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We investigate the one-dimensional pair contact process with diffusion (PCPD) by extensive Monte Carlo
simulations, mainly focusing on the critical density decay exponent δ. To obtain an accurate estimate of δ, we
first find the strength of corrections to scaling using the recently introduced method [S.-C. Park. J. Korean Phys.
Soc. 62, 469 (2013)]. For small diffusion rate (d � 0.5), the leading corrections-to-scaling term is found to
be ∼t−0.15, whereas for large diffusion rate (d = 0.95) it is found to be ∼t−0.5. After finding the strength of
corrections to scaling, effective exponents are systematically analyzed to conclude that the value of critical decay
exponent δ is 0.173(3) irrespective of d . This value should be compared with the critical decay exponent of
the directed percolation, 0.1595. In addition, we study two types of crossover. At d = 0, the phase boundary
is discontinuous and the crossover from the pair contact process to the PCPD is found to be described by the
crossover exponent φ = 2.6(1). We claim that the discontinuity of the phase boundary cannot be consistent
with the theoretical argument supporting the hypothesis that the PCPD should belong to the DP. At d = 1, the
crossover from the mean field PCPD to the PCPD is described by φ = 2 which is argued to be exact.
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I. INTRODUCTION

The pair contact process with diffusion (PCPD) is an
interacting particle system with diffusion, pair annihilation
(2A → 0), and branching by pairs (2A → 3A). The PCPD
was introduced in 1982 by Grassberger [1], but had remained
unnoticed in the statistical physics community for about
15 years. Since Howard and Täuber [2] (re)introduced the
so-called “bosonic” PCPD in 1997, the PCPD has been
captivating statistical physicists and the effort to understand the
critical behavior of the PCPD has continued until now [3–19].

It was accepted almost without question that the upper criti-
cal dimension of the PCPD is 2 and the PCPD does not belong
to the directed percolation (DP) universality class in higher
dimensions [20]. On the other hand, the one dimensional PCPD
has gained its notorious fame from the beginning because
of its strong corrections to scaling. Consequently, numerical
studies have reported scattered values of critical exponents (see
Table I of Ref. [16] for a summary of reported values of critical
exponents) and, in turn, as many hypotheses concerning the
critical behavior were suggested as the number of research
groups involved (for a review of the early various scenarios,
see Ref. [21]). It still remains an open question whether the one
dimensional PCPD belongs to the DP class (DP hypothesis)
or forms a different universality class just like the higher
dimensional PCPD (non-DP hypothesis). Since we are mainly
interested in the PCPD in one dimension, by the PCPD in
the following we will exclusively mean the one-dimensional
PCPD, unless dimensions are explicitly stated.

To support the DP hypothesis, Hinrichsen [22] provided
a theoretical argument as to why the PCPD should belong
to the DP class. This argument begins with the numerical
observation that the dynamic exponent of the PCPD is smaller
than 2, which means critical clusters spread superdiffusively.
Since isolated particles can spread at most diffusively with
dynamic exponent 2, diffusive motion of isolated particles can
be regarded as frozen in comparison to the critical spreading
and, in turn, the effectively frozen isolated particles can at best
play the role of isolated particles of the pair contact process

(PCP) without diffusion which is known to belong to the DP
class. Accordingly, the PCPD should belong to the DP class.
Although this argument is not unquestionable (see Ref. [23] for
a critique), it is quite persuasive once the dynamic exponent of
the PCPD is accepted to be smaller than 2 as numerical studies
suggest. We will discuss this argument at the end of Sec. IV A.
Barkema and his colleagues have reported numerical results
to support the DP hypothesis [7,16,18].

At the same time, numerical studies supporting the non-
DP hypothesis are also available. The critical behavior of the
driven pair contact process with diffusion [11,12] seems to
suggest that the PCPD cannot be described by a field theory
with a single component field, which makes the PCPD not
satisfy the prerequisite of the DP conjecture [1,24]. Besides,
the existence of nontrivial crossover from the PCPD to the
DP [14,17] was invoked to support the non-DP nature of the
PCPD.

