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Stability of fixed points and generalized critical behavior in multifield models
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We study models with three coupled vector fields characterized by O(N1) ⊕ O(N2) ⊕ O(N3) symmetry. Using
the nonperturbative functional renormalization group, we derive β functions for the couplings and anomalous
dimensions in d dimensions. Specializing to the case of three dimensions, we explore interacting fixed points that
generalize the O(N ) Wilson-Fisher fixed point. We find a symmetry-enhanced isotropic fixed point, a large class
of fixed points with partial symmetry enhancement, as well as partially and fully decoupled fixed-point solutions.
We discuss their stability properties for all values of N1, N2, and N3, emphasizing important differences to the
related two-field models. For small numbers of field components, we find no stable fixed-point solutions, and we
argue that this can be attributed to the presence of a large class of possible (mixed) couplings in the three-field
and multifield models. Furthermore, we contrast different mechanisms for stability interchange between fixed
points in the case of the two- and three-field models, which generically proceed through fixed-point collisions.
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I. INTRODUCTION

The N -vector model with O(N ) group symmetry plays
an important role in the understanding of crucial aspects
of renormalization-group (RG) flows: In four dimensions, it
exhibits a Landau pole and corresponds to a trivial theory
[1–4]. In other words, as an interacting model it is only valid
over a finite range of scales, thus constituting an effective
low-energy theory. This could affect the possible range of
validity of the standard model of particle physics [5–10] and
could also play a role in cosmology as, e.g., many inflationary
models probably share this feature. On the other hand, in
three dimensions the theory exhibits an important example
of an interacting RG fixed point [11,12]. Such fixed points
are crucial in the understanding of scaling and universality in
critical phenomena [13–15] and, more recently, they have been
of considerable interest, e.g., in the problem of the ultraviolet
(UV) completion of gravity [16,17]. On a more technical level,
well-known examples such as, e.g., the infrared (IR) attractive
Wilson-Fisher fixed point (FP) in the O(N ) model may provide
an important benchmark test for nonperturbative methods,
which one may then apply to other problems of interest (see,
e.g., Ref. [18]).

Extending the O(N1) vector model by a coupling to another
O(N2) symmetric vector field leads to complex dynamics that
has been discussed extensively in the context of multicritical
phenomena and systems with competing order parameters
[19–24]. Such a theory is characterized by an O(N1) ⊕ O(N2)
symmetry, which admits a number of interacting (IR attractive)
FPs. These travel through the coupling space of the model
as the numbers of field components N1 and N2 are varied.
At particular values of N1 and N2, two of these FPs can
collide and exchange their stability properties, cf. Fig. 1. In
this context, an IR stable FP is defined as featuring only
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two positive critical exponents, as this corresponds to the
number of relevant couplings that need to be tuned in order
to approach the FP. When two FPs collide, a FP with three
positive critical exponents trades one of them for a negative
exponent, while the second FP picks up the additional relevant
direction and becomes unstable. As a consequence, it turns
out that for every combination of N1 and N2 there is exactly
one stable FP. Of course, this statement assumes that one
considers renormalization-group trajectories within a single
domain of attraction. In general, the parameter/coupling space
of the model will allow for separate domains, where different
FPs might exist and may or may not be stable.

In this work, we will provide a comprehensive analysis
of a model with a coupling to an additional field, with a
resulting O(N1) ⊕ O(N2) ⊕ O(N3) symmetry. Note that the
O(N1) ⊕ O(N2) symmetry acts trivially on the third vector,
and similarly the first two fields transform as singlets under the
O(N3) symmetry. At first, one might expect that this model will
exhibit very similar behavior to that already encountered in the
case of the two-field models, and will feature a single stable FP
with three relevant directions at every value of (N1,N2,N3). In
this study, we present evidence for a rather different behavior,
where FPs exhibit a large number of relevant eigendirections
in a given range of values for the number of field components.
This leads to the absence of stable FP solutions in a part of the
parameter space. In the following, we will argue that this is a
generic feature of multifield models and is due to a significantly
increased number of possible mixed interactions compared to
the single-field or two-field models. This behavior is akin to the
absence of FPs in the low-energy effective models for phases of
strongly interacting matter [26,27] or frustrated spin systems
[28,29]. In both cases, one observes the absence of stable FP
solutions beyond some critical number of field components,
indicative of a first-order phase transition (see, e.g., Ref. [30]).

The presence of competing orders can change the nature
of a continuous transition or even drive it to be first order.
Although there are numerous examples in the literature, this
is probably best illustrated using the example of the two-field
model [19–24]. Already at the mean-field level one observes
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FIG. 1. (Color online) We show a sketch of the value of the third
largest critical exponent, θ3, of three different FPs (solid, dotted, and
dashed lines) in the O(N1) ⊕ O(N2) model at fixed N1 as a function
of N2. The regime where a FP is stable is indicated by the labels FP1,
FP2, and FP3. As the coordinates of two different FPs coincide at N∗

2

and N∗∗
2 , these FPs exchange their stability properties, and θ3 changes

its sign if evaluated beyond the stable regime. An explicit calculation
showing this situation can be found in Ref. [25].

a suppression of the coexistence region in the presence of
a strong repulsive interaction between the two competing
fields [31]. If the coupling assumes a critical value, the
coexistence region vanishes and the second-order lines merge
to a first-order transition. This dramatic change in the phase
diagram marks a change in the universality class of the adjacent
multicritical point. Fluctuations will favor either one of these
scenarios (corresponding to a tetracritical or bicritical point)
as long as the associated fixed point is within its domain of
attraction.1 Multifield models feature a different possibility:
fluctuation-mediated interactions might not only affect the
universality class of the multicritical point, but they might
even render it unstable, thus allowing no IR convergent RG
trajectory. The difference between two- and multifield models
lies in the distinct RG flow topologies and mechanisms of
stability trading between different fixed points, which leads to
the absence of a stable fixed point. We will investigate these
properties in detail in the following sections, as well as the
general behavior of systems with a large number of interacting
sectors.

The main motivation for this study is to gain an im-
proved understanding of generalized Wilson-Fisher universal-
ity classes (multicritical points) and to understand how these
might show up in the phase diagram of systems with multiple
order parameters. Previous work, in the context of systems with
two competing order parameters, has led to the understanding
that the effect of fluctuations plays an important role in
addressing the stability of a particular continuous transition
[19–24]. The SO(5) theory of high-Tc superconductivity
[23,32] provides one example, where fluctuations of the order
parameters are seen to alter the stability properties of the
associated fixed point and rule out such a theory as an effective
IR description in the region where both order parameters
become critical. On the other hand, it has been pointed out
that the interplay of two competing order parameters might
explain the presence of first-order transitions or spatially
inhomogeneous phases that exhibit finite wave-vector ordering
near quantum criticality [31]. Here, we argue that a first-order

1This is not the case if the interactions are sufficiently strong and the
total number of field components N = N1 + N2 is larger than some
critical value. Then, instead of a multicritical point, one observes a
genuine first-order transition in the phase diagram of the model.

transition might be a generic scenario for systems that feature
a large number of competing phases.

