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Controlling symmetry-breaking states by a hidden quantity in multiplicative noise
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The inhomogeneity of multiplicative white noise leads to various coupling modes between deterministic and
stochastic forces. We investigate the phase transition induced by the variation of the coupling mode through
manipulating its characteristic parameter continuously. Even when the noise strength is fixed, an increase of this
parameter can enhance or inhibit the symmetry-breaking state. We also propose a scheme to implement these
phase transitions experimentally. Our result demonstrates that the coupling mode previously considered to be a
mathematical convention serves as an additional quantity leading to physically observable phase transitions. This
observation provides a mechanism to control the effect of noise without regulating the noise strength.
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I. INTRODUCTION

Many complex phenomena in physics and biology exhibit
a stochastic nature. Adding noise to deterministic dynamical
equations has been shown to be effective in describing such
processes [1]. The separated time scales between deterministic
and stochastic forces lead to possible variation of their
coupling mode. In particular, the solution for the stochastic
differential equation with multiplicative white noise depends
on the sampling points of the integral sum. A general notation
for this coupling mode is given by introducing a parameter
α ∈ [0,1], and the prepoint (α = 0), midpoint (α = 0.5),
and postpoint (α = 1) inside each bin of the integral sum
correspond to Ito’s [2], Stratonovich’s [3], and anti-Ito’s [4]
integral, respectively. In previous studies, the coupling mode
was usually considered as these isolated cases, and different
fields have their preferred choice, such as Ito’s mode in
mathematical economics [5], and Stratonovich’s [6,7] or anti-
Ito’s [8–11] mode in physics. For a given stochastic system,
the use of α is not a priori clear, and it was still under
debate recently. For example, the transition implemented with
an analog simulator agrees with that of Stratonovich [12],
while the force measurements [13–16] and the drift measure-
ments [17] on a Brownian particle near a wall favor anti-Ito’s
mode.

Rich phenomena induced by multiplicative noise have
been discovered, including noise-induced fronts [18], pattern
formation [19], and phase transitions [20,21]. For the phase
transitions that are the main topic here, previous studies
have mainly investigated several isolated coupling modes.
For example, the qualitative independence of Ito’s and
Stratonovich’s modes was found in the disorder-order phase
transition [22,23], while the disorder-order-disorder phase
transition was supposed to appear only with Stratonovich’s
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mode [24,25]. As an intrinsic mathematical property, the
parameter α can vary continuously [11]. From a physical point
of view, one may naturally ask the following question: can the
continuous variation of α lead to physically observable phase
transitions? In this paper, we study the symmetry-breaking
phase transition induced by the continuous variation of α. In
contrast with previous conclusions [21–23], we find that the
order-disorder phase transition does depend on the coupling
mode. Surprisingly, an increase of α can either enhance or
inhibit the symmetry-breaking state even when the noise
strength is fixed.

We show the effect of the α mode on the order parameter
by studying two representative cases of the following lattice
model Eq. (1). The two models serve as the simplest possible
examples to demonstrate the present phase transition. The
variation of the α mode has opposite effects on the two models,
which can help us to demonstrate the regulatory mechanism
of the α mode by comparison. In addition, the continuous
variation of the coupling mode recently became partially con-
trollable (α ∈ [0,0.5]) in noisy electric circuits [26], where α is
manipulated by the ratio between the driving noise correlation
time and the feedback delay time. With this mechanism of
controlling α, we further provide an experimental scheme to
implement the present phase transition.

This paper is organized as follows. In Sec. II, we introduce
the lattice model and the method to track the phase transition.
We then show the phase transition induced by the coupling
mode. In Sec. III, we present a detailed discussion on the
difference between our result and the previous phase transition
induced by the noise strength. We also demonstrate the
physical origin and experimental realization of the present
phase transition. In Sec. IV, we summarize our work.

II. PHASE TRANSITION INDUCED
BY THE COUPLING MODE

To state our investigation, we consider the following
type of d-dimensional lattice model given by the Langevin
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equation:

q̇i = f (qi) + √
εg(qi)ξi(t) − J

2d
h(qi)

∑
j∈n(i)

(qi − qj ), (1)

where the scalar variable qi(i = 1, . . . ,Ld ) denotes the lattice
point, and the symbol n(i) is the set of the 2d nearest neighbors
of the site i. The noise intensity ε plays the role of the
temperature (kBT ), and J represents the coupling strength.
Here {ξi(t)} are Gaussian white noises with 〈ξi(t)〉 = 0 and
〈ξi(t1)ξj (t2)〉 = δij δ(t1 − t2), and the average is taken with
respect to the noise distribution. The drift term is f (qi), the
coupling function is h(qi), and the diffusion matrix Dij (q)