Since the controversy arises from numerical difficulty of
finding accurate value of critical exponents due to strong
corrections to scaling, it is necessary to tame the corrections
to scaling at our disposal. To this end, this paper exploits a
systematic method suggested in Ref. [25] to find corrections
to scaling without prior knowledge of leading asymptotic
behavior. Once the strength of corrections to scaling is
determined, the effective exponent can be systematically
analyzed to get an accurate estimate of the critical exponent. In
this paper, we find the critical decay exponent δ by extensive
Monte Carlo simulations, using the method briefly mentioned
above.

The paper is organized as follows: Section II consists of two
parts. To be self-contained, Sec. II A introduces the dynamic
rules of the PCPD and describes the expected behavior of
the order parameter in each phase. Also an algorithm to
simulate the stochastic dynamics is detailed with comparison
to previous studies. In Sec. II B, a method to estimate the
leading corrections-to-scaling term is explained. Numerical
estimate of the critical decay exponent is presented in Sec. III,
using the method explained in Sec. II B. Section IV studies
crossover behavior from two extreme points of the model,
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d = 0 (without diffusion) and d → 1 with a suitable time
rescale (mean field), to the PCPD. Section V summarizes the
work.

II. MODEL AND METHOD

A. Model

The PCPD is defined on a one-dimensional lattice of size L

with periodic boundary conditions. Each site is either occupied
by a particle (A) or empty (∅) and every site can accommodate
at most one particle. The dynamics of the PCPD are defined
by the following transition events:

A∅ ↔ ∅A, with rate d,

AA → ∅∅, with rate p(1 − d), (1)

∅AA,AA∅ → AAA, with rate (1 − p)(1 − d)/2,

where 0 � d < 1 and 0 � p � 1. For bookkeeping purposes,
we introduce a stochastic process An(t) at every site n which
takes 1 (0) if site n is occupied (vacant) at time t . We define
the particle density ρ(t), the pair density ρp(t), and the triplet
density ρt (t), as

ρ(t) = lim
L→∞

1

L

L∑
n=1

〈An(t)〉,

ρp(t) = lim
L→∞

1

L

L∑
n=1

〈An(t)An+1(t)〉, (2)

ρt (t) = lim
L→∞

1

L

L∑
n=1

〈An(t)An+1(t)An+2(t)〉,

where 〈. . .〉 means the average over ensembles. The evolution
equation of ρ(t) is

1

1 − d

dρ(t)

dt
= (1 − 3p)ρp(t) − (1 − p)ρt (t). (3)

When p = pc (critical point), both ρ(t) and ρp(t) are
expected to show asymptotic power-law behavior with cor-
rections to scaling as

ρ(t) ∼ at−δ[1 + ct−χ + o(t−χ )], (4)

ρp(t) ∼ a′t−δ′
[1 + c′t−χ ′ + o(t−χ ′

)], (5)

where a, a′, c, c′ are constants and o(t−χ ) and o(t−χ ′
)

contain higher order terms which decay faster than t−χ and
t−χ ′

, respectively. In one dimension, it is believed that δ′
equals δ, whereas the mean field theory assumes δ′ = 2δ; see
Sec. IV. Also it is believed that χ = χ ′, numerical evidence
of which will be provided in Sec. III. On this account,
we will drop the primes in the symbols of exponents for
ρp(t) in what follows and we will refer to δ and χ as the
critical decay exponent and the leading corrections-to-scaling
exponent (LCSE), respectively. In the active phase (p < pc

within our model definition), both ρ(t) and ρp(t) approach
certain nonzero values exponentially as t → ∞ and in the
absorbing phase (p > pc), ρ(t) and ρp(t) decrease to zero
faster than t−δ for nonzero d.

There are two important limiting cases. When d = 0, this
model corresponds to the PCP [26] which has infinitely many
absorbing states and belongs to the DP class. Meanwhile,
taking d → 1 limit with τ ≡ (1 − d)t kept finite, the (site)
mean field theory becomes exact. Hence there are two
crossover behaviors at d = 0 (from the PCP to the PCPD)
and at d = 1 (from the mean field PCPD to the PCPD). In
Sec. IV, we will study these two kinds of crossover behavior.