The outline of this paper is as follows: In Sec. II we present
the model under consideration in detail. In Sec. III we explain
the results of our study, discussing numerical results and
scaling relations for several different FPs. In the Appendices,
we present the renormalization-group flow equations for
these models in d dimensions, both in a local potential
approximation (LPA) and including anomalous dimensions.
Sections II and III are self-contained, and can be read without
referring to the technical details of our study.

II. MODEL

We consider a model with three different bosonic fields, φ1,
φ2, and φ3, with N1, N2, and N3 field components, respectively.
We derive the β functions from the nonperturbative functional
flow equation for the (Euclidean) scale-dependent effective
action �k [33] (see the Appendices for details, and see reviews,
e.g., Refs. [34–40]). This method has been shown to yield
results in very good agreement with those obtained from the
ε-expansion and lattice simulations in the case of the O(N )
Wilson-Fisher FP, see, e.g., Refs. [41–44], and the O(N1) ⊕
O(N2) FPs [25]. To leading order in the derivative expansion
[45], our ansatz for �k reads

�k =
∫

ddx

(
3∑

I=1

ZI (∂μφI )2 + Uk(φ1,φ2,φ3)

)
, (1)

where φa
I , a = 1, . . . ,NI , and φ2

I ≡ φa
I φa

I . Here, we have
introduced the scale-dependent effective potential

Uk =
∑
l,m,n

λ̄l,m,n

l! m! n!
(ρ̄I − κ̄1)l (ρ̄2 − κ̄2)m (ρ̄3 − κ̄3)n , (2)

which we have written in terms of the invariants ρ̄I = 1
2φ2

I ,
thereby making the O(N1) ⊕ O(N2) ⊕ O(N3) symmetry man-
ifest. The parameter k defines an infrared momentum cutoff
scale, on which the parameters and couplings depend. For
brevity, we do not indicate the scale dependence explicitly, i.e.,
λ̄l,m,n = λ̄l,m,n(k). Similarly, scale-dependent wave-function
renormalization factors are simply denoted by ZI . We expand
the scale-dependent effective potential Uk around (possibly)
nonvanishing scale-dependent minima for the fields, κ̄I .

For the identification of scaling solutions, we introduce
dimensionless renormalized couplings, given by

uk = Ukk
−d , (3)

κI = ZIk
2−d κ̄I , (4)

ρI = ZIk
2−d ρ̄I , (5)

λl,m,n = λ̄l,m,nZ
−l
1 Z−m

2 Z−n
3 k−d+(l+m+n)(d−2). (6)

We truncate the coupling space to a finite-dimensional sub-
space of the form Eqs. (1) and (2), which includes all relevant
operators, i.e., those with a positive critical exponent at the FP
of interest. Including field monomials up to order 4, 6, and 8
defines the local potential approximation, LPA 4/4 + η, LPA
6/6 + η, and LPA 8/8 + η, respectively (depending on the
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inclusion of a scale-dependent wave-function renormalization,
∂tZI �= 0).

To distinguish physically meaningful from spurious FPs
arising within a given truncation, we demand that a FP can
be continued to higher orders in the truncation, and universal
quantities, e.g., critical exponents, show signs of convergence.
Further, corrections to canonical scaling should not be too
large, as otherwise we would not expect our truncation to
be reliable. Moreover, we demand that all eigenvalues of
( ∂2uk

∂ρI ∂ρJ
)|ρI =κI

are non-negative. If this condition is violated,
the expansion point for the effective potential does not corre-
spond to its true minimum, and critical exponents evaluated
around this point will show poor convergence properties. The
parameter � ≡ det( ∂2uk

∂ρI ∂ρJ
)|ρI =κI

serves to separate the space
of couplings into different (not necessarily bounded) domains
of attraction. Within such a domain, there exists at most one IR
stable FP, characterized by the strength of correlations [46]. In
the following, we will be interested specifically in IR scaling
solutions in the � � 0 domain, corresponding to a minimum
of the effective potential.

With these preliminaries and definitions, we now turn to
analyze the fixed-point structure of this model.

III. FIXED-POINT ANALYSIS

For generic multifield models with
⊕

I O(NI ) symmetry,
a number of FPs and their stability properties can be deduced
from the existence of the O(N ) Wilson-Fisher FP. These FPs
are typically characterized by an enhancement of symmetry.

(i) The isotropic fixed point (IFP) shows maximal symmetry
enhancement: All couplings at a given order in the fields
take the same value, i.e., in the three-field model we have
λl,m,n|l+m+n=2 ≡ λ2, and similarly for higher-order couplings.
It is characterized by O(N ) symmetry, where N ≡ ∑

NI .
Accordingly, it features additional massless Goldstone modes,
even in the case of an underlying discrete symmetry, e.g., with
Z2 ⊕ Z2 ⊕ Z2 symmetry.

(ii) The decoupled fixed point (DFP) is characterized by
vanishing couplings between different sectors of the theory. In
a model with three fields, this implies λl,m,n = 0 if l,m �= 0,
l,n �= 0, or m,n �= 0. The values of the couplings in each sector
approach those of the corresponding O(NI ) Wilson-Fisher FP.
However, while the action at that FP is fully decoupled, critical
exponents that relate to mixed couplings are nontrivial.

(iii) The decoupled isotropic fixed point (DIFP) occurs for
the first time in a model with three fields: It is characterized by
a partial enhancement of symmetry, as two fields remain fully
coupled and the couplings in those sectors become degenerate.
Simultaneously, the third field decouples completely and its
couplings approach the corresponding values of the Wilson-
Fisher FP. There exist three realizations of this FP, as any of the
three sectors can be the one to decouple. For generic multifield
models, a set of different DIFPs exists, where any number of
the fields decouple, and the couplings in the remaining sectors
show a symmetry enhancement.

(iv) We may additionally infer the existence of another class
of FPs from the knowledge of the anisotropic scaling solution
in the two-field model with O(N1) ⊕ O(N2) symmetry. In
general, any FP of the two-field model can be extended to
the three-field model as a partially decoupled FP, where the

third field decouples from the other two and the fixed-point
values of its couplings are given by those of the Wilson-Fisher
fixed point. In particular, this applies to the biconical fixed-
point solution in the two-field model, which we identify as the
decoupled biconical fixed point (DBFP).

In analogy to the two-field case, we will refer to a
FP in the three-field model as stable if it features three
relevant directions. This terminology relates to the requirement
that these three parameters need to be tuned to reach the
multicritical point.

Our model, cf. Eqs. (1) and (2), contains nine running
couplings in the potential when we take into account all
operators up to fourth order in the fields, that is, the associated
parameters κI and couplings λl,m,n with l + m + n = 2. They
give rise to the nine largest critical exponents of the model.2

Going to higher orders in the expansion of the effective
potential, the number of running couplings λl,m,n increases.
Accordingly, the number of critical exponents will increase,
but those subleading critical exponents will be irrelevant.
The leading-order critical exponents will typically receive
corrections from the additional higher-order couplings and
will therefore vary with the order of the truncation.

