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Universality classes in Coulomb blockade conductance peak-height statistics
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We investigate, using exact diagonalization techniques, the distribution of conductance peak heights in Coulomb
blockade regime of a quantum dot connected to two leads under generic dot conditions. The study reveals a
three-parametric dependence of the distribution: (i) two dot-lead contact characteristics and (ii) the complexity
parameter, mimicking the combined effect of all dot conditions. This also indicates the presence of an infinite
range of universality classes of conductance statistics, dominantly characterized just by the complexity parameter
and global symmetry constraints.
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I. INTRODUCTION

Growing technological applications of quantum dots in
diverse areas make it necessary to seek relevant criteria
to characterize them for industrial production. Mesoscopic
fluctuations of the dot properties require these criteria to be
based not only on a single dot but an appropriate ensemble
of them and therefore on the ensemble parameters. The latter,
in turn, are sensitive to system conditions which could be
numerous in a generic quantum dot, e.g., shape, ballistic or
diffusive dynamics, elastic or inelastic scattering, e-e inter-
action or single-particle dynamics [1–3]. As a consequence,
the characterization of the dots would be more efficient and
meaningful if one can find a criteria which could classify them
into various universality classes. The objective of this paper
is to investigate the existence of such a criteria, namely the
conductance complexity parameter [4].

Based on temperature T , mean-level spacing � of the
dot, and width of the leads, there exist different energy
regimes characterizing the dot behavior. One such regime is
the Coulomb blockade (kT < � � e2/C with C as the dot
capacitance), which has evoked a lot of interest in the past
due to its experimental accessibility [2]. In a recent paper [4],
we derived an analytical formulation for the distribution P (g)
of the conductance peak heights g for a Coulomb blockade
dot, under generic conditions, connected to two leads. The
formulation was based on three steps: (i) the expression of
the conductance of an almost closed dot in terms of the
eigenvalues and eigenfunctions of the dot Hamiltonian, say,
H ; (ii) a system-dependent random matrix model of H in
which the possibility of diverse system conditions is taken into
account by considering different distribution parameters for
the elements; and (iii) the complexity parametric formulation
of the eigenvalue or eigenfunction statistics [5,6]. Our analysis
led to a diffusion equation for P (g) which is governed only
by three parameters, namely the complexity parameter �g for
the conductance, a dot-lead parameter, and the effective size
N of the dot Hamiltonian (see Eq. (71) of Ref. [4]). In the limit
N → ∞, the size dependence can be removed by rescaling the
conductance, which leaves only �g as the diffusion parameter
for a fixed set of leads. As in general the dot Hamiltonian is
of infinite size, this implies an analogous behavior of P (g)
for the dots with the same �g value and under same set
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of global constraints although their physical conditions, e.g.,
shape, disorder, or boundary conditions, may differ. A global
constraint here refers to a condition which defines the nature
of the H matrix; for example, H is a real-symmetric matrix in
the presence of the time-reversal symmetry [6].

The diffusion equation in Ref. [4] was derived only for a
particular class of global constraints, namely the dots with
time-reversal symmetry. It was also based on some approxi-
mations, e.g., weak correlations between the eigenvalues and
the eigenfunctions, etc., and its complete solution for different
initial conditions is yet to be obtained. An exact formulation
of �g is also required. Furthermore, theoretical claim of the
system-complexity manifesting itself in the physical properties
through a single parameter [4] has deep implications and
its thorough numerical verification for various statistical
properties is very desirable. This motivates us to pursue the
numerical analysis of the influence of dot conditions as well as
global constraints on the conductance fluctuations and verify
the analytical claims of Ref. [4].

The paper is organized as follows. Sections IIA and IIB
briefly review the theoretical complexity parameter formula-
tion of the Coulomb blockade dot conductance (with details
given in Ref. [4]), along with a derivation of the moments
of the peak-height distribution as a function of complexity
parameter in Sec. II C. Section III describes the two proto-
typical ensembles used to model generic dot Hamiltonians
and their complexity parameters �g under different symmetry
conditions. The detailed numerical analysis of the conductance
peak-height distribution and its �g dependence for different
combinations of global and local constraints is discussed
in Sec. IV; the numerics not only confirms the theoretical
predictions for the dots with time-reversal symmetry but also
indicates their validity for dots without this symmetry (no the-
ory available so far) and clarifies many other details. Section V
gives an outline of the possible experiments which could be
performed to verify the complexity parametric formulation.
We conclude in Sec. VI with a summary of our main results.

II. CONDUCTANCE DISTRIBUTION: DIFFUSION
DUE TO VARYING DOT CONDITIONS

A. Conductance peak height for a single dot

The electron dynamics inside a disordered quantum dot
weakly coupled to two leads can be described by the
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Hamiltonian [7] H = Hdot + Hdot-lead. Here

Hdot = −�2

2m
+ V (r) (1)

is the dot Hamiltonian with a potential V (r) containing the
effect of confining dot boundaries and random impurities. The
interaction H dot-lead of the dot with two leads is described by
a discrete set of points

H dot-lead = i��

2π

[
κl

∑
rLεAL

δ(r − rL) + κr

∑
rRεAR

δ(r − rR)

]

(2)

with � as the dot volume and � as the mean-level spacing
of Hdot. The symbols AL,AR refer to the left and right lead
and κl,κr as the dimensionless coupling parameters; a weak
dot-lead coupling can be modeled by taking 0 < κl,κr � 1,
although small but nonzero coupling leads to finite width of
energy levels of the dot which is caused by local fluctuations
of the electron wave function in the dot-lead contact regions.

Assuming the dot geometry to consist of a two-dimensional
lattice of N sites, Hdot can be represented by a finite N × N

matrix in the site basis |n〉 with n = 1,2, . . . N :

Hdot =
N∑

m,n=1

Hmna
†
man. (3)

Here a
†
n,an as the creation and annihilation operator of an

electron at the nth site: |n〉 = a
†
n|0〉 (with |0〉 as the vacuum

state). The two leads connected to dot are placed at two sets
of fixed sites [7]. The pointlike leads or single channel leads
(i.e., when the typical size of the contact is smaller than the
area λd−1 with λ as the electron wavelength) are represented
by the two sites at the dot boundary. The case of M-channel
leads can be treated by choosing two sets of M closely spaced
sites (although far enough apart to have negligible site-site
correlations). Due to weak coupling, the eigenfunctions of the
dot Hamiltonian are unaffected by the leads.

The total width 
 of the energy level Eψ of Hdot with an
eigenfunction �(r) (H� = Eψ�) to decay into the leads is the
sum over contributions from the left and right leads as follows:

 = 
l + 
r . As each lead can support several channels, this
leads to [2]


t =
∑

c

|γtc|2 (t = l,r). (4)

Here γtc is the partial amplitude to decay into channel c in the
lead “t ,” which can be expressed as γtc = 〈φc|�〉 with φc as
the channel wave function. In general, the decay width of a
level into different channels can differ as well as be correlated;
as a consequence, φc is in general not orthogonal and can
have different norms. This leads to the introduction of the
channel correlation matrix Mts (t,s = l,r) with its elements
as Mts

cc′ = 1
N

〈φc|φ′
c〉.

If the dot-lead contacts are assumed to be lines and the
channels to be extended, the scalar product is then defined
over the dot-lead interface [2]. But if the leads are assumed
to be composed of several point contacts rc, then each one of
them constitutes one channel and the related partial width is

γtc = ( κt��

π
)1/2�(rc). This gives 
t = κt��

π

∑
rt εAt

|�(rt )|2.
Note in the point contact model, Mcc′ is a measure of the
spatial wave-function correlations at two different points.

The weak dot-lead coupling (e.g., κl,κr � 1) leads to
smaller level widths compared to their mean level spacing �.
As a consequence, the significant contribution to conductance
comes only from the resonance � with energy E� closest to the
scattering energy E of the electron. Further, at low temperature
kT < �, only one level participates in the conduction. Thus,
in the Coulomb-blockade regime 
 � T � � (with 
 as
the average width), the transport occurs only by the resonant
tunneling through the corresponding energy level of the dot.
The single-level conductance peak height g (measured in units
of e2

h
π

2kT
) in this case can be given as [2]

g = 
l
r


l + 
r

. (5)

B. Conductance peak height distribution for a dot ensemble

The weak dot-lead coupling leads to Coulomb blockade
oscillations of the peak heights as a function of the gate
voltage. A detailed information about these oscillations can
be obtained from the distribution of peak heights and peak
spacings. At low temperatures kT � �, the exponential
suppression of thermal correlations among peaks and the weak
sensitivity of an individual peak to dynamical correlations
[2], allows one to consider the peak-height distribution of
each resonance separately. As clear from Eqs. (4) and (5),
the distribution Pg(g) of g can be obtained from the joint
distribution P
(
l,
r ) of the resonance widths which in turn
is derived from the components of the eigenfunction �. This
approach was used in Ref. [4] to derive a diffusion equation
for Pg(g) (see Eq. (62) of Ref. [4]) for an ensemble of the
dot Hamiltonians under generic conditions. To make this work
self-contained, we briefly review here the crucial steps of the
derivation (see Ref. [4] for the details).

