4(0,0.2) = 0.00153 obtained
from the passive data at this temperature and a = 0.273 (the F2,
dependence found for the single molecule) for ¢ = 0.2 (green crosses
x). The dashed (blue) line is a fit to the form D4(0,0.2) + aF,
with D4(0,0.2) = 0.00153, a = 0.259, and o > 1.56 (the fit used in
Refs. [56,57], though o >~ 2.3 was found in that case for the low
density used). The corrections to this fit will be studied in the next
figures and discussed in the text.

fit we would have obtained 0.0098 which is relatively close to
the actual passive limit, as it should. This fit is acceptable at
small F, but a deviation at large values of the active force
is clear. Another fit, with an additional fit parameter as the
power in the F, dependence, is also shown with a dashed
(blue) line. This fit was used in Refs. [56,58] to describe the
diffusion constant of a rather dilute ensemble of interacting
active pointlike particles. We find here that a power law with
o =~ 1.56 fits the dumbbell data at ¢ = 0.2 rather correctly for
all F,. shown. The analysis of the ¢ dependence will be done
next, where a more convenient way of describing these data
will be proposed.

InFig. 12 we show the same diffusion constant, D 4 ( Fyct, @),
as a function of the surface fraction ¢. The values of the
active force F, are given in the key. We have already stressed,
when showing the very low temperature data, that as soon as
Fyet # 0 the rather complex TO packing fraction dependence
breaks down. We therefore seek for a different (and simpler) ¢
dependence of the diffusion constant of the active interacting
sample. In the linear-In presentation the data (up to ¢ >~ 0.4)
are rather well fitted by a straight line, suggesting

Da(Foet,§) = D a(Fyer,0) e 7F)? (49)

with D 4(Fy,0) the single-active-molecule diffusion constant.
(This is confirmed by a double linear presentation of data.)
The exponential dependence on ¢ is much simpler than the TO
expression and it cannot be taken as a formal proposal for the
behavior of D4 as we do not have an analytic justification
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FIG. 12. (Color online) The diffusion constant, as extracted from
the mean-square displacement of the dumbbells’ center of mass, as
a function of ¢, in a system of active molecules at 7 = 0.05. Upper
panel: A linear-In scale is used due to the large variation in the
absolute values of D4 (Fy,¢). The values of F,, are given in the
key. The values at ¢ = 0, shown with larger symbols, correspond to
the theoretical value of D4 for a single dumbbell given by Eq. (41).
The data for relatively small ¢ are rather well fitted by a straight line,
suggesting In D (Fyet, ) = In D (Fact,0) — b(Faet)p With D g (Foet,0)
the single-active-molecule diffusion constant. In the lower panel the
data are normalized by the diffusion constant of the single molecule
and they are presented in linear scale. Nonmonotonic behavior with
respect to Fy is observed, suggesting that the fitting function b( Fy)
should be nonmonotonic.

for it. We simply stress here that it provides an acceptable
description of data at this temperature.

In the second panel in Fig. 12 the finite ¢ diffusion constant
is normalized by the single-molecule one in the form used in
Fig. 4. The plot shows an unexpected nonmonotonic behavior
as a function of F,y, suggesting that the effective b(Fy)
should be nonmonotonic. It is interesting to observe that the
diffusion constant ratio increases at small values of F,. and
starts to decrease when clustering effects become relevant for
Faet = 0.3.

In the upper panel in Fig. 13 we display the exponential
factor e ?f«)® We use open symbols for the result of the
ratio D s (Fact,®)/ D a(Fact,0) between numerical data and filled
symbols for the the fit of DA (Fycr, @)/ D a(Faet,0), as a function
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FIG. 13. (Color online) Upper panel: The exponential e=?Fuc¢
for three densities given in the key. Original data are represented by
open symbols while the filled symbols represent the values obtained
from the fit in Eq. (49) of % performed in Fig. 12. The lines
are guides to the eye obtained with a spline of the filled points. Lower
panel: The correct TO description of data, g*;((g:‘g)) =[14+ H()]!
for F, =0 (with red solid line), confronted to the exponential
approximation in Eq. (49), which in this case yields b(F,, = 0) = 2.4
(with green dashed line). The two curves are very close to each other
upto¢ < 0.3.

of F,. Three values of ¢ were used and are given in the key.
Extracting b(F),) from here one confirms the nonmonotonic
dependence with F,, with b varying in the interval around
[1,2.7]. One observes that the fit proposed in Eq. (49) works
reasonably well for all the values considered for F,.. The
approximate exponential fit of data is compared to the TO
prediction for F,,; = 0 in the lower panel. The two are very
close for ¢ < 0.3 while they deviate considerably for higher
density.