A. Isotropic fixed point

To determine the critical exponents at the IFP in multifield
models, it is crucial to realize that a subset of those is
determined by the O(N ) Wilson-Fisher exponents. These
correspond to the directions in theory space that respect that
full symmetry, i.e., those directions that span the Wilson-Fisher
theory space. Additional directions in the full theory space
break (a subgroup) of the enhanced O(N ) symmetry, and their
associated critical exponents are therefore not associated with
the Wilson-Fisher critical exponents; see Fig. 2.

It accordingly follows that of the nine largest critical
exponents at the IFP, two are determined by the scaling ex-
ponents of the O(N ) Wilson-Fisher FP. Among the additional
critical exponents, one can observe a degeneracy, which can
be understood from the following considerations:

Sufficiently close to d = 4, i.e., in the vicinity of the
noninteracting fixed point, the relevant perturbations at the
Wilson-Fisher FP are determined by the spin-l representations
of the O(N ) symmetry group [47] (see also Ref. [23]). Here,
we will assume that such a classification of perturbations also
holds for arbitrary dimensions, and only operators up to quartic
order need to be taken into account. Defining the N -component
field  = (φ1,φ2,φ3), we find the following eigendirections of
the stability matrix at the IFP in the three-field model:

2These can be calculated from the stability matrix

�i,j = ∂βgi

∂gj

∣∣∣∣
FP

. (7)

Here, the gi label all the (dimensionless renormalized) running
couplings/parameters and βgi

define the corresponding beta functions.
The critical exponents are then given by

θi ∈ −spec(�). (8)
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FIG. 2. (Color online) This illustration of the two-dimensional
subspace of the two-field coupling space shows that the Wilson-Fisher
theory space is a one-dimensional subspace, corresponding to the
λ2,0 = λ0,2 line. The critical exponent along this direction corresponds
to the largest Wilson-Fisher critical exponent. Another eigendirection
of the stability matrix does not respect the enhanced symmetry of
the FP.

(i) A scalar quadratic perturbation at the IFP ∼m22,
where P2,0 = 2, defines the critical exponent ν related to
the divergence of the correlation length, i.e., [m2] = 1

ν
. This

critical exponent is thus always positive, corresponding to one
relevant direction.

(ii) From the quadratic perturbation P ab
2,2 = ab −

1
N

δab2 in the spin-1 representation of the O(N ) symmetry
group, we can construct an O(N ) invariant operator by a
suitable contraction of indices where, e.g., P2,2 = φ2

I − NI

N
2,

I = 1,2,3. Then, the perturbation ∼vP2,2 defines the critical
exponent y2,2 = [v] = d − [P2,2]. For the three-field model,
two independent operators of that form can be constructed.
Thus the corresponding critical exponent shows a twofold
degeneracy in the scaling spectrum. We emphasize that these
critical exponents are identical to those evaluated for the
O(N ) symmetric IFP in the two-field or anisotropic N -vector
models; see, e.g., Refs. [23–25,48]. These exponents are
always positive, adding two further relevant directions at
the FP.

(iii) A scalar quartic perturbation ∼u4, where P4,0 = 4,
which is irrelevant at the IFP and defines the Wegner critical
exponent ω, yields a negative critical exponent, i.e., [u] =
y4,0 = −ω.

(iv) A quartic operator in the spin-1 representation of the
O(N ) symmetry group: P ab

4,2 = 2P ab
2,2 can be contracted to

define the exponent y4,2 = d − [P4,2], which is also given by
the value calculated in the two-field model and shows a twofold
degeneracy in the three-field case.

(v) A quartic perturbation in the spin-2 representation of
the O(N ) symmetry group is given by

P abcd
4,4 = abcd − 1

N + 4
2[abδcd + p(a,b,c,d)]

+ 1

(N + 2)(N + 4)
(2)2[δabδcd + p(a,b,c,d)]. (9)

Note that p(a,b,c,d) denotes inequivalent permutation of
the indices on the preceding operator, e.g., abδcd →

1 2 3 4 5 6

0.4
0.2
0.0
0.2
0.4

N1

θ 4

1 2 3 4 5 6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

N1 N2 N3

θ 4

FIG. 3. (Color online) We show the fourth-largest critical expo-
nent at the IFP as a function of N1, with N2 = N3 = 1 (upper
panel) and as a function of N1 = N2 = N3 (lower panel), with the
LPA 4 result (green circles), LPA 6 (blue squares), and LPA 8 (red
diamonds). The LPA clearly converges rapidly. As this exponent is
positive beyond the LPA 4 and shows a threefold degeneracy, the IFP
is characterized by a total of six relevant directions.

cdδab + · · · or δabδcd → δacδbd + · · · . The corresponding
perturbation defines the critical exponent y4,4 = d − [P4,4],
which becomes negative for N = 3; cf. Fig. 3. This critical
exponent with threefold degeneracy is again determined by
the two-field model; see, e.g., Refs. [23,25].

Our explicit numerical results within the LPA up to eighth
order of the three-field model confirm this picture. We may
therefore directly exploit the LPA to order 12 including
anomalous dimensions within the two-field model to obtain the
corresponding exponents. Note that a comparable computation
in the full three-field model is quite demanding due to the large
number of couplings between different sectors of the model.
Using our results for the two-field case, see Ref. [25], we can
accordingly determine the nine largest critical exponents of the
model, cf. Table I. In general, the IFP shows a large number
of relevant parameters that require tuning to approach the FP.
In fact, the IFP is unstable for any integer combination of
field components (N1,N2,N3). It is clear that this pattern will
persist to generic multifield models where additional fields are
coupled to the system—for each additional sector, the number
of relevant directions at the IFP increases (at least) by 3.

B. Decoupled fixed point

At the DFP, the nonvanishing couplings, i.e., the mass
parameters and self-couplings, lead to one relevant and one
irrelevant direction in each sector. The associated critical
exponents are those of the corresponding O(NI ) Wilson-Fisher
FP. While the mixed couplings such as λ1,1,0 vanish at the
FP, the corresponding critical exponents are nontrivial. This
follows, as the FP is an interacting FP, and these residual
interactions affect scaling dimensions of operators even if the
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TABLE I. Critical indices for the IFP in LPA 12 including anomalous dimensions. Our notation corresponds to the one introduced in
Ref. [25].

N = ∑
NI θ1 = θ2 = y2,2 θ3 = 1

ν
θ4 = θ5 = θ6 = y4,4 θ7 = θ8 = y4,2 θ9 = −ω

3 1.790 1.362 0.086 −0.380 −0.756
4 1.818 1.292 0.196 −0.324 −0.775
5 1.842 1.240 0.289 −0.283 −0.797

corresponding coupling vanishes. In other words, contribu-
tions ∼λ1,1,0λ2,0,0 in the β functions yield nonvanishing entries
in the stability matrix even if λ1,1,0 = λ1,0,1 = · · · = 0.