We consider an ensemble of the dot Hamiltonians described
by the probability density,

ρ(H ) = Cexp

⎡
⎣−

β∑
s=1

N∑
k,l=1;k�l

1

2hkl;s
(Hkl;s − bkl;s)

2

⎤
⎦ , (6)

with C as the normalization constant, hs and bs as N × N

matrices of the variances hkl;s = 〈H 2
kl;s〉 − 〈Hkl;s〉2 and mean

values bkl;s = 〈Hkl;s〉 = 〈Vkl;s〉, respectively. Here β = 1,2 for
H real and complex Hermitian, respectively, and the subscript
s refers to the real (s = 1) or imaginary (s = 2) part of a
complex variable. For different choices of the h,b matrices,
Eq. (6) can mimic the dots under different conditions.

The variation of system conditions, e.g., gate voltage, dis-
order strength, and particle density, may result in a variation of
the distribution parameters {h,b} and therefore an evolution
of the H ensemble. As discussed in Refs. [6,8,9], under a
change of parameters hkl → hkl + δhkl and bkl → bkl + δbkl ,
ρ(H ) undergoes a diffusion dynamics along with a finite drift,
and, using Gaussian nature of ρ(H ), it can exactly be shown
that

Tρ = Lρ, (7)
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where T is a combination of M = N (N + 1) paramet-
ric derivatives and L is a diffusion operator in ma-
trix space: T = ∑

k�l;s[(gkl − 2γ hkl;s) ∂
∂hkl;s

− γ bkl;s
∂

∂bkl;s
] and

L = ∑
kl;s

∂
∂Hkl;s

[ gkl

2
∂

∂Hkl;s
+ γHkl;s]ρ with gkl = 1 + δkl . Here

γ is an arbitrary parameter, giving the variance of the
matrix elements at the end of the evolution [8,9]. A suitable
transformation of parametric space {h,b} to {y1, . . . ,yM} maps
T to a single parametric derivative, Tρ = ∂ρ

∂Y
with Y ≡ y1,

which in turn reduces Eq. (8) to a single parametric diffusion
(see Appendix A or Refs. [6,8,9] for details)

∂ρ

∂Y
= Lρ. (8)

Here

Y = −1

βN2γ

∑
k�l

⎡
⎣ β∑

s=1

ln|1 − γ (2 − δkl)hkl;s |

+ ln

∣∣∣∣∣
β∑

s ′=1

bkl;s ′ + δb0

∣∣∣∣∣
2
⎤
⎦ + Cy (9)

with Cy as an arbitrary constant and δb0 = 1 if both bkl;1 =
bkl;2 = 0 else δb0 = 0. Note, as mentioned in Appendix A,
the T → ∂

∂Y
transformation is based on the condition that the

transformed variables y2, . . . ,yM remain constant throughout
the evolution. These M − 1 constants originate from the global
constraints imposed on the system which affect the nature
(e.g., transformation properties) of each H matrix in the ρ(H )
ensemble. (Thus global constraints can also be referred as
the “matrix constraints.”) For example, each H matrix is
real-symmetric in presence of time-reversal symmetry and
complex Hermitian in its absence, the dimensionality along
with hopping conditions in the system gives rise to same
degree of sparsity for each H matrix. The systems with
similar global constraints, however, may have different local
constraints which in a suitable ensemble must manifest through
the ensemble parameters. For example, the Anderson ensemble
and Brownian ensemble, described later in this paper, have
same global constraints but different ensemble parameters.
As Y is a combination of all ensemble parameters, it contains
information of all local constraints on the system. Thus Eq. (8)
implies that systems with same global constraints but different
local constraints will lie on a path characterized by y2, . . . ,yM .

Equation (8) is derived for arbitrary initial conditions of the
matrices hs,bs . In y space this corresponds to an arbitrary of
initial condition with respect to Y while keeping the parameters
y2, . . . ,yM constants. Alternatively, the systems lying on a path
fixed by a set of global constraints can always be accessed from
a common initial condition.

A direct integration of Eq. (8) over undesired eigenvalues
and eigenfunctions of H gives a Y -governed diffusion of the
rest of them. But the diffusion equation contains integrals
which require a prior information about the eigenvalues-
eigenfunctions correlations. The further progress can then
be made only by approximations. As discussed in detail
in Ref. [5], the diffusion equation of the joint probability
distribution P�(�) ≡ PN1(ψ1, . . . ,ψN ) of the components
ψj , j = 1 → N of an eigenfunction � of H can be reduced in
a closed form if the eigenvalues and eigenfunction are assumed

to be weakly correlated (see Appendix A). The approximation
gives

∂P�

∂��

=
N∑

n=1

∂

∂ψn

[
(N − 1)ψn +

N∑
m=1

∂

∂ψm

(δmn − ψnψm)

]

×P�, (10)

where �� = (χ/2)�e with χ related to the average localiza-
tion length ξ of the eigenfunction � and �e as the rescaled
complexity parameter,

�e(E,Y ) = Y − Y0

�2
local

, (11)

with Y and Y0 as the complexity parameters for the ensemble
and its initial state [5], �local as the local mean level spacing
of the d-dimensional dot Hamiltonian (N = Ld ),

�local(E) ≈ Ldξ−d�(E) (12)

with ξ (E) as the average localization length at an energy E

[9]. The proportionality factor χ in Eq. (19) depends on the
eigenfunction statistics and is known approximately [5],

χ ∼ μξ−d for μξ−d > 1,

= 1 for μξ−d < 1, (13)

where μ = [e2γ (Y−Y0) − 1]−1.
Equation (4) along with Eq. (10) leads to the diffusion

equation for the resonance width distribution P
(
l,
r ) for
the resonance �; the steps of the derivation are discussed in
detail in Ref. [4]. As expected, the exact diffusion equation
again contains various sums related to the channel-channel
correlations. To reduce the equation in a closed form, following
approximations are applied as follows: (i) The channel
correlation matrices M (ll),M (rr) for the left and right leads
are assumed to be effectively diagonal. This is because, in
general, the correlations between different channels on the
same lead are expected to be relatively weak as compared
to self-correlations, that is, M (t t)

pp � M (t t)
pq with p,q as two

channels on the lead “t .” (ii) The cross-correlation matrix Mlr

among the channels on left and right leads is also assumed to
be effectively diagonal. These approximations give

1

4

∂P


∂�ψ

=
∑
t=l,r

∂

∂
t

[
∂

∂
t

[
t (αt − 
t )P
]

+ 1

2
(N
t − Ntαt )P


]

+ 2
∂2

∂
l∂
r

[αc

√

l
r − 
l
r ]P
, (14)

where αt is the average diagonal element of the channel
matrix of the lead “t” with Nt channels, where t = l,r: αt =
〈�t

p|�t
p〉 = 1

Nt

∑
p M (t t)

pp = 1
Nt

TrMtt = Mtt
pp with the symbol

xp implying average of xp over p. Similarly, αc = 〈Mlr
pq〉p,q is

the average matrix element of the left-right (lr) channel matrix.
Note, for later reference, for the point contact model described
by the dot-lead Hamiltonian [Eq. (2)],

αl = �

π
κl, αr = �

π
κr, αc = �

π

√
κlκr . (15)
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Partial integration of Eq. (14) now gives the diffusion
equation for

Pg(g) =
∫

δ

(
g − 
l
r


l + 
r

)
P
d
ld
r

of the dots under generic conditions, with a nonzero correlation
between left and right leads (see Ref. [4] for details of the
derivation),

∂Pg

∂�g

= ∂2

∂g2
{g(s−g)Pg + Q2} + 1

2

∂

∂g
{(Ng − θ )Pg + 2Q1},

(16)

where θ = 1
2 (Nlαl + Nrαr ),φ = 1

2 (Nlαl − Nrαr ),s = 1
2 (αl +

αr ),u = 1
2 (αl − αr ), and

Qn(g) = g2n

∫
δ

(
g − 
l
r


l + 
r

)
(
l
r )3vn(
l,
r )

×P
d
ld
r, (17)

with n = 1,2 and

v1(x,y) = (θ + 2s)x2y2 − xy(x + y)−1[2�0xy

+ 2u(y3 − x3)] − (φ + 4u)(y2 − x2)xy/2

v2(x,y) = xy[�0 − 3s(x + y)] + u(y3 − x3), (18)

where �0 = 2αc
√

xy. Here �g(E,Y ) is the conductance
complexity parameter

�g = 2χ�e, (19)

with �e given by Eq. (11). In general, it is difficult to express
Qn as functions of g only but it can be achieved by the
system-specific approximations. As discussed in Ref. [4], for
the case of approximately linear relation between left and right
resonance width, namely 
r = q
l (with q fluctuating over the
ensemble), Eq. (16) reduces to an equation for Pg(g; q). An
ensemble average of Pg(g; q) over q then gives the diffusion
equation for Pg(g) as follows:

