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From explosive to infinite-order transitions on a hyperbolic network
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We analyze the phase transitions that emerge from the recursive design of certain hyperbolic networks that
includes, for instance, a discontinuous (“explosive”) transition in ordinary percolation. To this end, we solve the
q-state Potts model in the analytic continuation for noninteger q with the real-space renormalization group. We
find exact expressions for this one-parameter family of models that describe the dramatic transformation of the
transition. In particular, this variation in q shows that the discontinuous transition is generic in the regime q < 2
that includes percolation. A continuous ferromagnetic transition is recovered in a singular manner only for the
Ising model, q = 2. For q > 2 the transition immediately transforms into an infinitely smooth order parameter
of the Berezinskii-Kosterlitz-Thouless type.
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Real-world networks [1–3] exhibit dramatically distinct
phenomenology, with a profound imprint of their geometry
on the dynamics, when compared with lattices or mean-field
systems. What we now call complex networks, aside from
being random, possess geometries dominated by small-world
bonds and scale-free degree distributions [4,5]. These lead
to novel, and often nonuniversal, scaling behaviors unknown
for lattices. For example, they exhibit discontinuous transition
even in ordinary percolation [6] as exactly solvable realizations
of the so-called “explosive” percolation transitions [7–13].
Unlike the Achlioptas process, it is easy to prove that this
discontinuity exists [6,14]; however, its origin results from the
network structure, not from a correlated process [7].

Hyperbolic networks combine a lattice geometry with a
hierarchy of small-world connections. They were originally
proposed as solvable models for complex networks [15–19].
These recursively defined structures provide deeper insights
into small-world effects compared to random networks that
otherwise require approximate or numerical methods. Work on
percolation [6,17,20–22], the Ising model [15,23–25], and the
q-state Potts model [19,26] have shown that critical behavior,
once thought to be exotic and model specific [3], can be
universally categorized near the transition point [26,27] for
a large class of hyperbolic networks, such as those discon-
tinuous percolation transitions described in Refs. [6,14]. They
exemplify a nontrivial category of the explosive cluster-growth
mechanisms leading to the discontinuous transition [28].
Yet, it has been noted that this discontinuity arises only as
a nongeneric case of the general theory [27], making its
prevalence in percolation on hyperbolic networks somewhat
surprising.

Here, we illuminate the origin of the explosive percolation
transition by investigating the q-state Potts model on a simple
hyperbolic network, MK1 [6]. The analytic continuation in
q [29] reveals that the discontinuity that characterizes the
explosive percolation transition related to the limit q → 1,
rather than being a special case, persists for all q < 2. Instead,
the Ising ferromagnet (q = 2) emerges as the singular case
between all discontinuous (q < 2) and all infinite-order transi-
tions (q > 2), with an infinitely smooth order parameter of the
Berezinskii-Kosterlitz-Thouless (BKT) type that is consistent
with the theory in Ref. [27]. In particular, using the real-space
renormalization group (RG), we trace the existence of the

discontinuous transition to the nongeneric behavior of the
critical exponent yh that describes the response of the system
to a conjugate external field [6,19]. This exponent, that is
temperature dependent in these hyperbolic networks, happens
to reach its maximum exactly at the critical temperature
for q < 2, resulting in merely quadratic corrections in its
local expansion. We argue that this exceptional behavior for
q < 2 is intimately connected with the manner in which
geometric, latticelike features are coupled with the hyperbolic
structure.