To simulate the model, we employ the following algorithm.
At first, we introduce

dt ≡ 1/max(2d,1 − d) (6)

which makes 2d dt and (1 − d) dt interpreted as probability.
Now assume that there are N (t) particles at time t . We
randomly choose one particle among N (t) particles with equal
probability and choose one of two nearest neighbors of the
chosen particle with equal probability. Let us assume that the
chosen particle is located at site n and the selected neighbor site
is n + k (k = ±1). If An+k(t) = 0, the particle at site n moves
to site n + k with probability 2d dt , but with probability 1 −
2d dt , nothing happens. In the case An+k(t) = 1, two particles
at sites n and n + k are removed with probability p(1 − d) dt

(pair annihilation), the site n + 2k becomes occupied with
probability (1 − p)(1 − d) dt (branching), or with probability
1 − (1 − d)dt nothing happens. If An+2k(t) is already 1 in the
branching attempt, no change in the configuration happens.
After the above attempt, time increases by dt/N(t).

Notice that the PCPD studied in Refs. [11,14] corresponds
to the case with d = 1

3 up to a time-rescale factor (time t of
the PCPD in Refs. [11,14] corresponds to 3

2 t of the case with
d = 1

3 in this paper). Also note that the simulation algorithm
employed in Ref. [27] is slightly different from that used in this
paper. But if we set d = D/(2 − D) where D is the diffusion
parameter used for simulations in Ref. [27] and if we rescale
time appropriately, the simulation results in Ref. [27] can be
directly compared to those obtained by the algorithm in the
above. For example, the reported critical point ≈0.133 53 of
the case with D = 0.5 in Ref. [27] is consistent with that in
Ref. [14] which is ≈ 0.133 519.

B. Corrections to scaling

A systematic way to find the critical decay exponent
simultaneously together with the critical point is to investigate
the behavior of the effective exponent −δeff(t) defined as
(b > 1)

− δeff(t) ≡ ln[ρ(t)/ρ(t/b)]

ln b
, (7)

which, by Eq. (4), is expected to behave at the critical point as

− δeff(t) = −δ − c
bχ − 1

ln b
t−χ + o(t−χ ). (8)

In the time regime where higher order terms o(t−χ ) are
negligibly small but the leading correction term t−χ is not
negligible, a plot of the effective exponent against t−χ with
the correct value of χ should be a straight line if the system is
at the critical point. Meanwhile, it veers up (down) if the system
is in the active (absorbing) phase as t−χ gets smaller. From
the expected behavior in each phase, the critical exponent and
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the critical point can be found simultaneously by investigating
the behavior of effective exponents near criticality, once the
LCSE χ is known. Hence the information about the LCSE is
indispensable in order to estimate the critical decay exponent
and the critical point accurately via the effective exponents.

A systematic method to find corrections to scaling without
knowing δ was recently suggested [25]. The idea is that at the
critical point the double ratio of ρ at three different time points
should behave asymptotically as

ρ(t)

ρ(t/b1)

/
ρ(t/b1)

ρ
(
t/b2

1

) = 1 + c
(
b

χ

1 − 1
)2

t−χ + o(t−χ ), (9)

where b1 is a (fixed) constant. Although b1 is not necessarily
the same as b in Eq. (8), we will use the same value for b

and b1 in this paper and we will drop the subscript in b1 in
the following. We introduce a corrections-to-scaling function
(CTSF) �(t) as the logarithm of the left hand side of Eq. (9),

�(t) = ln ρ(t) + ln ρ(t/b2) − 2 ln ρ(t/b), (10)

which behaves at criticality as

�(t) ∼ c(bχ − 1)2t−χ + o(t−χ ). (11)

The behavior of �(t) at off-criticality is also of interest.
If the system is slightly away from the critical point with
p = pc + �p, �(t) is indistinguishable from Eq. (11) up to
t ∼ |�p|−ν‖ , where ν‖ is the critical exponent describing the
divergence of correlation time. Since �(t) can be understood
as a curvature of the curve ln ρ(t) as a function of ln t , that is,
�(t) ≈ d2 ln ρ(t)

d ln t2 , �(t) gets larger (smaller) with t if the system
is in the active (absorbing) phase. Hence, if the coefficient of
c in Eq. (11) is positive, a typical behavior of �(t) around
the critical point looks like Fig. 1. These curves are obtained
from simulations of the PCPD with d = 0.95. To be specific,
the system size is L = 221 and the number of independent
runs are 9800, 7200, and 1600 for p = 0.258 110 (active),
0.258 112 (critical), and 0.258 114 (absorbing), respectively.
Due to the double-derivative-like nature of �(t), the curves
obtained from numerical simulations can be very noisy as