.=
δij g(qi)g(qj )/2. For Eq. (1), there is a freedom in choos-
ing α:

∫ tN
t0

g[q(t)]dW (t)
.= limN→∞

∑N
n=1 g[q(t∗n )][W (tn) −

W (tn−1)] with t∗n = αtn + (1 − α)tn−1, where the Wiener
process W (t) is defined as �W (t)|tNt0

.= ∫ tN
t0

ξ (t)dt [1]. As W (t)
is not a bounded variation function, various α values lead
to different results of integration, corresponding to different
coupling modes between stochastic and deterministic forces.

A. Method

We next introduce a method to track the phase transition.
We analyze the equilibrium distribution ρeq(qi) solved through
the Fokker-Planck equation for Eq. (1) with the α mode [10]:

∂tρ(q,t) = −∂q

[
f (q) + αg

′
g(q)

− J

2d
h(q)

∑
j∈n

(q − qj ) − ε

2
∂qg

2(q)

]
ρ(q,t), (2)

where we drop the subscript i as each site can be analyzed
similarly by neglecting the boundary effect, and the superscript
prime denotes the derivation with respect to q. The maximum
point of the equilibrium distribution corresponds to the
symmetry-breaking state. More specifically, by setting the
left side of Eq. (2) to be zero, we first get the equilibrium
distribution ρeq(q). The mean value of each site 〈q〉 then
satisfies the condition

〈q〉 =
∫ +∞

−∞
dq[qρeq(q)]. (3)

To solve this equation, we adopt the classical Weiss mean-field
method [21–25,27], which has been applied successfully to
study phase transitions in a wide class of stochastic dynamics,
and its validity has been demonstrated by the simulations.
From this method, the expected value for neighbor sites is
assumed to be a constant 〈q〉. Then, the order parameter m =
|〈q〉| can be calculated by the self-consistency Eq. (3). Two
solutions for the symmetry-breaking state are obtained from
the maximum point of the equilibrium distribution, which leads
to the phase diagram in terms of parameters J , ε, and α.

B. Phase transition in two models

For the first model, when the noise intensity is fixed, the
symmetry-breaking state can be generated by increasing α. For
some fixed α values, the reentrant phase transition (disorder-
order-disorder) can be observed when the noise strength
increases. Specifically, the symmetry-breaking state does not

appear for Ito’s mode (α = 0) with arbitrary noise strength. In
contrast with the first model, the symmetry-breaking state can
be inhibited through increasing α for the second model. For
some fixed α values, the symmetry-breaking phase transition
happens when the noise strength increases. The symmetry-
breaking state does not appear for anti-Ito’s mode (α = 1)
when the noise strength varies. We provide a detailed analysis
in the following.

The first model is given by Eq. (1) with

f (q) = −q(1 + q2)2, g(q) = 1 + q2, h(q) = 1. (4)

The equilibrium distribution is obtained by solving Eq. (2):

ρeq(q) = 1

Z(1 + q2)2(1−α)
exp

{
−q2

ε
− (J/ε)q2

1 + q2

+ J

ε

[
q

1 + q2
+ arctan(q)

]
〈q〉

}
, (5)

where Z= ∫ +∞
−∞ dq[1/(1 + q2)2(1−α)] exp{−q2/ε − (J/ε)q2/

(1 + q2) + (J/ε)[q/(1 + q2) + arctan(q)]〈q〉} is the normal-
ization constant. From Eq. (3), the order parameter as a
function of J , ε, and α can be solved. With F (〈q〉) .= Z〈q〉,
the phase diagram for the symmetry-breaking state is obtained
by [(∂F/∂〈q〉)/Z]|〈q〉=0 = 1, which leads to the relation of J ,
ε, and α:

J

Nε

∫ +∞

−∞
dq

{
1

(1 + q2)2(1−α)
exp

[
−q2

ε
− (J/ε)q2

1 + q2

]

×
[

q2

1 + q2
+ q arctan(q)