∂Pg

∂�g

= ∂2

∂g2
[g(t2 − g)]Pg + 1

2

∂

∂g
[Ng − t1]Pg (20)

with t1,t2 as the dot-lead parameters,

t1 = θ − 2(θ + 2s)
(η − 1)

η2
+ 8αc

(η − 1)3/2

η3

+ 4u
[1 − (η − 1)3]

η3
+ 2(φ/2 + 2u)

(2 − η)

η

t2 = 2αc

(η − 1)3/2

η3
+ s

[
1 − 3

(η − 1)

η2

]
+ u

[1 − (η − 1)3]

η3
,

(21)

with η = 1 + 〈q〉−1 and 〈q〉 as the ensemble-average value
of q. For example, for the symmetric leads with Nl = Nr =
Nc channels, one has 〈
l〉 = 〈
r〉 and αl = αr = αc and
η = 2, which corresponds to θ = Ncs = Ncαl,φ = Ncu = 0.
Equation (21) then gives, for the symmetric leads,

t1 = 1
2Ncαl, t2 = 1

2αl. (22)

Equation (20) describes the diffusion of peak-height dis-
tribution of a Coulomb blockade dot under varying dot-leads
conditions while preserving the time-reversal symmetry. As
clear from the equation, the diffusion is governed by three
parameters �g and t1,t2; the information about the dot
conditions, e.g., shape, disorder, and interaction strength, are
contained in �g , while t1,t2 depend on the dot-lead contact
characteristics. For the fixed values of t1,t2, therefore, the
dots with different conditions (but same global constraints) are
expected to show same behavior of P (g) as long as their �g

are equal. Furthermore, in the large-g regime (g > t1/N,t2),
Eq. (20) becomes almost independent of t1,t2; the evolution
of Pg(g) in the regime, in different dots under variation of
system conditions, should therefore be analogous irrespective
of the dot-lead contact characteristics. An important point
to note here is the � dependence of �g,t1,t2. For the
cases where varying system-conditions lead to localization
to delocalization transition, �local changes more rapidly as
compared to �. As �g depends on �local, it is more sensitive
to the variation of system conditions as compared to t1,t2 which
depend on � only. Thus during a �g governed evolution, t1,t2
can be treated as almost constant.

The next desirable step is to solve Eq. (20). In Ref. [4], a
partial solution for an arbitrary initial condition was obtained
by mapping the equation to the hypergeometric equation and
then analyzing it near the singularity at g = 0,

P (g,�g) = t−1
2

∞∑
m=0

Bmdme− 1
2 (N+2m−2)m�ge−Ng/2t2 (g/t2)1−c

×L1−c
m (Ng/2t2), (23)

where dm = 
(m+1)
(2−c)

(m+2−c) and Bm =

(N
2 )2−c 1


(2−c)

∫
L1−c

m (Nz/2)P (z,0)dz. For example, for
the initial condition, namely Pg(g; 0) = δ(g), the series in
Eq. (23) can be reduced to a simple form,

P (g,�g) = N

2
(2 − c)t2τ

(
Ng

2t2τ

)1−c

e−Ng/2t2τ , (24)

with τ = 1 − e−N�g/2 as a function of dot parameters t2,c =
2 − t1

2t2
as the lead parameters. Note �g → ∞ corresponds to

the Gaussian orthogonal ensemble (GOE) result [2].
A complete solution of the Eq. (20) for all g regimes is yet to

be obtained; it requires a thorough analysis near all the three
singularities of hypergeometric equation and the connection
formulas for Pg(g) behavior in various regions. Furthermore,
Ref. [4] derives the conductance diffusion equation for a
dot ensemble with time-reversal symmetry. The diffusion
equations for other symmetry consideration is not yet known
although such a possibility is indicated by the existence of the
complexity-parametric formulation of the eigenfunctions for
these cases (see Refs. [5,10]). This motivates us to pursue a
detailed numerical analysis of the dot ensembles, both with
as well as without time-reversal symmetry, and subjected to
variation of the ensemble parameters from different initial
conditions. The objective is not only to verify our theoretical
claim about complexity parameter characterized universality
of the peak-height statistics for generic quantum dots but also
gain insight for the cases where either an equation of type
(20) is not yet formulated or its solution is not available. The
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numerical analysis would also help us in verifying various
approximations used in the derivation as well as to analyze
relative influence of the dot-lead parameters t1,t2.

C. Moments of the peak-height distribution

In experimental as well as numerical studies on quantum
dots, a calculation of moments of Pg(g) is relatively easier and
is a better tool to probe complexity parametric formulation.
The nth moment defined as Mn ≡ 〈gn〉 = ∫ ∞

0 gnP (g)dg can
directly be obtained from Eq. (20) in the following steps.
Multiplication of Eq. (20) by gn and subsequent integration
gives Mn as a function of �g ,

2
∂Mn

∂�g

= n[2t2(n− 1) + t1]Mn−1 − n(2n− 2 + N )Mn. (25)

Solving Eq. (25) gives a hierarchical set of relations for the
moments

Mn(�g) = e−b0�g

[
Mn(0) + n

2
(2t2(n − 1) + t1)

×
∫ �g

0
Mn−1(�g)eb0�gd�g

]
, (26)

where b0 = n
2 (2n − 2 + N ). Equation (26) can now iteratively

be used to obtain Mn. For example, for n = 1, it gives the
ensemble averaged peak height M1 ≡ 〈g〉 a function of �g ,

〈g(�g)〉 = 1

N
[t1 − (t1 − N〈g(0)〉)e−N�g/2], (27)

with 〈g(0)〉 as the average peak height at �g = 0. Similarly, a
self-consistent equation for the variance σ 2 ≡ M2 − M2

1 can
be derived from Eq. (26) as follows:

σ 2(�g) = e−N�g

[
σ 2(0) + 2

∫ �g

0
(t2 − 〈g(x)〉)〈g(x)〉eNxdx

− 2
∫ �g

0
σ 2(x)eNxdx

]
. (28)

As discussed in Sec. V, �g can experimentally be determined
by a measurement of 〈g(�)〉 and using Eq. (27). Further
Eqs. (27) and (28) relate the average peak height and variance
at �g → ∞ to dot-lead contact characteristics t1,t2,

〈g(∞)〉 = t1

N
, σ 2(∞) = 2t2

N
〈g(∞)〉. (29)

As clear from the above, an experimental measurement of
〈g(∞)〉 and σ 2(∞) would give information about t1,t2. The
later along with Eqs. (21) and (15) can then be used to
obtain dot-lead coupling parameters κl,κr ; for example, for
the symmetric leads with single channel, Eqs. (22) and (15)
gives κl = κr = 2π�t1 = 2π�t2.

III. ENSEMBLES OF DOT HAMILTONIANS

To numerically verify �g dependence of Pg(g), we consider
two different ensembles for the dot Hamiltonian along with
a possibility of the time-reversal symmetry breaking. Both
ensembles can be represented by the probability density Eq. (6)
but their distribution parameters hkl;s ,bkl;s differ. Our choice
of the ensembles is dictated by the reason (i) the models are

prototype of many physical systems related to different areas
and (ii) a comparative study of the eigenvalue fluctuations
of these models, verifying single parametric dependence has
already been carried out, with corresponding complexity
parameters and other results given in Ref. [9].

The two ensembles can be described as follows.

A. Anderson ensemble (AE)

Our first choice is an ensemble of the standard Anderson
Hamiltonians H which describes the electron dynamics in
a disordered lattice within an independent electron approx-
imation. In the tight binding representation, H for a two-
dimensional lattice of linear size L (d = 2,N = L2), with a
Gaussian site disorder (of variance w2/12 and mean zero),
an isotropic, nonrandom hopping u to z nearest neighbors,
and periodic boundary conditions, is given by Eq. (3). The
ensemble density in this case can be described by Eq. (6) with

hkk = w2

12
, bkk = 0, hkl = 0, bkl = uf (kl), (30)

where f (kl) = 1 for {k,l} nearest-neighbor site pairs, f (kl) →
0 for all disconnected site-pairs. This dot has the time-
reversal symmetry which is broken in the presence of an
Aharonov Bohm flux φ. The flux gives rise to a nonzero
hopping Hkl = uexp(iφ) for all nearest-neighbor site pairs k,l.
Choosing φ to be nonrandom implies bkl;s = usf (kl), where
u1 = ucosφ,u2 = usinφ. As clear, the Anderson Hamiltonian
contains many system parameters, e.g., system size L, on-site
disorder w, hopping u, and flux φ. The ensemble complexity
parameter Y in this case is [9]

Y = −1

βNγ
ln

[∣∣∣∣1 − γw2

12

∣∣∣∣|u1 + u2 + δu10δu20|z/2

]
+ Cy, (31)

where z = 4.
[Note, as briefly mentioned in the previous section, during

Y -governed diffusion of Pg(g), the rest M − 1 parameters
y2, . . . ,yM act as independent constants of dynamics. Al-
though not required for analysis, it is relevant to know them.
For the AE case, N (N − 1 − z) of these constants can be
identified with those off-diagonals which are not connected by
hopping and remain zero throughout the diffusion. The choice
of the remaining (2 + z)N constants depends on the nature of
the system conditions subjected to variation. For example, if
the hopping remains isotropic and on-site disorder is the same
for all sites, the remaining constants can then be obtained from
the difference of the variances and mean values of the pairs of
diagonals and hopping off-diagonals.]