10-3

10-2

10-1

105 106 107 108 109

active

critical

absorbing

t

Θ
(t

)

FIG. 1. (Color online) Double logarithmic plots of �(t) vs t

around the critical point of the PCPD with d = 0.95. The curves
correspond to p = 0.258 110 (active), 0.258 112 (critical), and
0.258 114 (absorbing) from top to bottom; see Sec. III. The straight
line with slope −0.5 is a guide to the eyes.

seen in Fig. 1 unless the number of independent simulation
runs is very large. In this respect, �(t) alone may not be a
good measure to find the critical point and the analysis of the
effective exponents which are less noisy than �(t) should be
accompanied.

Although the behavior of �(t) looks qualitatively similar to
ρ(t) around the critical point, �(t) in the active phase actually
should approach zero as t → ∞ because ρ(t) in this limit
saturates to a finite number with zero curvature. We will soon
see such a long time behavior in the active phase from an
exactly solvable model. In the absorbing phase, the behavior
of �(t) in the limit of infinite time depends on the asymptotic
behavior of ρ(t). If ρ(t) decreases exponentially, so does �(t).
On the other hand, if ρ(t) decreases as a power law in the
absorbing phase like the PCPD, �(t) should also approach zero
as t → ∞. Even though �(t) of the PCPD should approach
zero in all phases as t → ∞, the deviation of �(t) at some
point from the critical �(t) is conspicuous as Fig. 1 illustrates.
Thus, such infinite time behavior does not limit the practical
usefulness.

The sign of c is not necessarily positive and an example
of the case with a negative c can be found by the following
equation:

dρ(t)

dt
= rρ(t) − ρ(t)2 (12)

with initial condition ρ(t = 0) = 1. The solution is

ρ(t) =
{

(e−rt + (1 − e−rt )/r)−1, r �= 0,

(1 + t)−1 ∼ t−1(1 − t−1), r = 0.
(13)

Since the coefficient of the leading corrections-to-scaling term
at the critical point (r = 0) is negative, it is appropriate to draw
−�(t) vs t on a double logarithmic scale as in Fig. 2 which
makes the curve in the active (absorbing) phase veer down
(up) contrary to Fig. 1. The inset of Fig. 2 shows that �(t)
in the active phase approach 0 as t → ∞ as argued before.

10-3
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100
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-2

-1

0

1

101 104 107 1010

t

t−Θ
(t

)

Θ
(t

)

r = 10−6

r = −10−6

r = 0

FIG. 2. Log-log plots of −�(t) vs t around the critical point of
the model Eq. (12). �(t) is calculated using Eq. (13) with b = 10.
Inset: Semilogarithmic plots of �(t) vs t for the same values of r’s as
in the main figure. While �(t) for negative r (in the absorbing phase)
decreases exponentially, �(t) for positive r (in the active phase)
approaches 0 as t → ∞.
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Since ρ(t) decreases exponentially in the absorbing phase of
this example, �(t) also decreases exponentially to −∞.

III. CRITICAL DECAY EXPONENT

This section investigates the critical decay exponent δ of
the PCPD for various d’s via the analysis of the effective
exponents along with the corresponding CTSFs. For all
numerical analyses in this section, the system size is L = 221

and the initial density is 1. Since ρ(t) and ρp(t) are equally
important, the CTSFs for both ρ(t) and ρp(t) are studied and
will be denoted by �r (t) and �p(t), respectively.