As a simple and generic member of the class of hyperbolic
networks, we consider here MK1, as depicted in Fig. 1. MK1
is recursively generated, starting with two sites connected
by a single edge at generation k = 0. Each new generation
combines two subnetworks of the previous generation and
adds a single edge connecting the end sites. As a result, the
kth generation contains Nk = 2k + 1 vertices, 2k backbone
bonds, and 2k − 1 small-world bonds. It is an effectively
one-dimensional version of the small-world Migdal-Kadanoff
hierarchical diamond lattice [15,17], which has been used
previously to prove the existence of the discontinuous tran-
sition in ordinary percolation [6]. Recently, this discontinuity
was studied for a variety of other hyperbolic networks for
bond and site percolation in Ref. [14]. References [19,26]
used MK1 to study the q-state Potts model for certain integer
values of q � 2. In principle, to relate the Potts model to
percolation at q → 1 first requires a q derivative of the partition
function [29]. However, we find that this derivative hardly
affects the analytic properties, as we show below by comparing
each quantity obtained for q → 1 with the exactly known
percolation results.

In close correspondence to the Ising model on hyperbolic
networks discussed in Ref. [24] (see also Ref. [26]), we in-
troduce the following couplings. All variables xi interact with
their nearest neighbors along the backbone with a coupling K0

(solid links in Fig. 1), while small-world neighbors interact
with a coupling K1 (shaded links in Fig. 1). Every xi also
experiences a uniform external field B. Then, in preparation
for applying the renormalization group, the Potts Hamiltonian
can be written as

− βH =
Nk/2∑
n=1

(−βHn) + R(K1), (1)
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FIG. 1. (Color online) Depiction of hyperbolic network MK1 of
generation k = 5. The recursive, hierarchical pattern is evident. The
network features a regular geometric structure, in the form of a one-
dimensional backbone, and a distinct set of small-world links (shaded
green arched lines). Only the backbone bonds renormalize.

where R contains all remaining coupling terms of higher level
in the hierarchy while the xi on the backbone can be sectioned
into a sequence of three-variable graphlets. These consist of
two adjacent lattice-backbone bonds bridged by an arched
small-world bond in Fig. 1, each with their own “sectional”
Hamiltonian,

− βHn = 2I + K0
(
δxn−1,xn

+ δxn,xn+1

) + K1δxn−1,xn+1

+B
[(

δ1,xn−1 + δ1,xn

) + (
δ1,xn

+ δ1,xn+1

)]
. (2)

Here, I is a constant that fixes the overall energy scale. We
conveniently choose new variables, similar to (inverse) “ac-
tivities” [30], C = e−2I , κ = e−K0 , and θ = e−B . Similarly
defined are the control parameters of temperature μ = e−βJ

and field η = e−βh, with β = 1/kT and h as the external
field. The “raw” (unrenormalized) couplings are considered
uniform: K0 = K1 = βJ , where we fix the energy scale
via J = 1, while B = βh. However, we find that K1 does
not change under renormalization and retains its raw value,
e−K1 = μ, a key distinguishing feature of these hyperbolic
networks [24,27]. Thus, the initial values of the renormalizing
activities are C0 = 1, κ0 = μ, and θ0 = η. Then, we can rewrite
the sectional Hamiltonian as

e−βHn = C−1κ−(δxn−1,xn+δxn,xn+1 )μ−δxn−1 ,xn+1

×θ−[(δ1,xn−1 +δ1,xn )+(δ1,xn +δ1,xn+1 )].

The RG consists of successively tracing out the central variable
xn and expressing the renormalized activities (C ′,κ ′,θ ′) in
terms of their priors (C,κ,θ,μ):

q∑
xn=1

e−βHn = (C ′)−
1
2 (κ ′)−δxn−1 ,xn+1 (θ ′)−(δ1,xn−1 +δ1,xn+1 ).

Although the remaining variables xn±1 present us with up to q2

relations between new and old quantities, only three relations
are independent. We can obtain the RG flow for (θ ′,κ ′) at size
Nk+1 in terms of (θ,κ) at size Nk ,

θ ′ = θ

√
θ2 + κ2 + (q − 2)θ2κ2

1 + (q − 1)θ2κ2
, (3a)

κ ′ = κμ[1 + θ2 + (q − 2)θ2κ]√
[1 + (q − 1)θ2κ2][θ2 + κ2 + (q − 2)θ2κ2]

. (3b)