At the DFP, the eigendirections corresponding to the
six largest critical exponents can be determined using a
scaling relation: The quartic couplings λ1,1,0, λ1,0,1, and λ0,1,1

correspond to eigendirections of the FP with critical exponents,

θ4 = 1

ν1
+ 1

ν2
− d, (10)

θ5 = 1

ν1
+ 1

ν3
− d, (11)

θ6 = 1

ν2
+ 1

ν3
− d, (12)

where νI = 1
θI

, I = 1,2,3. These scaling relations can be
motivated as follows [21,49]: At the DFP, the decoupling of
the three sectors implies [φ2

I φ
2
J ] = [φ2

I ] + [φ2
J ]. Furthermore,

the scaling dimensions of φ2
I are—due to the decoupling—

determined by the Wilson-Fisher critical exponents, such that
[φ2

I ] = − 1
νI

+ d. The relations Eqs. (10)–(12) follow directly.
We observe that the violation of the scaling relation is

slightly larger when anomalous dimensions are taken into
account. This is not necessarily surprising, as the main effect of
a running wave-function renormalization is not to give a sizable
improvement in the value of the critical exponents, but instead
to provide a first reasonable estimate of the value of η itself.
We expect that an enlargement of our truncation, including
a field-dependent wave-function renormalization (or, in other
words, momentum-dependent interaction terms), will improve
the situation.

Accordingly the stability of this FP can be determined com-
pletely from knowledge of the Wilson-Fisher FP. Employing a

TABLE II. We list the six largest critical exponents as a function
of N1,N2,N3 at the DFP, employing results from the LPA 12 including
anomalous dimensions from [25] and using the scaling relations
Eqs. (10)–(12).

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.571 1.571 1.571 0.142 0.142 0.142
2 1 1 1.459 1.571 1.571 0.030 0.030 0.142
3 1 1 1.367 1.571 1.571 −0.062 −0.062 0.142
4 1 1 1.296 1.571 1.571 −0.133 −0.133 0.142
2 2 1 1.459 1.459 1.571 −0.082 0.030 0.030
3 2 1 1.367 1.459 1.571 −0.174 −0.062 0.030
4 2 1 1.296 1.459 1.571 −0.245 −0.133 0.030
3 3 1 1.367 1.367 1.571 −0.266 −0.062 −0.062
2 2 2 1.459 1.459 1.459 −0.082 −0.082 −0.082
3 2 2 1.367 1.459 1.459 −0.174 −0.174 −0.082

LPA to order 12, including anomalous dimensions, we arrive
at the results given in Table II; cf. Ref. [25]. Our results
obtained within the LPA 8 for the three-field model show
reasonable agreement with results deduced from the scaling
relations; cf. Fig. 4. In fact, we may check the quantitative
accuracy of the scaling relations explicitly, without referencing
the results from the O(N ) model. We simply calculate the
deviations �θ4 = θ1 + θ2 − d − θ4, �θ5 = θ1 + θ3 − d − θ5,
and �θ6 = θ2 + θ3 − d − θ6, shown in Table III for the given
data sets.

Our explicit numerical results in LPA 8 deviate from the
results inferred from the LPA 12 in the two-field model in
some cases. There, we expect that an enlarged truncation in the
three-field model will give results in full agreement with those
deduced from the two-field case. As the number of couplings
grows very substantially with the truncation, such an explicit
check is beyond the scope of this work. Where LPA 8 and LPA
12 +η results deviate, the latter are more trustworthy.

C. Decoupled isotropic fixed point

For three interacting fields, we observe a new FP, where only
one of the fields decouples, while the other two sectors show
an enhancement of symmetry. For the following discussion,
we will assume that it is the φ1 sector that decouples, while the
remaining sectors have a O(N2 + N3) symmetry. Two other
possible DIFPs exist, for which one of the other subsectors
decouples, respectively.

Clearly, one positive critical exponent is inherited from
the O(N1) symmetric and another one from the O(N2 +
N3) symmetric Wilson-Fisher scaling spectrum. Two critical
exponents that are relevant for the stability properties of this
FP follow from the critical exponents of the spin-1 and spin-2
perturbations of the two-field isotropic O(N2 + N3) FP, i.e.,
y2,2 and y4,4. While y2,2 is always positive, y4,4 becomes
positive for N2 + N3 > 2. We therefore conclude that the DIFP
can only be stable for N2 = N3 = 1.

1 2 3 4 5 6
0.8
0.6
0.4
0.2
0.0
0.2

N1 N2 N3

θ

FIG. 4. (Color online) We show the fourth-largest critical expo-
nent at the DFP as a function of N1 = N2 = N3, with the LPA 4 result
(green circles), LPA 6 (blue squares) and LPA 8 (red diamonds). The
LPA clearly converges rapidly.
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TABLE III. We list the six largest critical exponents as a function
of N1,N2,N3 at the DFP, within the LPA 8 and LPA 8 with anomalous
dimensions (LPA 8 + η). We do not exploit the scaling relations,
but instead evaluate all critical exponents explicitly from the β

functions at the DFP. We check the scaling relation explicitly and
give the deviation to this order of the truncation. The inclusion of
the anomalous dimensions leads to a slightly larger violation of the
scaling relation.

LPA 8
N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.537 1.537 1.537 0.067 0.067 0.067
2 1 1 1.399 1.537 1.537 −0.057 −0.057 0.067
3 2 1 1.306 1.399 1.537 −0.275 −0.150 −0.057

�θ4 �θ5 �θ6

1 1 1 0.007 0.007 0.007
2 1 1 −0.007 −0.007 0.007
3 2 1 −0.020 −0.007 −0.007

LPA 8+η

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.564 1.564 1.564 0.080 0.080 0.080
2 1 1 1.447 1.564 1.564 −0.028 −0.028 0.080
3 2 1 1.359 1.447 1.564 −0.220 −0.112 −0.028

�θ4 �θ5 �θ6

1 1 1 0.047 0.047 0.047
2 1 1 0.038 0.038 0.047
3 2 1 0.027 0.035 0.038

There are two further exponents that we need to consider to
establish the stability of the DIFP solution. Both follow from
a scaling relation exploiting the decoupling of the 1-sector: At
the FP, the operators O1 = φ2

1(φ2
2 + φ2

3) and O2 = φ2
1(φ2

2 −
N2

N2+N3
(φ2

2 + φ2
3)) correspond to eigendirections of the stability

matrix. As we know from the Wilson-Fisher FP that the scaling
dimension [φ2

I ] = − 1
νI

+ d, we deduce that

[O1] = − 1

ν1
− 1

ν2+3
+ 2d, (13)

and accordingly the corresponding critical exponent is given
by

θ6 = 1

ν1
+ 1

ν2+3
− d. (14)

Similarly, we deduce for the second operator that the corre-
sponding critical exponent is given by

θ4 = 1

ν1
+ y2,2 − d, (15)

where y2,2 is the scaling dimension of the coupling belonging
to φ2

2 − N2
N2+N3

(φ2
2 + φ2

3) in the two-field case; cf. Ref. [25].
The first relation is the one that arises for a two-field DFP, and
gives a negative critical exponent (for values of N1 > 1).