The variations of system condition governed by w, u, and
φ can lead to three different types of statistical crossovers
in the spectra as well as the eigenfunctions of the Anderson
ensemble, which in turn manifests in Pg(g), too. Referring the
Pg(g) crossovers by their spectral counterpart, these can be
described as follows:

(i) Poisson → GOE: The choice of a large w/u ratio as the
initial condition in AE corresponds to an insulator state with
the spectral statistics given by the Poisson universality class
[2,9,11]. A decrease of w while keeping φ = 0 fixed leads to an
evolution of the ensemble in a real-symmetric matrix space and
a crossover of the spectral statistics from Poisson → GOE [9].
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Choosing an insulator initial state w = √
6/γ,u = 1,φ = 0,

Eq. (31) then gives Y0 = − 1
βNγ

ln2 + Cy and, with β = 1 and
γ very small,

Y − Y0 = −1

βNγ
ln

(
2

∣∣∣∣1 − γw2

12

∣∣∣∣
)

. (32)

The global constraint in this case is time-reversal symmetry.
(ii) Poisson → Gaussian unitary ensemble (GUE): A de-

crease of disorder w while keeping φ fixed at a nonzero value,
say, φ0, leads to an evolution of ensemble in absence of time-
reversal symmetry and results in a crossover of the spectral
statistics from Poisson → GUE [9]. Here Poisson initial state
can be achieved by choosing w = √

6/γ,u1 = cosφ0,u2 =
sinφ0. The complexity parameter Y − Y0 in this case again
turns out to be the same as in Eq. (32) but now β = 2. Here
the global constraint is absent the time-reversal symmetry.

(iii) GOE → GUE: Contrary to the previous two cases, w

in this case is kept fixed at a very small value (in metallic
regime) and φ is varied nonrandomly beyond its initial value
φ = 0. A weak disorder and zero flux results in a GOE-type
level statistics of the initial state [2,9]. A slow violation of
the time-reversal symmetry in the presence of weak disorder
results in a statistical crossover of the ensemble from GOE to
GUE [9]. For a GOE initial state (w, φ = 0), Eq. (31) now
gives Y0 = − 1

2γN
ln|1 − γw2/12| + Cy ,

Y − Y0 = −1

2Nγ
ln|cos(φ) + sin(φ)|. (33)

Here again the global constraint is absent the time-reversal
symmetry but now the initial state differs from that of case (ii).

B. Brownian ensemble (BE)

Our second choice is an ensemble of dot Hamiltonians
modeled by a Brownian ensemble which describes a nonsta-
tionary state of the matrix elements undergoing a crossover
due to a random perturbation of a stationary ensemble, say,
H0, by another one (see Ref. [9] and references therein).
For comparison with the Anderson case, we consider BEs
with same global symmetry, namely those appearing during
a transition from Poisson to GOE or GUE and from GOE to
GUE. The BEs for all three cases can be described by a N × N

ensemble H represented by Eq. (1) with ensemble parameters

〈
H 2

kl;s

〉 = hkl;s = 1

4γ

[
2δkl + γ (1 − δkl)

1 + csN2

]
.

〈Hkl;s〉 = bkl,s = 0, (34)

Using Eq. (34) in Eq. (9), Y for the intermediate BE case turns
out to be

Y ≈ 1

γβN

[
ln2 + γ

4

(2 + c1N
2 + c2N

2)

(1 + c1N2)(1 + c2N2)

]
+ Cy. (35)

(In this case, the constants y2, . . . ,yM are trivial and can be
chosen as zero, which corresponds to identifying them, for
example, with different variances of the pairs of off-diagonals
as well as pairs of mean values.)

Here again, the variation of parameters c1,c2 can lead to
three types of crossover (again referring them by their spectral
counterparts) as follows:

(iv) Poisson → GOE: As is clear from Eq. (34), the case
c1,c2 = ∞ corresponds to an ensemble of diagonal matrices
with Poisson spectral statistics. Starting from this state, a
variation of c1 for a fixed c2 = ∞ leads to Poisson → GOE
crossover [9]. Equation (35) then gives Y0 = 1

γβN
ln2 + Cy

(with β = 1),

Y − Y0 = 1

4c1N2
. (36)

As is clear, the global constraint class in this case is same as
for AE case (i).

(v) Poisson → GUE: Starting again from c1,c2 = ∞, a
variation of both c1,c2 leads to this crossover; keeping c1 = c2

during the variation, Eq. (35) again gives same Y − Y0 as in
Eq. (36) (but now β = 2). The global constraint here is same
as for the AE cases (ii) and (iii) but the initial condition is
analogous (statistically) to that of AE case (ii).

(vi) GOE → GUE: For c1 = 0,c2 = ∞, Eq. (34) describes
a GOE ensemble. A decrease of c2 now for a fixed c1 = 0 then
leads to a GOE → GUE crossover [2,9] with Y0 = 1

2γN
[ln2 +

γ

4 ] + Cy and

Y − Y0 = 1

8c2N2
. (37)

Again the global constraint here is same as for the AE case
(ii) and (iii) but the initial condition is analogous to that of AE
case (iii).

IV. Pg(g) CALCULATION: EXACT DIAGONALIZATION
OF DOT ENSEMBLES

The objective of our numerical analysis is twofold:
(1) to find whether the peak-height distributions for AE

and BE, both belonging to a same global symmetry class,
are analogous at their respective dot conditions which satisfy
�g,a = �g,b (with subscripts a,b referring to AE and BE,
respectively), and

(2) to find how far the analogy mentioned in (1) persists
under variation of the dot conditions; this is because the
variation not only affects �g but also dot-lead contact
parameters t1,t2.

To proceed further, an exact knowledge of �g is crucial.
This in turn requires χ , which, however, is known only
approximately for the localization → delocalization transition.
As Y − Y0 � O(1/N) for AE cases (i) and (ii) as well as BE
cases (iv) and (v) [see Eqs. (32) and (36)], Eq. (13) implies
χ ∼ 1

ξd (Y−Y0) in the large-N limit. Equation (19) along with
Eqs. (32) and (36) then gives, for AE cases (i) and (ii) as well
as for BE cases (iv) and (v), �g ∝ ξd

�2N2 . To determine the
size dependence of the proportionality factor, we numerically
analyze the average peak height 〈g〉 (with 〈.〉 implying an
ensemble average) for many system sizes for each transition
in the AE and BE cases. [Following Eq. (27), the transition
in 〈g〉 is governed by N�g only for a fixed set of the global
constraints)]. As shown in Fig. 1, the above analysis for AE
cases (i) and (ii) (corresponding to the Poisson-to-GOE and
-GUE spectral transitions, respectively) for different sizes N
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FIG. 1. (Color online) Size dependence of �g for AE: Panels
(a)–(c) depict the behavior of moment M1 ≡ 〈g〉 with respect to �g for
AE dots connected to single-channel, symmetric leads for different
matrix sizes N : (a) Poisson → GOE, (b) Poisson → GUE, and
(c) GOE → GUE. The �g used in the (a) and (b) is given by Eq. (38)
with λa = 1 and by Eq. (41) in (c) with γ = 1. Note 〈g(∞)〉 = 0.25
in case (a) and 0.31 in cases (b) and (c) here, which is in agreement
with Eq. (29).

and disorder w indeed confirms that

�g,a(E) ≈ λa

N

ξd

�2N2
(38)

with λa a constant. The 〈g〉 analysis for BE cases (iv) and
(v) (corresponding to the Poisson-to-GOE and -GUE spectral
transitions, respectively) for different N and c1,c2, however,
suggests

�g,b(E) ≈ λb

N

1

4πc1
e−E2

, (39)

with λb a constant and λa

λb
≈ 15 (see Fig. 2). The theoretically

predicted χ given by Eq. (13) therefore does not seem to
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FIG. 2. (Color online) Size dependence of �g for BE: Panels
(a)–(c) depict the behavior of M1 ≡ 〈g〉 with respect to �g for the
BE dots connected to single-channel, symmetric leads for different
matrix sizes N : (a) Poisson → GOE, (b) Poisson → GOE, and
(c) GOE → GOE. The �g used in (a) and (b) is given by Eq. (39)
with λb ≈ 15 and by Eq. (42) in (c).

work for BEs. But note that Eq. (19) remains valid for BE:
Substitution of Eq. (36) along with the theoretically predicted

�local(E) =
√

π

N
eE2/2 (40)

in Eq. (19) gives �e,b(E = 0) ≈ 1
4πc1

(see Eq. (12) of
Ref. [9] for details about Eq. (40) with �local = R−1, also
see Ref. [12]). The validity of the later as the single parameter
governing the eigenvalue fluctuations of BE has already been
verified [9]; it was also successfully used to find the BE analog
of the eigenvalue fluctuation measures of a given AE. Equation
(19) along with Eq. (39) then suggests χ ≈ λb

N
for BE.