At first, we will present the results for the case with d = 0.1.
As we will show later, the critical point is found to be pc =
0.111 158(1), where the number in parentheses indicates the
uncertainty of the last digit. Figure 3 shows double-logarithmic
plots of �r and �p vs t at p = 0.111 158 for b = 10. These
data are obtained from 3000 independent runs at the designated
value of p. It seems that �p shows a power-law behavior as
�p ∼ t−0.138 while �r has no symptom of power-law decay
up to t = 108. On the other hand, �r and �p become almost
overlapped after t = 108, which implies that not only the LCSE
but also the coefficients of the leading correction-to-scaling
terms of ρ and ρp are identical. Since �p exhibits a more or
less clean power-law behavior and �r eventually follows �p,
we estimate χ to be 0.138 from �p. Note that this estimate is
comparable to that in Ref. [18].

It is worthwhile to discuss the implication of the difference
between the two CTSFs, �p − �r , which shows a clean
power-law behavior with 
 t−0.33 albeit �p ∼ t−0.138. By
definition of the CTSF, �p − �r can be regarded as the
CTSF for ρp(t)/ρ(t). Hence if one analyzes ρp(t)/ρ(t) rather
than ρ(t) and ρp(t) separately with the assumption of c �= c′
in Eqs. (4) and (5), one may wrongfully conclude that
the corrections to scaling of the PCPD are weaker than
the actual strength t−0.138. In fact, the cancellation of the
leading corrections-to-scaling term in ρp(t)/ρ(t) was already
anticipated in Ref. [18] and we confirmed it through the direct
numerical analysis.

Θp − Θr

Θr

Θp

−0.33

−0.138

t

C
T

S
F

109108107106105104

10−1

10−2

10−3

FIG. 3. (Color online) Log-log plots of CTSFs vs t at p =
0.111 158 and d = 0.1. Here, b = 10 is used. Two line segments
with slopes −0.138 and −0.33 as indicated in the figure are also
drawn for guides to the eyes.

Actually, the cancellation of the leading corrections-to-
scaling term in the ratio of two quantities is not unusual. An
immediate example arises when we analyze Eq. (3). Since
χ < 1, ρp(t) and ρt (t) at the critical point should be

ρp(t) = apt−δ[1 + ct−χ + 
(t) + ept−1 + o(t−1)],
(14)

ρt (t) = at t
−δ[1 + ct−χ + 
(t) + et t

−1 + o(t−1)],

where ap and at are constants satisfying at (1 − pc) = ap(1 −
3pc), 
(t) contains all terms decaying faster than t−χ but
slower than t−1, and ep should be strictly smaller than et .
Otherwise, the leading power of the left hand side of Eq. (3)
cannot be the same as that of the right hand side of the equation.
Hence, ρp(t)/ρt (t) at the critical point should have the form

ρp(t)

ρt (t)
= 1 − pc

1 − 3pc

[1 + (ep − et )t
−1 + o(t−1)]. (15)

Unlike the cancellation of the leading corrections-to-scaling
terms in ρp/ρt , however, we could not find any theoretical
reason why ρ(t) and ρp(t) should have exactly the same
leading corrections-to-scaling term. This can be a theoretical
challenge of the PCPD.

To check the consistency of Eq. (11), we analyze �p’s for
various values of b (b = 5 and b = 2). We first fit �p for
b = 10 using a fitting function c(bχ − 1)2t−χ with two fitting
parameters c and χ . From the fitting, we estimate χ ≈ 0.138
and the coefficient of the leading corrections-to-scaling term
to be c ≈ 2.27. The straight line lying on �p for b = 10 (top
curve) in Fig. 4 is the result of this fitting. Then, we compare
c(bχ − 1)2t−χ for b = 5 and b = 2 with the estimated values
of c and χ to �p’s for corresponding b’s, which shows an
excellent coincidence.