To the best of our knowledge this nonmonotonic behavior
has not been observed yet in the literature.

C. The linear response function

We now turn to the study of the linear response function,
integrated over a period of time, as defined in Eq. (42).

We started with an analysis of the amplitude of the applied
perturbation to determine the optimal value to be used for
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FIG. 14. (Color online) The induced displacement or linear sus-
ceptibility for a system of active dumbbells at 7 = 0.05 and surface
fractions ¢ = 0.1 (above) and ¢ = 0.3 (below). The different values
of the active force used are given in the key. The magnitude
of the applied field is f = 0.01. One sees a nonmonotonic de-
pendence of w(Fy,¢) on F,y, similarly to what we observed in
DA(chlvd))/DA(Facho)'

each set of parameters. Indeed, one has to use a small-enough
applied force to keep the response within the linear regime
but still large enough to reduce the fluctuations. We found that
f = 0.01 yields the best results.

Figure 14 shows the time-integrated linear response func-
tion x (¢) as a function of time ¢ for various active many-body
systems at 7 = 0.05 and F, = 0.001, 0.01, 0.1, 1. In the
two panels (¢ = 0.1 and ¢ = 0.3) double linear scales are
used and the dependence of the linear response integrated over
time on F), is now made visible. The induced displacement at
a given time ¢ decreases with the dumbbells’ concentration.
While the F, = 0.001 and F, = 0.01 curves lie on top
of each other (within numerical accuracy), we notice the
nonmonotonic dependence on F, for higher activities. Indeed,
in both panels the curve for F,e = 0.1 lies above the ones
for F,c = 0.001, 0.01 and F,, = 1. Moreover, the data for
F,. = 0.01 and F, = 1 appear in different order for ¢ = 0.1
and ¢ = 0.3. We have not included data for intermediate active
forces 0.1 < Fy¢ < 1 in this plot to ease the visualization but
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FIG. 15. (Color online) Upper panel: The asymptotic slope of the
integrated linear response w(F,.,¢) as a function of ¢ for various
active forces given in the key. The two curves are exponential fits to
the data for F,, = 0.01, 0.1; the prefactor is 1/(2y) = 0.05. Lower
panel: The ratio p(Fye,@)/1(Fae,0) is plotted as a function of F,
for the density values given in the key. The scale on the right side
gives the values of w(F,.,¢). With open symbols, the ratios between
numerical data; with filled symbols the result of the exponential fit
of data. The curves are nonmonotonic and the relative motility is
enhanced for active forces of the order of 0.1 < F,y < 0.4.

~

we have analyzed them to extract the asymptotic slope (see the
data presented in Fig. 15 below).

The nonmonotonic dependence of y (Fyet,¢) on Fy for suf-
ficiently large ¢ is reminiscent of—though not the same as—a
negative resistivity, that is to say, a decreasing dependence of a
current on the applied field that drives it, observed, for instance,
in sufficiently dense kinetically constrained systems [84].

We extract the slope of these time-dependent curves for
times such that ¢ > ¢, and we call it du(Fy,¢). We already
know that at fixed Fyy, it is a decreasing function of the
dumbbell concentration ¢ and that at fixed density it is a
nonmonotonic function of F,.

The study of the dependence of 1« on these two parameters
is performed in Fig. 15. In the upper panel we plot p(Fyet, @)
as a function of ¢ for several active forces given in the key.
We confirm the monotonic decay with increasing density. The
two dashed curves are exponential fits as function of ¢ for two
choices of the active force, F,; = 0.01, 0.1.
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X

FIG. 16. (Color online) Parametric plot A%(x) for three values
of the activity, F,o = 0.01, 0.1, 1; two values of the surface
concentration ¢ = 0.1, 0.3; and T = 0.05. Double logarithmic
representation. The effective temperature can be read from the offset
in the y direction of the projection of the straight line in the long-time
regime after the shoulder, In 7. = In A> — In2y.

However, the dependence on F is less straightforward.
The curves for different F,. cross. For instance, there is
an inverting value of ¢, say, ¢*, so w(Fu = 1,9 < ¢*)
is smaller than w(F, = 0.1,¢ < ¢*) while one observes
W(Fyet = 1,0 > ¢*) > w(Foee = 0.1, > ¢*). At fixed den-
sity, the relative motility is enhanced for active forces of the
order of 0.1 < F,y < 0.4 but the trend is reversed for higher
active forces. The maximal effect is seen for ¢ >~ 0.2.