]}
= 1, (6)

with the normalization constant N= ∫ +∞
−∞ dq[1/(1+q2)2(1−α)]

exp[−q2/ε − (J/ε)q2/(1 + q2)].
The J -ε relations as phase diagrams for different α values

from Eq. (6) are plotted in the upper panel of Fig. 1. Each curve
separates the phase region 〈q〉 = 0 (below the curve) from the
region 〈q〉 
= 0 (above the curve). For a fixed ε, the coupling
strength J for the appearance of the symmetry-breaking state
increases when α decreases. The order parameter m as a
function of ε and α when J = 20 is plotted in the upper panel of
Fig. 2. For a different α mode, the interval of ε corresponding
to the symmetry-breaking state with J = 20 varies, including
(i) no symmetry-breaking state for α = 0, (ii) approximately
1 < ε < 20 for α = 1/2, and (iii) approximately 1 < ε < 310
for α = 1. In addition, the reentrant phase transition happens
once the symmetry-breaking state appears for various α modes.
Our result is consistent with the previous result, where only
Stratonovich’s mode was considered [24].

The second model has

f (q) = − aq

1+cq2
, g(q) =

√
2

1+cq2
, h(q) = 1

1+cq2
,

(7)

where a and c are positive coefficients. The equilibrium
distribution is

ρeq(q) = 1

Z(1 + cq2)α−1
exp

{
− (a + J )q2

2ε
+ J

ε
q〈q〉

}
, (8)
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FIG. 1. (Color online) The phase diagram is plotted in terms of
coupling strength J and noise intensity ε. Each curve separates the
two phase regions: 〈q〉 = 0 and 〈q〉 
= 0. The upper panel is for model
1: 〈q〉 = 0 is below the curve and 〈q〉 
= 0 is above; no symmetry-
breaking state appears for Ito’s noise with any fixed coupling strength
J and noise intensity ε. The lower panel is for model 2: 〈q〉 = 0 is on
the left of the curve and 〈q〉 
= 0 is on the right. No symmetry-breaking
state appears for anti-Ito’s noise with any fixed coupling strength J

and the noise intensity ε. The colors denote different α values: for
the upper panel, the colors in the legend correspond to the colors of
lines from right to left; for the lower panel, the colors in the legend
correspond to the colors of lines from left to right.

where Z = ∫ +∞
−∞ dq[1/(1 + cq2)α−1] exp[−(a + J )q2/(2ε)

+ (J/ε)q〈q〉]. We obtain the order parameter from Eq. (3).
The relation of J , ε, and α is

J

Nε

∫ +∞

−∞
dq

q2

(1 + cq2)α−1
exp

[
− (a + J )q2

2ε

]
= 1, (9)

where N = ∫ +∞
−∞ dq[1/(1 + cq2)α−1] exp[−(a + J )q2/(2ε)].

The J -ε relations with a = 1 and c = 0.5 from Eq. (9) are
plotted in the lower panel of Fig. 1. Different α values have
corresponding different phase diagrams. Each curve separates
the phase region 〈q〉 = 0 (on the left of the curve) from
the region 〈q〉 
= 0 (on the right of the curve). The order
parameter m as a function of ε and α when a = 1, c = 0.5,
and J = 4 is plotted in the lower panel of Fig. 2. For a

FIG. 2. (Color online) The order parameter m is plotted as a
function of noise intensity ε and coupling mode α. The upper panel
is for model 1 when the coupling strength J = 20: the symmetry-
breaking state does not appear for Ito’s noise; it appears approximately
when 1 < ε < 20 for Stratonovich’s noise and approximately when
1 < ε < 310 for anti-Ito’s noise. The lower panel is for model 2 when
a = 1, c = 0.5, and the coupling strength J = 4: the symmetry-
breaking state appears approximately when 1 < ε for Ito’s noise,
when 4 < ε for Stratonovich’s noise, and it does not appear for
anti-Ito’s noise. The increase of α enhances (inhibits) the ordered
state for model 1 (2).

different α mode, the noise intensity ε corresponding to the
symmetry-breaking state varies, including (i) approximately
1 < ε for α = 0, (ii) approximately 4 < ε for α = 1/2, and
(iii) no symmetry-breaking state for α = 1.

The fact that the second model stays in the symmetry-
breaking state once it is reached and no reentrant transition
occurs can also be shown by the analysis of the maximum
of the effective potential [21]: the symmetry-breaking state
arises near ε ≈ a/[2c(1 − α)]. From this method, we notice
that the noise intensity ε → ∞ when α → 1. Therefore, no
symmetry-breaking state appears for α = 1, and we reach the
same conclusion as the above result. As a result, the phase
transition for Eq. (7) does depend on α. In addition, the
dependence of the phase transition on the coupling mode is in
contrast with the previous conclusion [22,23], where the phase
transition was regarded as qualitatively independent of α.
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FIG. 3. (Color online) The order parameter m is plotted as a
function of the coupling mode α: it is positively correlated with
α for the first model (lines of cross) as the relation between the
diffusion coefficient and the spatial coordinate ∂D/∂q|q>0 > 0, while
it is negatively correlated for the second one (lines of cycle) as
∂D/∂q|q>0 < 0. The parameter setting is as follows: the noise
intensity ε = 15 (blue upper line), ε = 10 (green middle line), and
ε = 5 (red lower line); the coupling strength J = 20 for the first
model; a = 1, c = 0.5, and J = 4 for the second model.