For the GOE → GUE transition, the eigenfunctions are
extended with ξd ≈ α/N (due to weak-localization effects,
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FIG. 3. (Color online) Dots with time-reversal symmetry: Poisson → GOE transition. Panels (a)–(c) show the P (ln g) behavior for the
n-channels leads: (a) n = 1, (b) n = 2, and (c) n = 3. Each part depicts the behavior of three AEs [described by case (i) with ensemble
complexity parameter Y given by Eq. (32)] and their BE analogs [case (iv) with Y given by Eq. (36) and c1 ≡ c]. For different disorders of the
AE case (i), the numerics gives following values: (1) W = 7.0,F (0) ≈ 0.128,I

typ
2 = 0.011,N�g = 1.489; (2) W = 5.0,F (0) ≈ 0.15,I

typ
2 =

0.0056,N�g = 4.018; (3) W = 1.1,F (0) ≈ 0.27,I
typ
2 = 0.0026,N�g = 28.04, where F (E) = (N�(E))−1 and �g is obtained from Eq. (38)

along with λa = 1, F (E) = (N�(E))−1, and I
typ
2 = ξd , which gives �g,a = F 2/(NI

typ
2 ). Using Eq. (39) with λa

λb
≈ 15, it is easy to check that

the BE analogs shown in the figure for each disorder satisfy the theoretical condition given by Eq. (43). Panels (d)–(f) depict the behavior of
moments Mk(�g), k = 1 − 3; AEn and BEn refer to the AE and BE dots connected to the leads with n channels.

α varies from GOE to GUE). Equation (13) then gives χ = 1,
which in turn implies, from Eq. (19), �g = �e for both AE
case (iii) and BE case (vi). Equation (19) and (12) along with
Eq. (33) then lead to �g for AE case (iii),

�g,a(E) ≈ ξ 2d

2γ�2N3
ln|cos(φ) + sin(φ)|. (41)

As shown in Fig. 1(c) for AE case (iii) with different N , the
crossover in 〈g〉 is well described by Eq. (41). Similarly, �g

for BE case (vi) can be obtained from Eqs. (19) and (37),

�g,b(E) ≈ 1

8c2N2�2
local

. (42)

Numerical analysis of the spectrum in this case shows that
�local(E) is almost constant during the crossover and can

be well described by the GOE initial state �local(E) =
1

πν

√
2νN − E2 with ν = 1/2. This gives �g,b ≈ 1

2c2π2N
; as

shown in Fig. 2(c), the 〈g〉 analysis for different N of BE case
(vi) confirms that this as a crossover parameter.

Note that a GOE → GUE crossover in a dot ensemble
similar to BE dots was studied in Refs. [2,13], too, with
their crossover parameter τ = 〈H 2

break〉
�2 with Hbreak as the

symmetry-breaking part of the dot Hamiltonian. Using τ as
the crossover parameter, one finds τBE = 1

π2Nc
for BE case

(vi), thus differing from �g,b only by a constant 1/2 [Eq. (42)].

For AE case (iii), however, τAE = 16Nφ2

π2 , which differs slightly
from �g,a in the large-φ regime.

With �g for AE and BE given by Eqs. (38), (39), (41),
and (42), we can now proceed to verify the AE-BE analogy.
To investigate objective (1), we numerically analyze and
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FIG. 4. (Color online) Dots without time-reversal symmetry: Poisson → GUE transition. Here again panels (a)–(c) show the P (ln g)
behavior for the n channels leads: (a) n = 1, (b) n = 2, and (c) n = 3. Each part depicts AE case (ii) corresponding to three different
values of the diagonal disorder w (with φ �= 0) and the BEs represented by the case (v) (for three different c = c1 = c2), respectively.
The numerically obtained values for each AE case with N = 1200 are as follows: (1) W = 1.0,F (0) ≈ 0.28,I

typ
2 = 0.0018,N�g = 43.56;

(2) W = 3.0,F (0) ≈ 0.19,I
typ
2 = 0.0026,N�g = 13.89; (3) W = 5.0,F (0) ≈ 0.15,I

typ
2 = 0.0048,N�g = 4.69, where F (E) = (N�(E))−1

and �g is obtained from Eq. (38) along with λa = 1, F (E) = (N�(E))−1 and I
typ
2 = ξd , which gives �g,a = F 2/(NI

typ
2 ). Again, using Eq. (39)

with λa

λb
= 5, one can verify that the BE analogs for each disorder case satisfy the theoretical condition given by Eq. (43). Panels (d)–(f) depict

the behavior of moments Mk(�g), k = 1 − 3; AEn and BEn refer to the AE and BE dots connected to the leads with n channels.

compare Pg(g) for a fixed �g as well as t1,t2 for AE with its
theoretically predicted BE analog for each of the three types
of transitions. As �g for both ensembles is energy dependent,
Pg(g) should, in principle, be compared at a precise energy. For
numerical analysis, however, one needs to consider averages
over an optimized energy range δE (sufficiently large for
good statistics while mixing of different statistics is kept at
a minimum). We exactly diagonalize large ensembles of about
104 matrices of size N = 1200 with wave functions taken
from a range δE, centered at E = 0 and of size 10% of the
bandwidth, which gives approximately 121 levels for each
case. The localization length ξ (E) required to determine �g,a

for AE is numerically obtained from the eigenfunctions in the
neighborhood region of E = 0: ξd (E) ∝ (I typ

2 )−1 ([14]) with
I

typ
2 as the typical value of the inverse participation ratio I2

of the eigenfunctions I
typ
2 = exp〈lnI2〉 with I2 = ∑

n |ψn|4 for
an eigenfunction ψ . The BE analog at E = 0 is then obtained
by using Eqs. (36)–(39) along with the condition

�g,b(E = 0) = �g,a(E = 0). (43)

Note that at E = 0 the BE analog given by the above condition
is c1 = 1

60π
I

typ
2 �2

aN
2. Panels (a)–(c) of Figs. 3–5 show Pg(lng)

behavior for AE dots along with their BE analogs for each of
the three types of crossover and the n-channel leads, n = 1,2,3;
the close agreement in each case confirms our theoretical
prediction.

Note that although the dot ensembles satisfying condition
(43) may differ in their dot-lead contact characteristics t1,t2,
the BE analogs of the AE dot in Figs. 3(a)–3(c) remain the
same for each of the three lead types (see the caption of
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FIG. 5. (Color online) Dots without time-reversal symmetry: GOE → GUE transition. Here again the P (ln g) behavior is compared for
the n-channels leads: (a) n = 1, (b) n = 2, and (c) n = 3 but the AEs now correspond to case (iii) with Y given by Eq. (33) (three different
nonzero φ values) and BEs represented by the case (vi) with Y given by Eq. (37) (three different c2 values), respectively. The numerics
gives following values for each AE case (iii): (1) φ = 2.27 × 10−3,F (0) ≈ 0.27,I

typ
2 = 2.4 × 10−3,�g = 0.01; (2) φ = 4.53 × 10−3,F (0) ≈

0.27,I
typ
2 = 2.1 × 10−3,�g = 0.04; (3) φ = 1.13 × 10−2,F (0) ≈ 0.27,I

typ
2 = 1.9 × 10−3,�g = 0.25, where F (E) = (N�(E))−1 and �g is

obtained from Eq. (41). Again, using Eq. (42), one can verify that the BE analogs of AE case (iii) for each φ case, shown in (a), (b), and (c),
satisfy the theoretical condition given by Eq. (43). Here again (d)–(f) depict the behavior of moments Mk(�g), k = 1–3 with respect to �g;
AEn and BEn refer to the AE and BE dots connected to the leads with n channels.

Fig. 3 for the AE and BE parameters). The same analogy
also occurs in Figs. 4 and 5, too. This suggests a very weak
sensitivity of Pg(g) to dot-lead parameters t1,t2 [as the BE
analog is obtained only by Eq. (43) and without matching
t1,t2 for the two dots]. The apparent insensitivity may not
seem surprising because the AE and BE ensembles used in
Figs. 3–5 are in the weak-disorder regime in which their t1,t2
are expected to be of the same order due to similar localization
tendencies [t1,t2 ∝ �(E)]. To gain an insight in t1,t2 influence
on the AE-BE analogy, it is therefore imperative to analyze
Pg(g) behavior in the strong-disorder regime (note this also
corresponds to small �g) but very small g values along with
numerical instability rules out the possibility of reaching a
correct conclusion. Instead, alternative measures, e.g., the
moments of Pg(g), are more appropriate for the analysis in the
weak-g regime.