In the second panel we show the F,. dependence of the
ratio u(Faet,®)/(Fae,0) for three packing fractions given
in the key. The factor p(Faue,0) = 1/(2y) is just a constant
independent of F),. and ¢. We use open data points to represent
the ratio between the numerical data, and filled symbols
with joining lines to represent the outcome of the fit to an
exponential,

W(Fact, @) = ((Faer,0) e ) 9, (50)

Note that if c(F,) were given by b(F,) as for the diffusion
constant, we would have a ¢-independent T.¢ and the same
for ¢ = 0. We obtain a nonmonotonic dependence on Fy. for
¢ < 0.4 while the data for the highest density, ¢ = 0.5, may
approach a plateau at the value reached at F,,, = 0.1.

D. Fluctuation-dissipation relation

In Fig. 16 we display the parametric plot A%(x) for the
three choices of activity, Foey = 0.01, 0.1, 1, and two surface
fractions ¢ = 0.1, 0.3 all at 7 = 0.05. We see a very weak
dependence on ¢ and a strong dependence on F,y. All data
points at Fpe = 0 (not shown) fall on top of each other
(independently of ¢) as the passive system is in equilibrium
with the bath. The data for F,,; = 0.01 are very close to these
and the data fit gives values of the effective temperature (the
exponential of the vertical axis offset of the slope of the curves)
that are near the ambient temperature as well (see the numerical
estimates in Table I).

For larger values of the activity, the parametric construction
displays the familiar shoulder separating short from long
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FIG. 17. (Color online) Fitted values of T from the parametric
plot in Fig. 16 for five values of ¢ given in the key, all at the
temperature 7' = 0.05. In this representation, all data seem to be in
good agreement with the T formula for a single dumbbell, Eq. (47),
which is represented with the solid line. However, the actual values
of T,y are given in Table I, where one sees that there is, though, a
weak difference in the data for different ¢: for F,.; = 0.1, Tog tends to
increase with increasing ¢, while for F,., = 1, T. tends to decrease
with increasing ¢.

time-delay behavior [44,45]. The short time-delay fluctuations
are much affected by the microscopic dynamics controlled, in
this case, by the ambient temperature (the same for all sets
of curves) and the activity (very different for the three sets of
curves shown with different color and line style).

After the shoulder, at long time delays, the structural
dynamics where interactions between dumbbells are important
sets in. The effective temperature will be extracted from
the slope of the parametric curves (in linear scale) in this
time-delay regime or from the vertical axis offset of the slope in
the late-time regime in double logarithmic scale, as explained
above. That is to say, the asymptotic relation between linear
integrated response and mean-square displacement allows one
to extract the effective temperature as

DA(Fact»‘p)
M (Fact, ®) .

The effective temperature values are larger than the environ-
mental temperature for F,; > 0. The numerical dependence
of Togr on Fy is reported in Fig. 17, where T against Fy is
shown. Note that T is consistently larger than T and increases
with F,.. The solid line in the plot represents the theoretical
result for a single active dumbbell, T >~ T + CFazct /T. The
quadratic dependence on F2, is similar to what was found for
interacting active pointlike particles [56,57] and interacting
active polymers [57,58] at low density, comparable to ¢ =~ 0.1
in our case where no aggregation effects exist. The square
power-law dependence on F, also applies to the dumbbell
data for ¢ = 0.1. Although in this double logarithmic scale
the data seem to be very close to this form for all ¢, as we will
see, a closer look at them shows a nontrivial ¢ dependence.
The results for T for two working temperatures, 7 = 0.05
and T = 0.1, are summarized in Table I. At very small active
force we find Ty >~ T at all densities, as expected as the

kg Tett(Fact:9) = 619
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FIG. 18. (Color online) The ratio between the finite-density ef-
fective temperature and the single-molecule-limit one as a function
of the strength of the active force, T.g(Fucr,®)/ Tett(Facr,0), where
Toir(Foe,0) = T [1 + Pe?/8]. The temperature is 7 = 0.05. See the
text for a discussion.

system is near equilibrium (see the first rows in the two sets
of data shown in Table I). For intermediate active forces,
e.g., Fye = 0.1 (third rows in the tables), we see that T
is significantly larger than 7 and that it weakly increases with
increasing ¢. For still larger active forces the dependence on ¢
changes, as Ti decreases with ¢ for sufficiently large values
of ¢ (¢ 2 0.1 for T =0.05 and ¢ = 0.3 for T = 0.1, when
Fy« = 1). Consistently with the discussion in the previous
paragraph, for fixed density, Ts increases with F. for the two
working temperatures. Moreover, at fixed density and active
force Fyet > 0.5 we see that T, is lower at higher temperature.