Note the explicit dependence on the control parameter μ

(temperature), characteristic for these networks [27].
First, we analyze the RG flow in Eq. (3) in the absence of an

external field. For η = 1 = θ0, it remains θk = 1 for all k > 0
and the RG flow for the bond coupling becomes

κ ′ = κμ
2 + (q − 2)κ

1 + (q − 1)κ2
. (4)

For the Ising model, q = 2, Eq. (4) reduces with κ=̂jk

and μ=̂j to the equivalent of Eq. (6) in Ref. [26], and for
percolation, q = 1, it reduces with κ=̂1 − T and μ=̂1 − p to
Eq. (1) in Ref. [6].

In the thermodynamic limit (Nk→∞), Eq. (4) provides the
fixed points κ ′ = κ = κ∞:

κ0
∞ = 0, κ±

∞ = μ

2

(q − 2)

(q − 1)

[
1 ±

√
Dq(μ)

μ(q − 2)

]
, (5)

where κ+
∞ > κ−

∞, with

Dq(μ) = μ2(q − 2)2 + 4(2μ − 1)(q − 1). (6)

The strong-coupling limit κ0
∞ = 0 always exists for any

q. However, the Ising case and the limit of Eq. (5) that
corresponds to percolation both have to be considered with
some care. Yet, we easily reproduce Eq. (2) in Ref. [6]. We
plot the behavior of κ±

∞ in Fig. 2 as a function of μ for a range
of q that highlights the peculiarities of both cases.

To obtain the thermal exponent yt , we calculate the relevant
eigenvalues along each branch of the fixed-point lines. The
Jacobian of the RG flow in Eq. (4), evaluated at κ = κ∞,

q=1 q=2q = 1

2

q=7
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FIG. 2. (Color online) Plot of the fixed-point couplings κ±
∞ in

Eq. (5) as a function of temperature μ for values of q = 1
2 ,1,2,7

(black lines, from left to right on the bottom). The blue line locates
the branch-point singularity in κ±

∞, evaluated at Dq (μ) = 0 in Eq. (6),
which starts from μ = 0 and κ = −∞ at q = 1 and rises to cross
κ = 0 exactly at μ = 1

2 for q = 2, above which it recedes back to
μ = 0 for q → ∞. The green line marks the raw coupling κ0 = μ

from which the RG flow in Eq. (4) initiates and flows vertically
towards the nearest stable fixed point, κ+

∞ > 0 or κ0
∞ = 0. For all

q > 2, the location of the branch point provides the critical point
μc(< 1

2 ) with an infinite-order BKT transition [27]. For all q < 2,
μc = 1

2 and the transition becomes discontinuous.
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FIG. 3. (Color online) Plot of the Jacobian eigenvalues λ in Eq. (8) as a function of temperature μ for the q-state Potts model on MK1
for q = 1,1.2,2,7. For all q at the strong-coupling fixed point κ0

∞ = 0 we have λ0 = 2μ, while the two branches λ± belonging to nonzero κ±
∞

change dramatically with q and vary nontrivially with μ. At q = 1, λ− = 0 and λ+ = 2 − 2μ remain disconnected but coalesce for 1 < q < 2
(here, q = 1.2) with a branch point at unity (dashed line). At q = 2, both branches degenerate into λ± = (1 − μ)/μ. For q > 2 (here, q = 7),
the branches reopen and resemble the case 1 < q < 2. Stable fixed points correspond to λ < 1 (black), unstable ones to λ > 1 (red).

provides the eigenvalue

λt = ∂κ ′

∂κ

∣∣∣∣
κ∞

= 2μ
[
1 + (q − 2)κ∞ − (q − 1)κ2

∞
]

[
1 + (q − 1)κ2∞

]2 . (7)

Hence, with Eqs. (5), we get

λ0
t = 2μ, (8)

λ±
t = 1 − μ

q2μ

{
4(q − 1) + μ(q − 2)2

[
1 ±

√
Dq(μ)

μ(q − 2)

]}
.