At fixed N2 = N3 = 1, it is the critical exponent θ4 that
decides about the stability of the FP. Using results from the
two-field case (LPA 12 including an anomalous dimension,

TABLE IV. Critical exponents at the DIFP, using the LPA 12
including anomalous dimensions, and employing the above scaling
relations.

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.765 1.571 1.459 0.336 −0.042 0.030
2 1 1 1.765 1.459 1.459 0.224 −0.042 −0.092
3 1 1 1.765 1.367 1.459 0.132 −0.042 −0.174
4 1 1 1.765 1.296 1.459 0.061 −0.042 −0.245
5 1 1 1.765 1.242 1.459 0.007 −0.042 −0.299
6 1 1 1.765 1.203 1.459 −0.032 −0.042 −0.338

cf. Ref. [25]) to obtain θ1 = y2,2, θ2 = 1
ν1

, and θ3 = 1
ν2+3

, we
arrive at the results shown in Table IV. The DIFP is the stable
FP for N1 � 6 and N2 = N3 = 1.

Note that the derivation of the scaling relations is based
on the assumption that the operators corresponding to these
couplings are eigenoperators of the stability matrix. This
property is, to the best of our knowledge, an assumption
in d = 3 [23], and is usually not true within a truncation
of the RG flow. Nevertheless, the stability properties are
not incompatible with explicit numerical results within the
LPA 8, where the transition to stability occurs already at
N1 = 5. Explicitly, the critical exponents in LPA 8 at N1 = 5
and N2 = N3 = 1 read θ1 = 1.783, θ2 = 1.193, θ3 = 1.399,
θ4 = −0.024, θ5 = −0.027, and θ6 = −0.395.

D. Decoupled biconical fixed point

Beyond the isotropic and decoupled FP solutions, the two-
field models feature another scaling solution, which is the bi-
conical FP [23,24,50]. It is stable only in a restricted parameter
region of these models, where �2−field|BFP = λ2,0λ0,2 − λ2

1,1 >

0, as it transfers the stability from the IFP to the DFP. Certainly,
this FP should similarly manifest itself in the three-field case.
While one of the three sectors decouples, the two remaining
sectors should feature nondegenerate couplings, and we expect
that in a given range of the parameter space such a decoupled
BFP will be stable.

To obtain as precise results as possible, we should make
use of all methods available to us. In fact, results obtained
using an ε-expansion around d = 4 in the two-field case
allow us to infer the stability of the decoupled biconical
fixed point in the three-field case in one important instance:
From Refs. [23,24], we know that the biconical FP is stable
for N1 = 1,N2 = 2 in two-field models (and similarly when
the sectors are interchanged). Combined with the pattern in
Table V for the additional critical exponents in the three-field
model, we conjecture that the DBFP is stable for N1 = 1,
N2 = 2, and N3 � 2 (up to a permutation of the three sectors).
To calculate the corresponding critical exponents directly in
the three-field model, we expect that an extended truncation
will be necessary, taking into account a field-dependent wave-
function renormalization.

E. Search for further stable fixed points

We summarize our results obtained so far in Fig. 5. The
figure shows the stable FP solution for the corresponding
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TABLE V. Critical exponents at the DBFP in the LPA 8. Critical
exponents emphasized in bold font correspond to those of the two-
field BFP, while those in italics arise in the sector with O(N3) group
symmetry. Here, we list the DBFP for values of the field components
NI , where it is characterized by � > 0 (see text).

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1.2 1 1.753 1.381 1.537 0.285 −0.075 −0.005
1 1.4 1 1.535 1.448 1.537 0.105 −0.015 −0.010
1 1.5 1 1.537 1.462 1.537 0.068 0.001 −0.001
1 1.2 2 1.753 1.381 1.399 0.161 −0.200 −0.005
1 1.4 2 1.535 1.448 1.399 −0.020 −0.140 −0.010
1 1.5 2 1.537 1.462 1.399 −0.057 −0.124 −0.001
1.2 1 5 1.753 1.381 1.193 −0.051 −0.413 −0.005
1.5 1 5 1.537 1.462 1.193 −0.270 −0.338 −0.001

values of field components (N1,N2,N3). Apparently, no stable
FP exists in the range N1 < 6, N2 = N3 = 1 (up to a permuta-
tion of the sectors) that can be derived from the known scaling
solutions in the one- and two-field models. This motivates an
independent analysis of fully coupled FPs in the three-field
model, which we describe in the following subsections.

1. Stability trading between stable FPs

Generally, the β functions are nonpolynomial functions of a
large number of couplings in the multifield models. In the local
potential type approximations, the number of parameters and
couplings increases from 9 to 34 if the order of the truncation
is changed from 4 to 8. Thus, finding FPs in the multifield
models becomes a highly nontrivial search for zeros of the
β functions in a high-dimensional parameter space. In the
following, we consider strategies to identify new FP solutions
using a simple example. Consider the following β function,
which is expanded in terms of the coupling g (assuming that
higher than quadratic terms are zero),

βg = g(c + g), (16)

1 2 3 4 5 6N1

1 2 3 4 5 6N2

1

2

3

4

5

6

N3

FIG. 5. (Color online) We show the stable DIFP (large blue dots),
the stable DFP (small orange dots), and points without a stable FP
(small gray dots) using the LPA 12 + η results. We also include points
where the DBFP is conjectured to be stable (middle-sized green dots).

g

βg

GFP NGFP 

FIG. 6. (Color online) To illustrate the mechanism of how stabil-
ity properties are exchanged between FPs, we examine the β function
β = g(c + g) for varying parameter c describing the position of the
nontrivial FP. As the FPs pass by one another, the local derivatives
θ = −β ′(g) exchange their sign indicating an interchange of their IR
stability properties.

where c is a function of the parameters of the model (e.g.,
dimensionality, number of field components, etc.) and possibly
other couplings in a given truncation of the theory. Note
that such a form captures the essential properties of typical
fixed points, as it allows both for a trivial Gaussian FP and a
nontrivial interacting FP, as a function of the parameter c. The
critical exponent at a fixed point is given by

θ = − ∂βg

∂g

∣∣∣∣
FP

= −c − 2g|FP . (17)

Assuming that it is the exponent θ that decides about the
stability of the FP, we may distinguish the following scenarios:
For c < 0, the interacting FP at g = −c is infrared stable,
whereas the Gaussian FP is unstable. As the parameter c

increases toward positive values (as a function of, e.g., NI ), the
two FPs will approach each other. At c = 0, both FPs collide
and exchange their stability properties. Moving apart again
for c > 0, the interacting FP has become the unstable one,
whereas the noninteracting FP is stable; cf. Fig. 6. This simple
example demonstrates that FPs will typically change their
stability when they collide, as was also observed in Ref. [25]
in the two-field model with O(N1) ⊕ O(N2) symmetry.