We think this coincidence provides a numerical evidence
for the absence of logarithmic corrections in the leading
corrections-to-scaling term. When we derive Eq. (11), we
tacitly assumed that the leading term has no logarithmic
corrections. If there happens to be such corrections, the above
procedure should exhibit a systematic deviation for different

b = 2

b = 5

b = 10

t

Θ
p

109108107106105104103

10−1

10−2

10−3

10−4

FIG. 4. (Color online) Plots of �p vs t at p = 0.111 158 and d =
0.1 for b = 10, 5, and 2, from top to bottom. The straight line lying on
�p with b = 10 is the result of the power-law fitting c(bχ − 1)2t−χ

with fitting parameters c and χ . Two straight lines lying on �p’s for
b = 5 and b = 2, respectively, are plots of Eq. (11) with c and χ

obtained from the fitting.
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0.111 159

0.111 158

0.111 157

t−0.138

−δ
eff

0.40.30.20.10

−0.16

−0.18

−0.2

−0.22

−0.24

−0.26

−0.28

−0.3

−0.32

t−0.105

−δ
e
ff

0.40.30.20.10

−0.16

−0.2

−0.24

−0.28

FIG. 5. (Color online) Plots of −δeff vs t−0.138 for p = 0.111 157,
0.111 158, and 0.111 159 with d = 0.1, from top to bottom. b is set
10. The straight line which intersects the ordinate at ≈ −0.173 is a
fitting result of −δeff for p = 0.111 158. Inset: Plot of −δeff vs t−0.105

at the critical point. The linear extrapolation gives the DP critical
exponent.

values of b. Also a nice power-law behavior of �p for about
four decades, as seen in Fig. 4 suggests that logarithmic
corrections, even if exist, are negligible. Furthermore, the
clean power-law behavior of �p − �r also provides an indirect
evidence against logarithmic corrections.

Finding the LCSE to be 0.138, we now analyze the effective
exponent −δeff . Since �p shows a cleaner power-law behavior
than �r , we analyze −δeff calculated from ρp(t). In Fig. 5,
−δeff obtained using b = 10 is drawn as a function of t−χ

with χ = 0.138 near criticality. From this plot, it is clear
that the system with p = 0.111 157 (0.111 159) is in the
active (absorbing) phase and the critical point should be
pc = 0.111 158(1). Although the number of independent runs
for both off-critical simulations is only 200, the effective
exponents give a clear illustration of the expected behavior
in each phase. We fit −δeff for p = 0.111 158 using a linear
function to obtain that δ ≈ 0.173. Since a fitting result of δ

varies from 0.17 (for χ = 0.13) to 0.176 (for χ = 0.15) with
χ , we conclude that δ = 0.173(3).

Figure 5 shows that −δeff at criticality becomes an almost
straight line in the region t−0.138 � 0.25. This behavior is
indeed consistent with the analysis of �p. We observed in
Fig. 4 that �p for b = 10 exhibits a nice power-law behavior
from 105. Recall that �p is calculated using ρp at t , t/b,
and t/b2. Thus, this numerical observation implies that the
leading corrections-to-scaling term becomes dominant from
t = 103. Thus −δeff for b = 10 should be almost straight from
10−4χ ≈ 0.25, as seen in Fig. 5.

Since the estimated critical exponent 0.173 is close to the
DP exponent 0.1595, it would be an interesting practice to
check which value of χ can predict the DP critical exponent.
By trial and error, we found that χ = 0.105 gives the DP
critical exponent; see the inset of Fig. 5. Although 0.105 is
different from the estimated 0.138 by 25%, it is indeed hard
to exclude the possibility of the DP critical scaling. Thus, the
analysis of the PCPD with d = 0.1 alone may not be enough
to conclude that the PCPD does not belong to the DP class. To
make the estimate 0.173 more convincing, we analyze other
cases with different values of d.

b = 2

b = 5

b = 10

t−0.138

−δ
eff

0.20.150.10.050

−0.18

−0.2

−0.22

−0.24

−0.26
t−0.138

−δ
eff

0.30.20.10

−0.12

−0.16

−0.2

−0.24

−0.28

FIG. 6. (Color online) Plots of −δeff vs t at p = 0.111 158 for
b = 10, 5, and 2 (from bottom to top). Inset: −δeff ’s for b = 2 are
plotted against t−0.138 at p = 0.111 157 (top) and 0.111 159 (bottom).