The behavior of the eigenvalues, depicted in Fig. 3, follows
closely the description developed for general hyperbolic
lattices in Ref. [27].

As Fig. 2 shows, for q < 2 the critical point is located
always at μc = 1

2 , such that the relevant thermal scaling
exponent [31] yt = log2 λ+

t is given by

yt ∼ 2(μc − μ)

ln 2

(
q < 2,μ → μc = 1

2

)
, (9)

which indicates that yt vanishes for all q < 2. As the generic
theory suggests [27], this linear behavior is to be expected
when κ+

∞ is regular at μ = μc such that it possesses a linear
slope, which is satisfied for q < 2; see Fig. 2. Equation (7)
implies that this will remain true also for percolation, q = 1,
in particular. However, for the Ising ferromagnet, and exactly
only at q = 2, λt in Eq. (7), and hence yt , becomes a function
of κ2

∞. Miraculously, at q = 2 the branch point in κ∞ is placed
exactly on the κ = 0 axis at μc with κ±

∞ ∼ ±√
2(μ − μc).

Both effects combine into a linear correction but a different
coefficient,

yt ∼ 4(μc − μ)

ln 2

(
q = 2,μ → μc = 1

2

)
. (10)

For q > 2, κ+
∞ no longer intercepts the strong-coupling

fixed-point line at κ0
∞ = 0 (see Fig. 2), rendering the issue

moot. The critical behavior with an infinite-order BKT-like
transition is now described by analyzing the RG flow near
the branch point itself, as previously described [15,19,24,27],
moving the critical point to μc = μB < 1

2 for q > 2, where
Dq(μB) = 0 in Eq. (6) gives μB = 2[q

√
q − 1 − 2(q −

1)]/(q − 2)2.
We now study the effect of an external field for η → 1 to

analyze the behavior of the order parameter near the transition.
In the limit η → 1, i.e., θ → 1, and κ → κ∞, Eqs. (3) provide
the Jacobian matrix ∂(θ ′,κ ′)

∂(θ,κ) , which turns out to be upper

triangular, since ∂θ ′
∂κ

= 0 at θ = 1. Hence, the thermal exponent
yt remains unaffected by the magnetic field. Accordingly, we
obtain the magnetic exponent yh = log2 λh with

λh = ∂θ ′

∂θ
= (q − 2)κ2

∞ + 2

(q − 1)κ2∞ + 1

= 2

μq
+ q − 2

2μq(q − 1)
[μ(3q − 2) − √

Dq(μ)], (11)

when evaluated along κ+
∞ near μc = 1

2 . As λh is purely a
function of κ2

∞, there are no odd correction terms for the
exponent near μc,

yh ∼ 1 − 8q

(2 − q)2

(μc − μ)2

ln 2
(q < 2,μ → μc). (12)

At q = 2, we arrive at a more generic form, but merely by the
fact that κ+

∞ now has its root singularity:

yh ∼ 1 − 2
(μc − μ)

ln 2
(q = 2,μ → μc). (13)

Using the standard scaling relation [31] for the behavior of
the order parameter near the transition,

m ∼ (μc − μ)β, β = 1 − yh

yt

, (14)

we find β = 0 for all q < 2, while β = 1
2 for q = 2. The

latter result, predicting a second-order transition with a mean-
field-like exponent, was obtained previously [26]. However,
the former result suggests that the discontinuous percolation
transitions found on various hyperbolic networks [6,14,32] are
not an artifact of the particular percolation limit q → 1 of the
q-state Potts model but are maintained for all q < 2. As soon
as q > 2 (now with μc = μB), 1 − yh remains finite while
yt → 0 for μ → μc such that β diverges and the transition
becomes instantly infinite order, as explained in Ref. [27].