Inspired by the above stability-trading mechanism, we may
devise a strategy to identify new FP solutions. Our search for
FPs will concentrate on the vicinity of points in coupling space,
where a known FP loses its stability.

2. Fully coupled fixed points in the three-field model

It turns out that the three-field model works in a different
way from the mechanism described above, which applies in
the two-field case: Within the LPA 4, we observe that the IFP,
DFP, and DIFP have partially overlapping stability regions. No
similar behavior occurs in two-field models, where stability
regions of different FPs always touch but never overlap, due to
the above stability-trading mechanism. However, this changes
dramatically as we include anomalous dimensions: While the
IFP inhabits the same points, the DIFP is now only stable
for N1 � 4, N2 = N3 = 1, etc. Extensive numerical searches
did not reveal a stable FP for N1 = 3, N2 = N3 = 1, and
similarly for the cases in which the sectors are interchanged.
A similar result holds for higher orders of the LPA: As there
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DBFP3 

0.1

0.0

0.1

λ1,1,0 0.1

0.0

0.1

λ1,0,1

0.1

0.0

0.1

λ0,1,1

FIG. 7. (Color online) We plot λ1,0,1, λ0,1,1, and λ1,1,0 as a
function of NI for the three DBFPs. At NI = 1.244, they each pass
through the origin of that coordinate system where the DFP sits. For
NI > 1.244, the three BFPs move away from each other toward more
negative values of the mixed couplings.

is a larger number of independent operators that serve as a
basis for the LPA, and thus potentially relevant directions in
the three-field model, the stability exchange mechanism may
not be captured by the simple model considered above. To
elucidate the differences in the three-field model, we will focus
on results obtained within the LPA to eighth order.

As a first example, let us consider the point N1 = N2 =
N3 ≈ 1.25. Here, the DFP is stable, but it gains three additional
relevant directions around N1 = N2 = N3 ≈ 1.244. As within
the two-field model, this point is marked by a collision with a
decoupled biconical FP (DBFP). The main difference is that
within a three-field model, three generalizations of the BFP
exist, cf. Sec. III D. For NI = 1.25, I = 1,2,3, all of these FPs
feature five relevant directions. Toward smaller NI , all three
DBFPs approach the DFP, and simultaneously collide with it at

1.240 1.242 1.244 1.246 1.248

0.0010
0.0005
0.0000
0.0005
0.0010

N1 N2 N3

θ 5

1.240 1.242 1.244 1.246 1.248
7.314
7.316
7.318
7.320
7.322

N1 N2 N3

λ 2

FIG. 8. (Color online) We plot the fifth-largest critical exponent
at the DBFPs (blue points of increasing value) and the corresponding
critical exponent at the DFP (red points of decreasing value) as a
function of NI (upper panel). Below, we show the coordinates of the
couplings λ2,0,0 and λ0,2,0 at the DBFP (blue diamonds and black
squares) and the couplings λ2,0,0 = λ0,2,0 = λ0,0,2 at the DFP (red
dots) in the vicinity of the collision point.

FIG. 9. (Color online) Here, we show the couplings λ2,0,0, λ0,2,0,
and λ1,1,0 at the DBFP (blue circles, purple squares, cyan diamonds)
and λ2,0,0 = λ0,2,0 = λ1,1,0 (red triangles) at the DIFP (uppermost
panel). We show the fourth- and fifth-largest critical exponent (middle
panel) at the DBFP as a function of N1 for N2 = 1 and N3 = 4.
Around N1 ≈ 1.16, the three couplings are clearly degenerate, as
expected for a collision with the DIFP. At the same point, the fourth
critical exponent crosses zero and becomes negative. Simultaneously,
the fifth critical exponent at the DIFP (lower panel) crosses zero and
becomes positive.

NI ≈ 1.244. At this point, the DFP gains one relevant direction
from each of the three DBFPs, which subsequently feature only
four relevant exponents; cf. Figs. 7 and 8. Thus this FP loses
stability in a fixed-point collision. The central difference to the
two-field case lies in the symmetry of the model, which forces
the DFP to collide with three other FPs simultaneously (for
N1 = N2 = N3 there is an exchange symmetry N1 ↔ N2 ↔
N3). As each of them starts off with five relevant directions,
the collision does not produce a stable FP for NI � 1.24, but
instead leaves behind three FPs with four relevant directions
each.

As a second example of new behavior in three-field models,
we consider the point where the DBFP collides with the DIFP
in the LPA 8. We fix N2 = 1 and N3 = 4: Then the DBFP
has five positive critical exponents at N1 = 1. Going to larger
values of N1, it collides with the DIFP at N1 ≈ 1.6. During
this collision, the DIFP becomes unstable, and the DBFP
gains one negative critical exponent; cf. Fig. 9. Similar to the
previous scenario, this FP collision is not sufficient to make
the DBFP stable. Following the DBFP to even larger values
of N1, it undergoes another collision, this time being hit by
two other FPs simultaneously. This is a feature that is not
observed in simple two-field models. Starting in the region
N1 < 1.2, these FPs do not seem to exist for real values of the
couplings—at least no sign of them showed up in extensive
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FIG. 10. (Color online) Here, we show the couplings λ1,0,1 and
λ0,1,1 at the two anisotropic FPs. As a function of N1 they converge
toward zero, which is where the DBFP is sitting. The collision occurs
at N1 ≈ 1.2, which is where the fifth critical exponent of these two
FPs (which numerically is nearly the same for both) approaches zero.

numerical searches. They can be thought of as being created
at the collision. Following this collision, they quickly move
away from the collision point for increasing values of N1.
Each of the newly created FPs features four relevant critical
exponents, while the DBFP is stable; cf. Fig. 10. Both new FPs
are anisotropic and define a new universality class that occurs
for the first time if three fields are coupled; cf. Table VI.

Due to the complicated dynamics of FPs in the parameter
space of three-field models, it seems that these models do
not necessarily feature a stable FP solution for all values of
the model parameters. One might now wonder why FPs of
three-field models show such a disproportionate increase in
the number of relevant directions for small values of NI .
While the Wilson-Fisher FP has one relevant direction, and
two-field models always feature FPs with only two relevant
directions, three-field models show FPs with more than three
relevant directions. We conjecture that this is related to the
fact that the transition from a two-field to a three-field model
implies the existence of more than one additional new class of

TABLE VI. We list selected FP values and critical exponents of
the first anisotropic FP in the LPA 8, restricting ourselves to couplings
at fourth order in the fields, and additionally giving the value of the
coupling associated with the three-field operator ∼φ2

1φ
2
2φ

2
3 .