Before delving into the case with different diffusion
probability, we will show that the estimated critical point is
rather insensitive to the estimates of δ and χ . If χ is small
as in the present case, we can approximate (bχ − 1)/ ln b ≈
χ + O(χ2 ln b) as long as ln b is not so large. Thus, the
effective exponent at criticality should be insensitive to b.
As can be seen in Fig. 6, −δeff at p = 0.111 158 is more
or less insensitive to b, which strongly supports that the
density at p = 0.111 158 exhibits the critical scaling up to
the simulated time. Meanwhile, if the system is in the active
(absorbing) phase and t > |p − pc|−ν‖ , −δeff at given t should
increase (decrease) significantly as b gets smaller. The inset
of Fig. 6 depicts δeff at p = 0.111 157 and 0.111 159 for
b = 2. By comparing this figure with with Fig. 5, it is easily
recognized that δeff at off-criticality is significantly affected by
the change of b. Although we plotted −δeff vs t−0.138 in Fig. 6
for convenience, a different choice of χ does not affect the
observed behavior of the effective exponents under the change
of b. Also note that δ does not play any role in the above
discussion. Hence, we conclude that the estimated critical point
pc = 0.111 158(1) is accurate irrespective of whether we are
using the right value of δ and χ .

Now, we will analyze the case of d = 0.5. Figure 7(a)
depicts the CTSFs as functions of t on a double logarithmic
scale at p = 0.152 475 5 which will turn out to be the
critical point. The data are collected from 7000 independent
simulation runs and b = 10 is used. Unlike the case with
d = 0.1, �r shows a power-law decay t−0.15 from about
t = 105. �p in the short time regime decays faster than �r

but after t = 108, �r and �p are almost indistinguishable.
Since �r shows a more stable power-law behavior than �p,
we estimate χ to be 0.15 which is comparable to the above
estimate. One can also see that �p − �r decays faster than
t−0.15.

In Fig. 7(b), −δeff corresponding to ρ(t) for b = 10
is drawn against t−0.15. The effective exponent for p =
0.152 475 (0.152 476) results from 2400 (2500) independent
simulation runs. This figure shows that the critical point is
pc = 0.152 475 5(5) and a linear fit of −δeff for p = pc gives
δ ≈ 0.174 which is consistent with the estimate for the case of
d = 0.1. Also note that −δeff is almost straight in the region
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FIG. 7. (Color online) (a) Log-log plots of CTSFs vs t at p =
0.152 475 5 and d = 0.5. Two line segments with slopes −0.15 and
−0.37 as indicated in the figure are also drawn for guides to the
eyes. (b) Plots of −δeff vs t for p = 0.152 475, 0.152 475 5, and
0.152 476 with d = 0.5, from top to bottom. The straight line which
meets the ordinate at ≈−0.174 is a fitting result of the data for
p = 0.152 475 5. Inset: Plot of −δeff vs t−0.077 at the critical point.
The linear extrapolation gives the DP critical exponent.

t−χ < 10−4χ ≈ 0.25, which is consistent with the behavior of
�r .

We would like to emphasize that the estimate of the critical
point is rather insensitive to the accuracy of δ and χ , so the
accuracy of pc is less questionable than the exponents. Using
the data of the density at the critical point, we also estimate,
by trial and error, the value of χ which gives the DP exponent.
At this time, the desired value of χ becomes 0.077 which
is quite different from the estimated χ = 0.15. Furthermore,
0.077 differs by 25% from the case of d = 0.1. That is, for our
numerical data to be consistent with the DP hypothesis, the
LCSE has to vary continuously with d significantly.

Since the case of d = 0.5 was also studied in Ref. [18]
which supports the DP hypothesis, it is worthwhile to compare
our results with those in Ref. [18]. First, the critical point in this
paper is more accurately estimated than in Ref. [18]; see Table I
of Ref. [18]. Second, a value close to the DP exponent was
obtained from the system at p = 0.152 473 which is actually
in the active phase. Because the density in the active phase
decays slower than at the critical point, it is not surprising that
the estimated value of δ in Ref. [18] is smaller than 0.173.
Interestingly, however, a similar estimate of δ was attained
when the system at p = 0.152 476 was analyzed; see the sixth
row of Table 1 in Ref. [18].