Another perspective on these peculiar transitions is pro-
vided by the exponent [26]

	 = 2yh − 1 (15)

for μ > μc, and 	 ≡ 1 for μ < μc, that describes the
divergence of the susceptibility with the system size,

χ ∼ N	(μ), (16)
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FIG. 4. (Color online) Plot of the exponent 	 as a function of temperature μ for q = 1, 3
2 ,2,7. The physical branch is given by the thickened,

dark lines. The red or dashed lines mark the unphysical branches of 	. Note that 	(μ) is continuous at μc = 1
2 for q < 2 with a parabolic

continuation but degenerates at q = 2 (i.e., for the Ising model) to a linear continuation. For q > 2, 	(μ) is discontinuous at μc = μB < 1
2

and continues after the drop-off on the lower branch of the root singularity.

not only near the transition but for all temperatures 0 � μ � 1.
For percolation, χ is related to the average size of the largest
cluster, 〈S(p)〉, after a derivative in q. In Fig. 4, we plot 	(μ)
in Eq. (15) for various q. The nongeneric behavior of yh also
manifests itself in 	: no branch of 	 ever exceeds unity, as
could be generically expected, but rather 	 maintains a global
extremum exactly of unit height for all q 
= 2. Also Ref. [32]
found the same “delicate” behavior in 	 while studying the
transformation of the transition from discontinuous to infinite
order for a one-parameter family of percolation models. The
generic case can be observed, for instance, for the families
of Ising models studied in Ref. [24] by applying an external
field [33], where yh and hence 	 exhibit linear corrections
near μc because the branch-point singularity is outside the
physical regime and 	 develops a maximum at an unphysical
value 	 > 1, rendering the magnetization order parameter
continuous at μc.

While we found that the RG results for the couplings and
yt of the q-state Potts model are continuously connected to
those of percolation at q → 1, this is not true for 	 (i.e., yh

or possibly other quantities that are affected by a q derivate of
the partition function). However, a direct comparison reveals
that the Potts model at q = 1 in Eq. (12) and the percolation
result from Eq. (14) in Ref. [6] merely differ by a factor of
2 in their second-order correction near μc. Their difference
is more pronounced for larger μ, of course. For example, 	

remains positive for all μ < 1 in percolation and only vanishes
for zero bond probability, p = 1 − μ = 0, suggesting that
diverging clusters are always possible. In turn, 	 vanishes for
nontrivial values of μ in the q-state Potts model (see Fig. 4),
as is easily obtained from Eq. (11). While insignificant for
q < 2, this remains true, remarkably, at q � 2, which implies
another potentially interesting transition in the behavior of χ

at temperatures above criticality where fluctuations become
independent of system size N , as shown in Fig. 5. There,
we demonstrate the collapse of the data for χ when properly
rescaled with system size N according to Eq. (16). We observe
a local minimum at μc which reaches a finite value on
this scale for q < 2 but appears to rapidly go to zero for
all larger q with increasing N . For q → 1, a further factor
of q − 1 is required to converge to a thermodynamic limit.
(Remember that χ at q = 1 is not directly related to the
percolation cluster size, which would require an additional
derivative of q in the partition function.) Most remarkable
is the spike in χ at the point μ where 	(μ) becomes zero;
see Fig. 4. Only above such temperature do fluctuations
behave according to a high-temperature regime, independent

of system size N . Such a transition from finite-size to diverging
but subextensive fluctuations was absent, for instance, in the
Ising model studied on any of the networks considered in
Ref. [24].

To understand what makes these networks behave in such
a nongeneric way, let us consider the case of percolation on
a binary tree, the most extreme hyperbolic network. Starting
from the root of the tree at level i = 0, the average number
of sites at branching level i > 0 that are connected in a single
cluster with the root is 〈ni+1〉 = 2p〈ni〉; hence, the average size
of the rooted cluster at system size Nk = 2k+1 − 1 is 〈Sk(p)〉 =∑k

i=0〈ni〉 = [(2p)k+1 − 1]/(2p − 1), or 〈S(p)〉 ∼ N	(p) with
	(p) = log2(2p) for 1

2 < p < pc = 1. Just like on any other
hyperbolic network, there are diverging, yet subextensive,
clusters well below pc. (In fact, such diverging clusters emerge
as soon as there are spanning clusters connecting the root to
the perimeter of the tree, for 1