In Fig. 18 we display the ratio between the finite-
density effective temperature and the single-molecule limit
one as a function of the strength of the active force,
Tett(Facts @)/ Tefr(Fact,0) versus Fo. If we could separate
the diffusion coefficient of a single dumbbell from the ¢
dependence as proposed in Eq. (49), and if we had the same
density dependence of the w(Fy.,¢) as in the remaining factor
in Da(Faer,®), meaning b(Fyer) = c(Faer), then Tesr(Face, @)
should be independent of ¢ and just equal to Tog(Fyer,0). The
data show that this holds for ¢ = 0.1 where the data points
are (within numerical accuracy) constant but it does not for
higher densities. For ¢ > 0.1 one observes a nonmonotonic
dependence of Tof(Facr, @)/ Tet(Fact,0) on Fy, reflecting in
some way the nonmonotonic behavior first shown for the
diffusion and response ratios D(Fact,@)/Da(Faet,0) and
W(Fyct,d)/ W (Faet,0). The finite-density effective temperature
is higher than the single molecule one for active forces in the
interval [0,0.5] while it is lower than the single molecule one
for active forces in the interval [0.5,1]. A maximum is reached
at around F,; >~ 0.1. We ascribe the change in behavior to the
presence of finite-size clusters in the sample for F,e 2= 0.5 and
sufficiently large density. These clusters (see the last panels in
Fig. 7) would respond differently from the homogeneous bulk
and their dynamics will differ. We also note that these curves
seem to cross at the active force strength value F, = 0.5.
A similar analysis of this ratio at a different temperature,
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T = 0.1, shows that the crossing occurs at a different value of
the active force strength, F, >~ 1, which corresponds to the
same Péclet number Pe = 20 (within numerical accuracy).

Finally, we note that T, > Ty, as soon as the active force
is intense enough to see a considerable deviation of both from
the ambient temperature. Confront, for instance, the analytic
values Teer = 0.142 and Ty, =~ 0.050 at ¢ = 0 and F,, = 0.1
and the numeric values T, =~ 9.68 and Ty, ~ 0.06 at ¢ = 0.1
and F,, = 1.

VII. CONCLUSIONS

In this paper we studied the dynamic properties of isolated
and interacting, passive and active, dumbbell systems.

The model studied here differs from other models of active
matter previously studied in the literature with numerical
techniques from a similar viewpoint. For instance, we do
not impose polar alignment mechanisms as in Refs. [36,85].
The active forces used here differ from the ones used in the
analysis of active macromolecules presented in Refs. [57,58];
while in the dumbbell system the active forces act along
the main axis of the molecule, in the polymer system the
active forces act only on the center monomer and in random
directions. The Langevin dynamics used in this paper differ
from the Monte Carlo rule chosen in Ref. [26] and from the
run-and-tumble bacteria models in Refs. [18,54]. Moreover,
we did not distinguish translation and rotational noise, as done
in Ref. [19], but we simply added independent Gaussian white
noise (related to the friction dissipative term in the usual way)
to the Langevin equations for the positions of the two atoms
in the dumbbell.

For fixed temperature and active force strength, this very
simple model has a phase transition between a homogeneous
and a phase-separated phase [24,25]. In this paper we focused
on the low-density phase in which the system is homogeneous
on average with, possibly, giant density fluctuations for
sufficiently high density [25]. We studied the dynamics for
three different temperatures and a wide range of densities and
active forces in this phase.

We first presented a detailed study of the mean-square
displacement of the interacting active sample. We analyzed
the single-passive and active-dumbbell dynamics and we
investigated how the finite density affects the various dynamic
regimes and, in particular, the diffusive properties in the late
time-delay limit that goes beyond the angular diffusion time
of the single molecule. As one had expected, we found that
the diffusion constant decreases with increasing density and
increases with increasing active force. The ratio between
the finite-density and the single-particle diffusion constant
exhibits an intriguing nonmonotonic dependence on the active
force. We also analyzed how the Tokuyama-Oppenheim
density-dependence expression for this ratio [75] is modified
by self-propulsion, finding that a simpler exponential decay
(with a nonmonotonic active force dependent factor in the
exponential) fits the data reasonably well.