N1 N2 N3 λ2,0,0 λ0,2,0 λ0,0,2 λ1,1,0 λ1,0,1 λ0,1,1 λ1,1,1

2 2 2 6.2 6.4 6.4 1.8 1.8 −2.2 −2.6
2 1 2 6.5 7.5 6.7 1.2 0.5 −2.1 −1.4
2 1 3 6.2 7.0 5.8 3.2 0.7 −1.8 −2.2
2 1 4 6.0 6.5 5.1 4.6 0.6 −1.3 −1.6

θ1 θ2 θ3 θ4 θ5 θ6

2 2 2 1.70 1.33 1.29 0.20 −0.17 −0.24
2 1 2 1.62 1.40 1.35 0.08 −0.05 −0.23
2 1 3 1.71 1.34 1.28 0.15 −0.10 −0.30
2 1 4 1.77 1.32 1.23 0.16 −0.07 −0.35

operators: While the transition from one to two fields only
adds the mixed interactions ∼(φ2

1)m(φ2
2)n, the transition to

three-field models features three different classes of mixed
interactions ∼(φ2

I )m(φ2
J )n, I,J = 1,2,3, in addition to the new

three-field couplings ∼(φ2
1)l(φ2

2)m(φ2
3)n. These seem to play

a particularly important role for small NI and imply that
the IR scaling properties cannot be accounted for by only
three free relevant parameters. Note that this does not imply
that the corresponding additional couplings need to become
relevant. Since these operators do not necessarily correspond to
eigendirections of the RG, they may mix with other operators
and yield corrections to the scaling spectrum.

Applying our results to determine the properties of possible
multicritical points in phase diagrams for systems with three
competing order parameters, we may conclude that models
with small NI will typically feature a first-order rather than
a second-order (multicritical) transition. In particular, this
applies to the phenomenologically relevant model of three
interacting Z2-Ising fields, i.e., Z2 ⊕ Z2 ⊕ Z2 symmetry.

IV. SUMMARY AND CONCLUSIONS

Here, we present a renormalization-group study of IR stable
FP solutions in three-field models with O(N1) ⊕ O(N2) ⊕
O(N3) symmetry. Our main results regarding the existence
of stable FPs are summarized in Fig. 5. Models in this class
exhibit FPs that generalize the Wilson-Fisher FP, falling into
three distinct categories, each characterized by the degree of
symmetry enhancement. We find a decoupled FP, a partially
isotropic FP solution, and a fully isotropic FP solution. Their
scaling spectrum can be deduced partially by considering per-
turbations around the single- and two-field models with O(N )
and O(N1) ⊕ O(N2) symmetry, respectively. We proceed by
deriving scaling relations between different critical exponents
to discover the stability properties of nontrivial FPs in the
three-field case. Apart from the generalized Wilson-Fisher
scaling solutions, we identify a decoupled biconical FP whose
scaling properties are partly inherited from the BFP in the
O(N1) ⊕ O(N2) symmetric model. As a main result of this
work, we find that these FPs all show a significantly larger
number of relevant critical exponents than in the two-field
case, in the region of small N1, N2, and N3. We tentatively
connect this result to the existence of a large number of mixed
interactions, and further conjecture that similar results will
hold for models with n > 3 interacting fields.

Summarizing our results, we find no IR stable FP for a small
number of fields (N1 < 6, N2 = N3 = 1, up to permutations of
the fields) in d = 3 dimensions. This result is certainly unex-
pected, as there is no evidence for similar behavior in coupled
two-field models. While, in principle, we cannot exclude the
possibility that stable FPs exist in that region of parameter
space, we find no evidence for their existence in extensive
numerical searches for FPs of the nonperturbative β functions.
The identification of FPs in the three-field models with
O(N1) ⊕ O(N2) ⊕ O(N3) is in general a difficult problem,
since the search has to proceed through a high-dimensional
coupling space. Nevertheless, the understanding of basic
stability transitions between different FPs serves as a guiding
principle to single out possible candidates for nontrivial FPs.
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Quite generally, in coupled-field models, stability seems to
be inherited from single mergers or collisions of different
FPs. Searches around such stability transition points have
not yielded any FP that carries over the stability properties
from the IFP (stable at small, noninteger values of NI < 1)
to the decoupled FP. This indicates that the dynamics of FPs
in O(N1) ⊕ O(N2) ⊕ O(N3) symmetric three-field or general⊕

I O(NI ) symmetric multifield models is very different from
that encountered in the simpler O(N1) ⊕ O(N2)-type models.

From these results, we may conclude that models with
phenomenological relevance such as, e.g., the Z2 ⊕ Z2 ⊕ Z2

symmetric model, will not feature a multicritical point in
its phase diagram. Certainly, it is challenging to find three
parameters that are accessible experimentally, and may be
tuned to the multicritical point. This would be necessary to
quantify the scaling behavior close to the corresponding FP,
or to show the absence of such a transition. Nevertheless, it
is conceivable that in the context of ultracold atomic systems,
such control of the system might be achievable [51].

Finally, let us comment on the general applicability of our
results to other systems of interest. The renormalization-group
flow equations are derived for general d Euclidean dimensions
and can be applied to d = 2, relevant for critical behavior of
low-dimensional condensed-matter systems, and d = 4, for
multifield models of inflation, as well as possible extensions
of the Higgs sector of the standard model. We leave this for
future work.
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APPENDIX A: FUNCTIONAL
RENORMALIZATION GROUP

The nonperturbative functional renormalization group
[33–38] defines a functional flow for the scale-dependent ef-
fective action �k , which interpolates between the microscopic
action S defined at some ultraviolet cutoff scale k = � and
the full effective action �k→0 = �, when the renormalization-
group parameter k is removed. It is given by

∂t�k = 1

2
Tr

∫
ddq

(2π )d

[
�

(2)
k (q) + Rk(q)

]−1
∂tRk(q), (A1)

where the logarithmic scale derivative is written in terms
of the parameter t = ln(k/�), and the second functional
derivative �

(2)
k (p,q) = δ2�k

δχ(−p)δχ(q) and �(2)(q)(2π )dδ(d)(p −
q) ≡ �(2)(p,q). Here, χ denotes the complete field content of
our model and the trace Tr denotes a summation over internal
degrees of freedom, i.e., both fields and field components.
The regulator function Rk implements a masslike cutoff
and regulates the infrared divergences. We take RIJ (q) =
RI (q)δIJ , I,J = 1,2,3, while the momentum dependence is
given by RI (q) = ZI (k2 − q2)θ (k2 − q2), where the wave-
function renormalization is scale-dependent. This choice is
referred to as the optimized regulator [52], which allows us
to derive fully analytic expressions for the nonperturbative β

functions, and it is thus a convenient choice to identify possible
scaling solutions.