To probe the parametric dependence for entire crossover,
we compare the �g variation of the moments Mn [defined in
Eq. (25)] of AE with those of BE for each crossover type. As
shown in panels (d)–(f) of Figs. 3, 4, and 5, the variation of
Mn (n = 1,2,3) for AE is well in agreement with that of BE in
the large-�g range. As mentioned above, this analogy is not
expected to survive in the small-�g regime of Figs. 3 and 4 due
to t1,t2 for the AE and BE dots differing for strong disorder.
Contrary to expectations, however, almost no deviation is
visible in case of the leads with single and two channels.
This indicates the dominant influence of �g , as compared
to t1,t2, on Pg(g) behavior. Alternatively, as compared to
dot-lead characteristics, the dot characteristics influence the
conductance fluctuations more significantly, even in generic
dots. This behavior is expected in the Coulomb-blockade
regime due to very small dot-lead contact regions.
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FIG. 6. (Color online) Comparison with theory: Dots with time-reversal symmetry. (a) Although the theoretical solution of Eq. (20) is
obtained only as a series for the Poisson initial condition, Eq. (24) [obtained for P (g,0) = δ(g) initial condition] is well applicable for the
case (i) in the weak-disorder limit [due to almost independence of the solution of Eq. (20) from the initial state in the large-�g limit]. Here
the function f1 is given by Eq. (45) with τ0 ≈ 2: f1(x) = 0.7977exp(0.5x − 2ex). (b) As disorder increases, Eq. (24) is applicable only in the
lower part (below the peak) of the Pg(g). The full distribution now seems to be a superposition of Eq. (45) with τ0 ≈ 2.33 and a Gaussian;
here f2,f3 are fitted functions with f2(x) = 1.33exp(0.5x − 6.1ex), f3(x) = 0.75√

4π
exp[−(1/4)(x + 2.3)2]. (c) For very strong disorder, i.e.,

w = 19.0, AE case (i) approaches a Gaussian distribution, referred to as f4: f4(x) = 1√
86π

exp[−(1/86)(x + 11)2]. The approach to Gaussian
behavior in the insulator regime is also suggested by previous studies [2]. (d) � = 2N�g governed evolution of average peak height 〈g(�)〉
and peak-height variance σ 2(�) for AE case (i) for a single-channel lead with N = 1200 and their comparison with theory given by Eqs. (27)
and (28): 〈g(�)〉th = 0.24(1.0 − exp(−0.25�)) and σth(�) = 0.09(1.35 − exp(−0.7�)). Note that the large �g results for both 〈g(�)〉 and
σ 2(�) agree with theoretical results (see Ref. [19]) for a GOE dot with single-channel symmetric leads: 〈g(∞)〉 ≈ 0.25 and σ 2(∞) ≈ 0.125.
As expected for symmetric leads, Eq. (29) then gives almost the same results for t1 and t2: t1 ≈ t2 = 0.25N , which also agrees with Eq. (22).

The behavior of the moments in Figs. 1–5 also provides
information about the equilibrium statistics, e.g., the GOE and
GUE limits. The large-�g limit (which corresponds to the end
of the transition) of the figures suggests that

〈g(∞)〉 =
[

N2
c

2(Nc + 1)
, (GOE)

=
[

N2
c

2Nc + 1
, (GUE). (44)

These results are in agreement with previously known theoret-
ical predictions for a dot [15] with symmetric leads with Nc

channels. Using Eq. (29), the above GOE result can further
be used to obtain the large-�g limit of the dot-lead coupling
characteristics: A comparison of Eq. (29) with the GOE result

of Eq. (44) gives t1 = N2
c N

4(Nc+1) . But Eq. (22) for symmetric leads

with Nc channels gives t1 = Nct2 = �
π
Ncκl . Combining these

results together then gives κl = κr = πNcN

4�(Nc+1) .
An important point worth noting here is the independence

of conductance statistics from the origin of complexity. For
example, the GOE → GUE crossover for AE and BE has
been brought about by different diffusion routes: For AE case

(iii) it is the simultaneous variation of both the real and the
imaginary parts of the nearest-neighbor off-diagonals of H ;
for BE case (vi) it is the variation of only the imaginary part of
all off-diagonals. The AE-BE analogy for the entire crossover
thus indicates an independence of the conductance statistics
from the details of the diffusion route.

At this stage, it is very desirable to compare the Pg(g; �)
behavior for each crossover with the corresponding theoretical
formulation. Unfortunately, due to technical complications,
the explicit formulation for Pg(g; �) is known only for one
initial condition, namely P (g,0) = δ(g) [see Eq. (24)], and
only when the crossover preserves the time-reversal symmetry.
As both AE and BE considered here begin with Poisson or
GOE initial conditions, their comparison with theory for an
arbitrary �g value is not feasible. But in the large-�g limit,
the crossover approaches the equilibrium and is expected to
be free of the initial condition. The weak-disorder limit of the
Poisson → GOE transition is therefore expected to agree with
Eq. (24). Figure 6 compares our theoretical predictions with
the numerics for the Poisson → GOE case for a single-channel
AE dot with symmetric leads; from Eq. (44), 〈g(∞)〉 = 0.25
for this case which from Eqs. (27) and (22) gives t1 = t2 =
0.25N . Figures 6(a)–6(c) show the behavior of Pg(lng) for
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three cases �g = 28.04/N,4.01/N,0.02/N corresponding to
disorders w = 1.1,5,19, respectively [�g is given by Eq. (38)
with �local = (NF (E))−1,ξ d = (I typ

2 )−1 with (F (0),I typ
2 ) as

(0.27,0.0026), (0.15,0.0056), and (0.065,0.20) for W =
1.1,5.0,19.0, respectively]. The function f1 in Fig. 6(a) is the
theoretical predictions for P (x) obtained from Eq. (24) with
x = lng,

Px(x) ≈
√

τ0

π
exp(0.5x − τ0e

x). (45)

Here τ0 = N

2t2(1−e−0.5N�g )
, which gives τ0 ≈ 2 for w = 1.1.

As seen in Fig. 6(b), the lower arm of the distribution
can be fitted by a function f2, which is quite close to
Eq. (45) with τ0 ≈ 2.33 but the upper arm is well fitted
by a Gaussian. For very strong disorder w = 19.0, the full
distribution is fitted by a Gaussian. Thus, as expected, Pg(g)
for AE deviates from Eq. (45) with increasing disorder (i.e.,
decreasing �g) and approaches a Gaussian distribution in the
strong-disorder limit (i.e., �g → 0). As discussed in Sec. II C,
the theoretical information about moments during crossovers
preserving time-reversal symmetry is relatively easier to de-
rive; Fig. 6(d) shows the numerical behavior of 〈g(�)〉,〈σ 2(�)
along with functions 〈g(�)〉th = 0.24(1 − e−0.25�),σ 2(�)th =
0.09(1.35 − e−0.7�), where � = 2N�g . With 〈g(0)〉 = 0 and
t1 = 0.25N , the theoretical prediction given by Eq. (27) agrees
almost exactly with 〈g〉th. For variance, the function σ 2

th is very
close to the self-consistent solution given by Eq. (28). Note
that Eq. (25) is valid only for the time-reversal symmetry case
[the numerical comparison is carried out only for case (i) of
Sec. III)].

As discussed in Ref. [5], the inverse participation ratio I
typ
2

is a function of �g and therefore the condition (43) implies

I
typ
2,a = I

typ
2,b (46)

[note, however, that Eq. (46) does not imply Eq. (43)]. Present
numerics reconfirms the validity of Eq. (46) if Eq. (43) is
satisfied and therefore provides new evidence in support of the
complexity parameter-based formulation of the eigenfunction
statistics of complex systems. The formulation in the case
of both eigenvalues and eigenfunctions has been verified
by previous numerical studies, too, e.g., a three-dimensional
Anderson Hamiltonian (with and without spin-orbit coupling)
[5,9,10], power-law random banded matrix ensembles, and
kicked rotor [16].

V. SUGGESTED EXPERIMENT FOR COMPLEXITY
PARAMETER ANALYSIS

The confirmation of our theoretical results of Ref. [4] by the
numerical analysis presented above makes their experimental
verification very desirable. In the past there have been many
experiments to verify theoretical predictions of the peak-height
distribution in chaotic dots [17]. The complexity parameter
measurements, however, require the dots with variable system
conditions, e.g., shape, size, disorder, magnetic field, and
so on. Such measurements therefore can be carried out on
disordered quantum dots with deformable shapes, coupled to
bulk two-dimensional electron gas by individually adjustable
point contact leads. As suggested in Ref. [18], such dot shapes

can be formed by multiple teethlike gates. The shape can be
changed by a small variation of the voltage on the inner gates
without affecting the region near the quantum point contacts.
This would allow one to follow a given peak as a function
of shape and collect statistics without affecting the dot-lead
contact characteristics. As shown by previous experiments
[17], shape deformation techniques facilitate fabrication of
ballistic dots with geometric and potential profiles which
could generate classical dynamics ranging from integrable
to chaotic. In these dots, their shape rather than disorder-
induced scattering determines the properties of the phase
coherence of the electrons. The complicated nature of multiple
scattering from the boundaries also leads to randomization
of the quantum operators and their statistical behavior can
be modeled by generalized random matrix ensembles. (The
success of standard random matrix ensembles in modeling
the statistical behavior of chaotic and integrable systems has
been well known for more than two decades. The appearance
of generalized random matrix ensembles in the nonintegrable
regime is also now known for many dynamical systems.)