2 < p < pc.) However, here we
find linear corrections,

	(p) ∼ 1 − 1

ln 2
(pc − p) (p → pc), (17)

remembering that μ=̂1 − p. We suggest that the relevant
feature that distinguishes the networks with nontrivial ex-
plosive percolation transitions [28] with pc < 1 from the
trivial cases with pc = 1, like this tree, is the interplay
between a geometric backbone and the small-world hyperbolic
links. For instance, adding lateral links turns the tree into
a nonamenable graph with a nontrivial transition, studied
in Refs. [18,34]. Similarly, MK1 here, or the hyperbolic
Hanoi networks in Ref. [14], become nontrivial by mixing
geometric with hyperbolic structures. It is remarkable that in
Ref. [22] the tree approximation for 	(p) for percolation on
a hyperbolic network, that is exact for p < pl but predicts
a trivial transition at pc = 1 with linear corrections in 	(p),
breaks down above pl exactly where the geometric backbone
begins to facilitate spanning clusters [17] and ultimately leads
to a nontrivial explosive transition at pc < 1, again with
quadratic corrections in 	(p) [14]. While renormalization
group calculations provide these exact results, it will likely
require more detailed numerical simulations or better models
to elucidate the role of geometry in the dynamics of cluster
formation that lead to such corrections.

Finally, we speculate on the origin of the singularity of the
q-state Potts model for q → 2. What distinguishes the q � 2
case from that for q < 2 is the nature of the Zq symmetry [29].
While for q < 2 (and, correspondingly, for percolation) it is
sufficient to merge two clusters by merely adding a link, for
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FIG. 5. (Color online) Plot of the susceptibility χ as a function of temperature μ, rescaled with the appropriate power of system size N

according to Eq. (16) using 	(μ) (and 	 ≡ 1 for μ < μc). From left to right, panels refer to q ↘ 1, q = 1.2, q = 2, and q = 7. For the larger
values of q, the rescaled χ are shown for a sequence of increasing system sizes to demonstrate convergence in the thermodynamic limit, while
for the case q → 1 we show that χ requires a further rescaling by 1/(q − 1) to converge to a finite value throughout (at some fixed, already
large system size, here N = 2512). Note that in this scaling, the susceptibility develops a minimum at the corresponding value of μc; however,
it is sharply peaked at the respective value at which 	 reaches (and then remains at) zero (see Fig. 4).

q � 2 (i.e., for the Ising spin model or other multistate degrees
of freedom) two clusters only merge when both share the same
orientation. Apparently, the analytic continuation in q delimits
these two distinct cluster-growth processes via a singularity at
q → 2.
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[16] S. Boettcher, B. Gonçalves, and H. Guclu, J. Phys. A: Math.

Theor. 41, 252001 (2008).
[17] S. Boettcher, J. L. Cook, and R. M. Ziff, Phys. Rev. E 80, 041115

(2009).
[18] T. Nogawa and T. Hasegawa, J. Phys. A: Math. Theor. 42,

145001 (2009).
[19] T. Nogawa, T. Hasegawa, and K. Nemoto, Phys. Rev. Lett. 108,

255703 (2012).
[20] A. N. Berker, M. Hinczewski, and R. R. Netz, Phys. Rev. E 80,

041118 (2009).
[21] P. Minnhagen and S. K. Baek, Phys. Rev. E 82, 011113 (2010).
[22] T. Hasegawa and T. Nogawa, Phys. Rev. E 87, 032810 (2013).

[23] M. Bauer, S. Coulomb, and S. N. Dorogovtsev, Phys. Rev. Lett.
94, 200602 (2005).

[24] S. Boettcher and C. T. Brunson, Phys. Rev. E 83, 021103
(2011).
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