We then studied the linear response function of the dumb-
bell displacement to infinitesimal perturbations that push them
in random directions. As usual, to minimize the numerical
error, we focused on the linear response integrated over time
(instead of the instantaneous response that fluctuates much
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more). We found that, at fixed time delay, the integrated linear
response decreases monotonically with increasing density. The
dependence on the active force is again nontrivial, with a
maximum response reached for active forces with strength
in0.1 < Fpe < 0.3 for densities in 0.1 < ¢ < 0.3.

The kinetic temperature is extracted from the asymptotic
value of a one-time observable, the kinetic energy. As already
discussed in detail in the context of glassy systems and granular
matter [44,45], although one proves that a system is not in
equilibrium with the thermal bath whenever Ty, # T, the
reverse is not true. In glassy systems in relaxation Ty, = T
while these systems evolve out of equilibrium. The reason is
that the kinetic temperature carries information about a fast
observable, the kinetic energy, that can be able to quickly
equilibrate with the environment, while other observables,
being slower, can still be far from equilibrium. Indeed,
the kinetic temperature does not characterize the large-scale
structural relaxation of glassy or driven systems.

The effective temperature notion, as obtained from the
deviation from the equilibrium fluctuation-dissipation theorem
linking spontaneous and induced fluctuations, has proven to
be very useful to understand the dynamics of slowly relaxing
passive systems, such as glasses and gently sheared super-
cooled liquids [45]. This concept has been explored in some
active systems as well as we explained in the Introduction. In
this work we studied the fluctuation-dissipation ratio for the
low-density active dumbbell system and we characterized it as
a function of density and activity. The effective temperature is
always higher than the ambient temperature, it increases with
increasing activity, and, for small active force, monotonically
increases with density while for sufficiently high activity it first
increases and next decreases with the packing fraction. This
effect should be due to the existence of finite-size clusters
for sufficiently high activity and density at the fixed (low)
temperatures at which we worked. The crossover occurs at
lower activity or density the lower the external temperature.
The finite-density effective temperature is higher (lower) than
the single-dumbbell one below (above) a crossover value of
the Péclet number.

In the active dumbbell system we measured Ty;, values that
are very close to T for F, = 0.01, 0.1, 1. The existence of
the kinetic temperature characterizing the short-time delay be-
havior of fluctuations, and the effective temperature extracted
from the fluctuation-dissipation relations at long-time delays,
does not invalidate the possible thermodynamic interpretation
of the latter. One simply has to focus on the dynamics of the
systems in one or another dynamic regime [44,45] and test its
thermodynamic properties within in it.

We want to stress once again that the effective temperature
is not a parameter that characterizes the statistical properties
of the activity but an intensive parameter that tells us about the
dynamic properties of the interacting and active many-body
system.

Fily and Marchetti [19] argue that the effective temper-
ature notion cannot apply to active matter systems in their
dense phase. They base their claim on the comparison of
instantaneous snapshots of typical clustered configurations
and equivalent thermal equilibrium ones with similar overlap
between particles at the same packing fraction. This argument
cannot be used to refute the effective temperature ideas in this
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context (nor in the glassy context either) as its very definition
is dynamic and correlation and linear response functions at
different times need to be calculated to derive T.¢. Having said
this, the analysis of T in a dense active phase has not been
performed yet and we cannot claim that the concept will still
be valid in this clustered phase.

The dumbbell system is particularly interesting as it allows
one to study translational and, simultaneously, rotational de-
grees of freedom. A recent analysis of the effective temperature
ideas in a passive dumbbell system has shown that the relation
between the two can depend nontrivially on the elongation of
the molecule [86]. It would be very interesting to explore
the effect of this parameter in the results that we showed
and to investigate the fluctuation-dissipation relations of
rotational degrees of freedom in the active dumbbell system as
well.

The values of the effective temperatures found from the
fluctuation-dissipation relation of the active system should
be confirmed with alternative measurements to test their
thermodynamic meaning. For instance, one could use spherical
passive particles as tracers and measure the effective tempera-
ture from their diffusion properties (as in Ref. [46]) and kinetic
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energy fluctuations. We will report on the use of tracers in this
context in a separate publication.

Finally, it would be interesting to analyze the effect that
external potentials may have on the dynamics of this active
dumbbell system. Tailleur and Cates derived a diffusive
approximation for active run-and-tumble particles [18,54] and
found that, for weak external potentials that modify only
slightly the velocity of the particles, the system should follow
equilibrium dynamics with the equilibrium bath temperature
replaced by T.. It will be interesting to check whether this
result holds for the active dumbbell system under appropriate
external forces and how it is modified by the finite density and
interactions within the sample and strong external potential
forces.
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