The dots can again be formed by methods used in previous
experiments, i.e., by gate depletion of a two-dimensional
electron gas formed as the interface of a semiconductor
heterostructure (e.g., GaAS/AlGaAs comprising a bulk GaAs
substrate, a layer of AlGaAs, and a plain GaAs cap to
prevent oxidation, with a ALGaAs layer grown on top of the
GaAs layer by molecular-beam epitaxy) [17]. The lithographic
dimensions of the dot are reduced by the gate voltages,
which therefore control the effective area of the dot. The
Fermi wavelength and the transport mean free path in the
dot can be controlled by suitably choosing the mobility and
particle density. By keeping the mean free path slightly larger
or smaller than the dot size, the dynamics can be changed
from ballistic to diffusive. Lithographic imperfections further
ensure that each dot differs although all device parameters,
e.g., area, Fermi wavelength, and electron density, are kept
same. A similar difference can also be created by changing the
impurity distribution within the dot while keeping the same
doping strength.

Prior to measurements, it is necessary to ensure that the
dot is in the Coulomb blockade regime which requires two
conditions to be fulfilled: (i) the barriers must be large
enough to keep the transmission small [this gives the condition
G � e2/h (which corresponds to an isolated dot)] and (ii) the
temperature T should be low enough so as not to wash out the
charge quantization effects. As the charging energy, i.e., energy
required to add a single electron in the dot, is Ec = e2/C, this
condition corresponds to kT � Ec. For a GaAs disk of radius
∼0.2 μm, typical Ec ∼ 103 μeV and therefore the condition
kT � Ec can easily be satisfied at low temperatures.

For the observation of quantum coherence effects in closed
dots, thermal fluctuations should usually be weaker than the
single-particle mean level spacing � = π�

2

m∗A , where m∗ is the
effective mass of the electron and A is the quantum dot area.
As � ∼ 11 μeV for a dot with an effective area A ∼ 0.3 μm2,
it can usually be resolved at temperatures T ∼ 100 mK
(corresponding to kT ∼ 9 μeV). The effective electronic
temperature can be maintained by various techniques, e.g.,
dilution refrigeration; the minimum base temperature achieved
through this method is ∼50 mK.
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In GasAs dots, the electrons are typically confined
∼50–100 nm below the surface and their effective mass is
m∗ = 0.067me. The typical sheet density in these dots is
ns ∼ 4 × 1011 cm−2, which gives rise to a Fermi wavelength
of λF = √

2π/ns ∼ 40 nm and Fermi energy Ef ∼ 14 meV.
As the mobility μe in GaAs/AlGaAs heterostructures is in
the range μe ∼ 104–106cm2/V s, this results in a typical
mean free path l = (μe/e)m∗vF ∼ 0.1–10 μm (with vF as
the Fermi velocity). As in the previous experiments [17],
� can be measured by applying a dc bias Vdc across the
dot in the Coulomb blockade (CB) regime in addition to
the ac bias. For Vdc � �, only the ground state is available
for tunneling but, for Ec > Vdc > �, the excited states are
also available and the spacings between the peaks at finite
bias provide measurements of the level spacings between
the discrete levels of the quantum dots. The differences in
the gate voltage positions of the peaks therefore can be
converted to level spacings of the dot Hamiltonian. The
charging energy Ec = e2

Cdot
, with Cdot as the dot capacitance, is

obtained from the peak spacing �V N
g between adjacent peaks

(i.e., between the N − 1 → N and N → N + 1 peaks) as the
gate voltage Vg is swept: Ec + sN = eη�V N

g with sN as the
difference between the N + 1 and N single-particle energies.
Usually, Ec ≈ eη�Vg (with the typical values of Ec being
approximately 30–50 times the typical values of � = 〈SN 〉N ).
Here η, the gate-to-dot-capacitance ratio, is related to device
temperature T , which can be measured from the width of
the CB peak [the peakfull width at half maximum (FWHM)
scales as akT with a a constant that differs for kT > � and
kT < �] eηFWHM = 3.5kT at low temperature. The applied
bias is kept less than the base temperature of the device, which
ensures that the source and the drain are offset relative to
each other by less than the thermal broadening of the Fermi
surface. The lowest base temperature for the experiments on
chaotic dots is ∼50 mK (i.e., 4.3 μeV), the ac bias voltage
is varied in the range of 2–5 μeV, the level spacing � is
typically of the order of 10–40 μeV, and the charging energy
Ec ∼ 500–1000 μeV. For generic dots, � is expected to be
smaller due to weaker level repulsion.

Another important time scale for the conductance mea-
surements is the time spent by the electron within the dot. In
ballistic dots, the time of flight across the dot is roughly given
by τc the ergodic time; the related energy scale ET = �/τc is
termed the ballistic Thouless energy. The shape of the dot can
be revealed in the conductance only if the electron undergoes
multiple scatterings from the boundaries before its escape
through the lead. This implies τescape � τc, where τescape is the
mean escape time of the electron into the leads (equivalently,

 � ET ). In case of a diffusive dot, the diffusive transport
requires l � L with L as linear size of the dot. This gives a
time scale τD , the characteristic time scale for the electron to
diffuse across the dot; the associated energy scale is known
as the Thouless energy Ec = �/τD . For a diffusive dot, the
impurity configuration can be revealed if τescape � τD .

An ensemble of peaks can be collected by sweeping one
of the gate voltages, say, Vg1, over several peaks (before
conductance of point contacts changes) while keeping the
others, say, Vg2, fixed. Incrementing Vg2 at the end of each Vg1

sweep changes the dot occupancy and/or dot geometry to yield

a new set of statistically independent peaks on Vg1 although the
nature of wave-function dynamics may still remain unaffected
(measured by average localization length). The latter can be
ensured by verifying that a combination of such runs (over
Vg1,Vg2) reproduce the peak height distribution Pg(g) obtained
by a single run for a fixed Vg2. The combination gives an
ensemble of peak heights representing a dot characterized by
〈Vg2〉 [averaged over Vg2 values used in the runs which leaves
Pg(g) behavior noticeably unaffected] besides other device
parameters. (Note that this ensemble is equivalent to the one
used in our numerics, obtained by taking the resonance peaks
in an optimized energy range and over a number of matrices
belonging to a specific ensemble density). An averaging over
peak heights of the ensemble would give the average peak
height 〈g〉 for the specific value of 〈Vg2〉. But the theoretical
prediction in Eq. (27) gives

�g = 2

N
log

[ 〈g(∞)〉 − 〈g(0)〉
〈g(∞)〉 − 〈g〉

]
. (47)

Substitution of the experimentally obtained 〈g〉 in the above
equation then can be used to extract �g for the dot. Now, by
further varying 〈Vg2〉, one can obtain a range of 〈g〉 values.

It has been observed in previous experiments that the
peaks obtained by Vg1 sweep are not all independent. But
as �g measurement requires a knowledge of 〈g〉 only, it
can sufficiently reliably be measured from just a few peaks
obtained by Vg1 variation even for a fixed value of Vg2.

For experimental observation of the Poisson to GOE
crossover, the initial dot shape can be chosen as a circular or
rectangular billiard (which corresponds to integrable dynamics
and Poisson spectral statistics). A slowly varying Vg2 then can
be used to approach a chaotic dot shape, e.g., stadium with
GOE statistics. Similarly, Poisson-to-GUE crossover can be
observed by imposing a magnetic field B on one of the inner
gates and varying Vg2 in a way to change dot shape again
from an integrable to chaotic geometry. Similarly to Vg1, a
nonzero B can be used to create a bigger ensemble of peaks
for statistical analysis. But to observe GOE-GUE crossover,
initial dot shape should also be chosen in the chaotic regime
and B should be varied to reach the GUE regime. It is no longer
necessary to change dot shape by changing Vg2 although it can
still be used to improve statistics.

Similar experiments can be performed on disordered
dots where, instead of Vg2-induced shape deformation, the
crossover can be brought about by increasing the doping of
the semiconductor heterostructure. The ensemble of peaks in
this case can be obtained by varying Vg1 for a fixed doping
strength and Vg2; the average over the peak values gives 〈g〉
for the specific value of doping and Vg2.

VI. CONCLUSION

To summarize, our numerical analysis, based on two
prototype dots, confirms the analytical prediction of Ref. [4]:
for a fixed set of global constraints on the system, the con-
ductance peak-height distribution due to an isolated resonance
is sensitive to the dot specifics only through the conductance
complexity parameter �g . The changing system conditions
may lead to a variation of the conductance but the evolution
route remains the same as long as global constraints are
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the same irrespective of the specific details of the varying
system conditions. This indicates a new type of universality
of the conductance fluctuations: A large class of Coulomb
blockade dots with different system conditions, e.g., shape,
size, disorder, etc. (although same global constraints, e.g.,
symmetry, conservation laws, etc.), have the same distribution
of the conductance peak heights if their �g values are same.
Each such class, characterized by �g (besides global con-
straints) can appropriately be referred to as a nonequilibrium
universality class of conductance fluctuations. The equilibrium
class is approached as �g → ∞ and is characterized by the
set of global constraints. As �g varies continuously along
the path from one equilibrium to another, with each point
on this path corresponding to a universality class, this gives
rise to a possibility of infinitely many such classes charac-
terized by the complexity parameter besides a set of global
constraints.