APPENDIX B: SCALE-DEPENDENT EFFECTIVE POTENTIAL

We derive the renormalization-group flow equation for the effective potential by plugging our ansatz Eq. (2) into the flow
equation (A1) and projecting the right-hand side onto a constant field configuration:

∂tuk = −duk +
∑

I

(d − 2 + ηI )ρI ∂ρI
uk+2vd

∑
I

{
(NI − 1)l(I )

0 (∂ρI
uk)+l

(I )
R

({
∂ρJ

uk + 2ρJ ∂2
ρJ

uk

}
,{4ρJ ρK∂ρJ

∂ρK
uk}

)}
. (B1)

Here, v−1
d = 2d+1π

d
2 �( d

2 ) arises from the volume integration, and the anomalous dimensions are defined as ηI = −∂t ln ZI . In the

following, the notation follows Sec. II. The threshold functions l
(I )
0 and l

(I )
R (see, e.g., [53]) define the diagrammatic contributions

to the renormalization-group flow of the scale-dependent effective potential, where the upper index indicates the corresponding
sector. Using an optimized regulator function [52], the threshold functions take the following form:

l
(I )
0 (wI ) = 2

d

(
1 − ηI

d + 2

)
1

1 + wI

, (B2)

l
(1)
R

({wI },
{
δ2
I,J

}) = 2

d

(
1 − η1

d + 2

)
(1 + w2)(1 + w3) − δ2

2,3

2δ1,2δ1,3δ2,3 − δ2
1,2(1 + w3) − δ2

1,3(1 + w2) − δ2
2,3(1 + w1) + ∏

J (1 + wJ )
, (B3)

l
(2)
R

({wI },
{
δ2
I,J

}) = 2

d

(
1 − η2

d + 2

)
(1 + w1)(1 + w3) − δ2

1,3

2δ1,2δ1,3δ2,3 − δ2
1,2(1 + w3) − δ2

1,3(1 + w2) − δ2
2,3(1 + w1) + ∏

J (1 + wJ )
, (B4)

l
(3)
R

({wI },
{
δ2
I,J

}) = 2

d

(
1 − η3

d + 2

)
(1 + w1)(1 + w2) − δ2

1,2

2δ1,2δ1,3δ2,3 − δ2
1,2(1 + w3) − δ2

1,3(1 + w2) − δ2
2,3(1 + w1) + ∏

J (1 + wJ )
. (B5)
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Note that the nature of the interactions is such that only the radial modes l
(I )
R are affected by the couplings, e.g., δ2

1,2 = 4κ1κ2λ
2
1,1,0,

and equivalent couplings between the remaining sectors. One may easily check that in the limit of vanishing couplings, δ1,3 → 0
and δ2,3 → 0, the radial contributions l

(I )
R in the (1,2) sectors reduce to the threshold functions that were already derived in the

two-field model [25]:

l
(I )
0 (wI ) = 2

d

(
1 − ηI

d + 2

)
1

1 + wI

, (B6)
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From (B1), the flow equations for the couplings are derived by the differentiation with respect to the fields and successive
projection onto a nonvanishing constant background field configuration ρI = κI , defined by the minimum of the effective
potential. For some FPs it might be necessary to employ an expansion point where one or several of the κI are vanishing. In this
case, βκ3 ≡ 0. For a detailed discussion of this issue, we refer to Ref. [25].

We obtain the β functions for the couplings λl,m,n, l + m + n � 2:
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=
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, (B9)

where βλl,m,n
≡ ∂tλl,m,n. The β functions for the scale-dependent dimensionless field expectation values κI , I = 1,2,3, are given

by

βκ1 = �−1
{−�2,3∂ρ1∂tuk + (λ1,1,0λ0,0,2 − λ1,0,1λ0,1,1)∂ρ2∂tuk + (λ1,0,1λ0,2,0 − λ1,1,0λ0,1,1)∂ρ3∂tuk

}∣∣
ρI =κI

, (B10)

βκ2 = �−1
{−�1,3∂ρ2∂tuk + (λ2,0,0λ0,1,1 − λ1,1,0λ1,0,1)∂ρ3∂tuk + (λ0,0,2λ1,1,0 − λ1,0,1λ0,1,1)∂ρ1∂tuk

}∣∣
ρI =κI

, (B11)

βκ3 = �−1{−�1,2∂ρ3∂tuk + (λ2,0,0λ0,1,1 − λ1,1,0λ1,0,1)∂ρ2∂tuk + (λ0,2,0λ1,0,1 − λ1,1,0λ0,1,1)∂ρ1∂tuk

}∣∣
ρI =κI

. (B12)

Here, we have defined the coupling parameter

�1,2 = λ2,0,0λ0,2,0 − λ2
1,1,0, (B13)

and equivalently �1,3 and �2,3 (defined from the remaining quartic couplings in the three-field model), as well as the parameter

� = −2(λ2,0,0λ0,2,0λ0,0,2 − λ1,1,0λ1,0,1λ0,1,1) + λ0,0,2�1,2 + λ0,2,0�1,3 + λ2,0,0�2,3. (B14)

These parameters quantify the symmetry-enhancement properties of the system. In particular, for certain symmetry-enhanced
FPs, these quantities vanish exactly.

APPENDIX C: WAVE-FUNCTION RENORMALIZATION AND ANOMALOUS DIMENSIONS

To determine the scale dependence of the field-independent renormalization factor ZI from the functional flow equation (A1),
we perform a projection of the flow onto operators of the type ∼(∂μφI )2. This yields the scale dependence of the coefficient for
the corresponding operator in the effective action. We have

∂tZI = (2π )d

δ(d)(0)
lim
Q→0

∂

∂Q2

δ2

δϕI (−Q)δϕI (Q)
∂t�k, (C1)

where the functional derivatives are taken with respect to the Nambu-Goldstone (NG) degrees of freedom ϕI in the I sector. Note
there is no summation implied over the I index. For details of the derivation in the context of the O(N ) vector model, we refer
to [34,54].

The anomalous dimensions are defined via the scaling contribution to the wave-function renormalization, i.e., ηI = −∂t ln ZI ,
and take the following form in the three-field model:

η1 = 16vd

d
�−1{κ2λ

2
1,1,0 + κ3λ

2
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(
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+ 4κ2κ3[�2,3(λ2,0,0 + κ2�1,2 + κ3�1,3) − �(1 + κ2λ0,2,0 + κ3λ0,0,2)]
}
, (C2)
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η2 = 16vd

d
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, (C3)
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where the prefactor in the above expressions is defined as

� =
(

1 + 2
∑

I

λI κI + 4
∑
I<J

κI κJ �I,J + 8κ1κ2κ3�

)2

. (C5)

Note that Eqs. (C2)–(C4) reduce to the two-field results in the limit δ2
1,3 = δ2

2,3 = 0 (cf. Appendix B),

η1 = 16vd

d

κ2λ
2
1,1 + κ1(λ2,0 + 2κ2�1,2)2

(1 + 2κ1λ2,0 + 2κ2λ0,2 + 4κ1κ2�1,2)2
, (C6)

η2 = 16vd

d

κ1λ
2
1,1 + κ2(λ0,2 + 2κ1�1,2)2

(1 + 2κ1λ2,0 + 2κ2λ0,2 + 4κ1κ2�1,2)2
, (C7)

where we have written λ1,1 ≡ λ1,1,0, etc., as the 3-sector effectively decouples in this case. From here, it is easy to identify the
decoupling and symmetry-enhancement scenarios for the spectrum of anomalous dimensions by considering the proper limits of
the couplings between different sectors. These results for the two-field case are equivalent to the anomalous dimensions given in
Refs. [55,56].
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