An increase of α has opposite effects on the order parameter
of the above two models, as illustrated in Fig. 3. The detailed
analysis is as follows. In our models, when the spatial
coordinate of state variable gets further from the origin,
the position of sampling points αqn + (1 − α)qn−1 (n is
positive integer) inside each bin of the integral sum has
greater value for larger α. Therefore, the system takes stronger
diffusibility with increasing α when the correlation of the
diffusion coefficient D(q) and the spatial coordinate q is
positive, i.e., ∂D/∂q|q>0 > 0, and vice versa. As the order
parameter is defined as 〈q〉, the system becomes more ordered
when the diffusibility is stronger. The first (second) model has
∂D/∂q|q>0 > 0 (< 0), and thus an increase of α can enhance
(inhibit) the ordered state.

III. DISCUSSION

The phase transition discussed above is different from
those induced by the noise strength [20,21], where α was
considered to be isolated points. Physically, the noise strength
induces the reentrant phase transition in the first model,
while the coupling mode does not lead to reentrant behavior.
Mathematically, different stochastic integration for a Langevin
equation can be transformed from one to another by adding
a corresponding drift term in the equation [1,28,29]. The
variation of the coupling mode is then equivalent to adding
a noise-induced drift, while the change of the noise strength
mainly influence the diffusion term. Thus, the coupling mode
and noise strength are two different sources with cooperative
effects for the phase transition.

The physical origin of the phase transition induced by α is
the variation on the coupling mode between the deterministic
and the stochastic forces [30]. Different α modes come from

the uncertainty between forces with different time scales [1]:
the mesoscopic time scale for the focused level and the
microscopic time scale with fine structures for the noise.
Intuitively, the fast variable noise term can be considered as a
series of random pulses. A different kicking position for the
pulses on the system’s state leads to distinct effects on the order.
The coupling mode determines at which position the random
pulses drive the state variable of the system, and larger α

represents later pulses. When the amplitude of a pulse is
positively (negatively) correlated with the state variable, or
equivalently the diffusion coefficient ∂D/∂q|q>0 > 0 (<0),
an increase of α enhances (inhibits) the ordered state by
providing stronger (weaker) pulses. As a result, with a fixed
noise intensity, the variation of α can lead to the appearance of
multistable equilibrium probability and a symmetry-breaking
phase transition.

A recent experiment sheds light on a possible way to control
the α mode. A transition among α modes is implemented
(Stratonovich-to-Ito transition with α ∈ [0,0.5]) in an electric
circuit [26]. This method can be applied to experimentally
test our result on the phase transition induced by α. More
specifically, the equilibrium distribution can be measured
by the analog simulator for a given stochastic differential
equation with J = 0 in Eq. (1) [12]. When J 
= 0, the effect of
neighbors

∑
j∈n(i) qj/2d = 〈qj 〉 is constant according to the

Weiss mean-field method, and thus it can also be implemented
by the analog simulator. As a result, given an a priori value
for the order parameter m = 〈qj 〉 in Eq. (1), the equilibrium
distribution can be measured. Then, Eq. (3) generates a value
for the order parameter. When the generated value agrees
with the a priori one, we get an actual value of the order
parameter. We can repeat this process of measurements for
various coupling modes α and noise intensity ε, and we plot
m − (ε,α) diagrams comparable with Fig. 2.

IV. CONCLUSION

We have demonstrated that taking the coupling mode
between deterministic and stochastic forces as a continuous
parameter induces physically observable phase transitions.
When the diffusion coefficient has a positive or negative
correlation with the spatial coordinate q, an increase of α can
enhance or inhibit the symmetry-breaking state, respectively.
This mechanism is useful to control the effect of noise through
manipulating the α mode without varying the noise strength.
The origin of different α modes is the uncertainty in the
mutual interaction between the focused level of description
(mesoscopic) to its lower (microscopic) level. Our result
provides an impetus for the search of physical consequences
induced by the continuous variation of the coupling mode
between different hierarchical levels both theoretically and
experimentally.
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