Note that the universality of conductance fluctuations in the
context of chaotic or weakly disordered dots, i.e., those with
ergodic or delocalized wave dynamics, has been well known
for the past two decades and has been explained using
parameter-free stationary random matrix ensembles (e.g.,
Wigner-Dyson ensembles) characterized by the underlying
symmetry classes, i.e., a set of global constraints. These pre-
viously known classes are in fact the same as the equilibrium
classes mentioned above. Our analytical work in Ref. [4]
along with the present numerical work further extends the
universality to dots with more generic system conditions,
e.g., dots with nonintegrable or diffusive dynamics—those
which can suitably be modeled by a system-dependent
multiparametric Gaussian random matrix ensemble. Note
that the universality of conductance fluctuations mentioned
here is more generalized than the one reported earlier: Its
characterization requires a knowledge of �g , too, and not only
the global constraints.

The implications of a possible �g-based classification
of generic Coulomb blockade dots is relevant not only for
theoretical understanding but also for industrial purposes,
e.g., self-assembled quantum dots [1]. It suggests �g as the
significant criteria to characterize the dot conductance and
not the shape of the dot, disorder strength, and so on. But
so far this suggestion is based only on the theoretical or
numerical grounds and its experimental analysis or verification
is very desirable. We believe that this should be feasible
along the lines of the previous conductance experiments on
chaotic or ballistic dots and have made suggestions in this
regard in Sec. V. Although the present study is confined to
the low-temperature Coulomb-blockade regime, we expect the
existence of a complexity parameter formulation of Pg(g) in
other regimes, too.

Along with previous studies on the complexity-parameter-
based formulations of the eigenvalues [9,10,16] and eigen-
functions [5,16], a similar formulation for a transport property,
i.e., conductance, once again exposes the hidden web of rich,
intricate connections among complex systems. Thus it seems
that complexity wipes out most of the details, leaving the
physical properties to be governed by the average behavior of
only a few system parameters. In brief, complexity does seem
to lead to universality.

APPENDIX A: APPROXIMATION USED IN EQ. (10)

The probability distribution of the components Unk , n =
1 → N , of an eigenstate, say, Uk , of an N × N Hamiltonian
H , corresponding to an eigenvalue ek and lying between ψn

and ψn + dψn, can be given as

P�(ψ1, . . . ,ψN ; Y ) =
∫

fkρ(H,Y )dH, (A1)

where fk = δ(� − Uk)δβ−1(ψ∗ − U ∗
k ) and dH is the

Haar measure in the Hermitian matrix space: dH =∏
j

∏
m,n;m<n |λm − λn|βdλjdUj with β = 1,2 for real-

symmetric and complex Hermitian cases of H , respectively.
Partial differentiation of Eq. (A1) with respect to Y ,

subsequent substitution of Eq. (8), and partial integration leads
to the diffusion equation for P� ,

∂P�

∂Y
= β2

4

2∑
q=1

(Lq + L∗
q) (A2)

with

L1 =
N∑

n=1

∂

∂ψn

[ψnT0nn]

L2 =
N∑

m,n=1

∂2

∂ψn∂ψ∗
m

T1mn, (A3)

and

Trmn =
∑
j ;j �=k

∫ (UnjU
∗
mj )r

(ek − ej )2
fk PN2,dej dUj dU ∗

j (A4)

where PN2 = PN2(Uk,Uj ,ek,ej ) is the joint probability of all
components of the two eigenvectors Uj ≡ {Unj } and Uk ≡
{Unk} (n = 1 → N ) along with their eigenvalues ej and ek ,
respectively,

PN2 =
∫

ρ(H,Y )
∏

m,n;m<n

|em − en|β
∏
l �=j,k

deldUl. (A5)

Note that

P� =
∫

fkPN2 dej dUj dU ∗
j . (A6)

Equation (A2) is derived exactly from Eq. (8). As the
eigenvalues and eigenfunction are in general correlated, this
along with the term (ej − ek)−2 in the integral of Eq. (A4)
makes it difficult to write Lk as a function of P� . But it can be
simplified by noting that Trmn is dominated by those terms in
the

∑
j ;�=k which correspond to the eigenvalues ej close to ek .

Thus approximating (ek − ej )2 ≈ χD2
k with Dk as the local

mean level spacing at energy ek , one gets

T0mn ≈ χ

D2
k

∑
j ;j �=k

∫
fkPN2 dej dUj dU ∗

j , (A7)

≈ (N − 1)χ

D2
k

P�, (A8)
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and

T1mn ≈ χ

D2
k

∫ ⎛
⎝ ∑

j ;j �=k

UnjU
∗
mj

⎞
⎠ fk PN2 dej dUj dU ∗

j , (A9)

≈ χ

D2
k

(δmn − U ∗
mkUnk)P�. (A10)

Substitution of T0mn and T1mn in Eq. (A3) helps to reduce the
evolution equation (A2) to Eq. (10). A more detailed analysis
discussed in Ref. [5] suggests χ = 1 for μ < ξd

k , χ ∼ (μ/ξd
k )

for μ > ξd
k , with μ = (e2η(Y−Y0) − 1)−1, and ξ as the ensemble-

averaged localization length of the eigenfunction Uk and d as
the system dimension. The length ξ enters into the formulation
due to its relation with typical intensity of a wave function:
|Unk|2 ∼ ξ−d

k .

APPENDIX B: COMPLEXITY PARAMETER Y

Equation (7) appears to be complicated, with many para-
metric derivatives present on its right side. However, it is
possible to map the multiparametric flow in the M-dimensional
b space to a single parametric drift in another parametric space,
say, y space, consisting of variables yi , i = 1 → M , where
M = [3 + M̃]M̃/2. In other words, the generator T of the
flow in the b space can be reduced to a partial derivative with
respect to just one y-space variable, say, y1,

T (y[b])ρ ≡ ∂ρ

∂y1

∣∣∣∣
y2,...,yM

. (B1)

The desired transformation b → y required to convert
Eq. (7) into the form (8) can be obtained as follows. By
using the definition ∂

∂x
= ∑M

k=1
∂yk

∂x
∂

∂yk
, with x as various b

parameters, T (b) can be transformed in terms of the derivatives
with respect to y1,

Tρ =
∑

k

An

∂ρ

∂yn

, (B2)

where

An ≡
∑
k�l;s

[
(gkl − 2γ hkl;s)

∂yn

∂hkl;s
− γ bkl;s

∂yn

∂bkl;s

]
. (B3)

The Eq. (12) can be reduced in the desired form of Eq. (11) if
the transformation b → y satisfies following condition:

An = δn1 for n = 1 → M (B4)

or, alternatively,

dhkl;1

2γ hkl;1 − gkl

= dhkl;2

2γ hkl;2 − gkl

= . . .
dbij ;1

γ bij ;1

= dbij ;2

γ bij ;2
. . .

dyn

−δn1
, (B5)

where the equality is implied for k,l,i,j = 1,2, . . . ,N .
The parameters yn as a function of hkl;s and bkl;s can now be

obtained by solving the set of conditions (B4) or, equivalently,
Eq. (B5). For the case (γ hkl;1 − gkl) �= 0,bkl;s �= 0, Eq. (B5)
gives (see Ref. [6] for the solution)

y1 = − 1

4N2γ
ln

[ ′∏
k�l

|1 − (2 − δkl)hkl/γ | |bkl|2
]

+ C1,

(B6)

yn = Cn n > 1. (B7)

Here
∏′ implies a product over nonzero bkl , γ is an arbitrary

parameter, giving the variance of the matrix elements at the
end of the evolution (which can be scaled out without loss of
generality), and Cn are constants of integration.

The solution given by Eq. (9) is not applicable in case
one of the denominators becomes zeros during the evolution
and it is necessary to consider alternative form of Eq. (B5).
For example, if bkl;s = 0 during the evolution, then Y can be
obtained by rewriting Eq. (B5) in the following form:

dhkl;1

2γ hkl;1 − gkl

= dhkl;2

2γ hkl;2 − gkl

= . . .
d(bmn;1 + bmn;2)

γ (bmn;1 + bmn;2)

= . . .
dy1

−δn1
. (B8)

A solution of the above equation gives

y1 = −1

βN2γ

∑
k�l

[
β∑

s=1

ln|1 − γ (2 − δkl)hkl;s |

+ ln

∣∣∣∣∣
β∑

s ′=1

bkl;s ′ + δb0

∣∣∣∣∣
2
⎤
⎦ + C1, (B9)

yn = Cn n > 1, (B10)

with δb0 = 1 if both bkl;1 = bkl;2 = 0 or else δb0 = 0.
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