(a)
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t
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S
F

109108107106105104

100
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10−2

10−3

(b)
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0.258 112

0.258 110

t−0.5

−δ
eff

0.0030.0020.0010

−0.17

−0.19

−0.21

−0.23

FIG. 8. (Color online) (a) Log-log plots of �p (top curve) and
�r (bottom curve) against t at p = 0.258 112 and d = 0.95. A line
segment with slope −0.5 is a guide to the eyes. (b) Plots of −δeff

vs t−0.5 for p = 0.258 110, 0.258 112, and 0.258 114 with d = 0.95,
from top to bottom.

The results up to now seem to suggest that the LCSE
obtained from the behavior of CTSFs is about 0.15 for the
PCPD in general. Quite intriguingly, however, the PCPD
with d = 0.95 has relatively weak corrections to scaling.
In Fig. 8(a), the CTSFs for b = 10 at the critical point of
the case with d = 0.95 are depicted as functions of t on a
double-logarithmic scale. Note that �r in this figure is the
middle curve in Fig. 1. Unlike the previous two cases, �r

decays as t−0.5 rather than t−0.15. Note that the power-law
behavior of �r is observed from t = 106 which means the
LCSE in ρ(t) becomes dominant from t = 104.

Using this LCSE, we depict −δeff calculated from ρ(t) with
b = 10 as a function of t−0.5 in Fig. 8(b) which again shows a
typical behavior of −δeff near criticality. From the behavior of
−δeff we estimate pc = 0.258 112(2). A linear fit of −δeff for
p = 0.258 112 suggests δ ≈ 0.173, which is again consistent
with the estimates from the cases of different d’s. Since the
LCSE is dominant from 104, the effective exponent should be
a straight line for t−χ < 10−5χ ≈ 0.003, as seen in Fig. 8(b).

We also investigated which value of χ can give the DP
exponent for the high diffusion case. Unlike the low diffusion
cases, however, the DP exponent was hardly observed by
varying χ , which seems to imply that the critical behavior
of the PCPD with d = 0.95 cannot be consistent with the DP
hypothesis.

Since χ needs not be universal, appearing dependence of
χ on d is not contradictory to our common sense formed by
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t−0.5
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(t
)

0.010.0050
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−0.16
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Θ
(t

)

10181012106100

100

10−6

10−12

FIG. 9. Log-log plot of � vs t of the toy equation. The straight
line with slope −0.5 is a guide to the eyes. Up to t = 1012, �(t)
shows a nice power-law behavior of t−0.5. Inset: Plot of −δeff vs t−0.5.
Although the true leading corrections-to-scaling term of Eq. (16) is
t−0.15, −δeff drawn as a function of t−0.5 gives the exact leading term.

the renormalization group (RG) theory. Still, what kind of
mathematical structure is behind the change of χ with d is an
interesting question.

We think there are two possible scenarios. The first obvious
scenario is that χ is a continuous function of d. Without a
fixed line in the RG sense, however, it is hard to expect such
a continuously varying exponent albeit nonuniversal, so this
scenario does not look plausible. The second one is that the
correction term t−0.15 is actually present even in the case with
d = 0.95 but the coefficient is very small.

The implication of the second scenario can be clearly stated
by the following toy equation:

ρ(t) = t−0.15(1 + 10−4t−0.15 + t−0.5). (16)

In this toy example, the leading corrections-to-scaling term
becomes dominant only when t � 2.6 × 1011 and before
this time t−0.5 plays the role of the leading corrections-
to-scaling term. Thus, �(t) is well described by t−0.5 and
the corresponding effective exponent drawn as a function of
t−0.5 rather than the true asymptotic behavior t−0.15 gives
the correct value of 0.15; see Fig. 9. We think the second
scenario is plausible, but more investigation is necessary
to fully understand how the mathematical structure of the
corrections to scaling changes with d. This also can be a
theoretical challenge of the PCPD. In any case, �(t) is a useful
tool to find the correct value of the critical exponent, although
it may not predict the true LCSE as in the toy example.

To conclude this section, we found that the critical decay
exponent of the PCPD is robust against d with value δ =
0.173(3). Although this value differs from the DP value only
by 8%, the consistent estimate for a wide range of d supports
the non-DP hypothesis. In particular, the DP hypothesis is not
consistent with the case with d = 0.95 up to the simulation
time in this work (t = 109). Since the corrections-to-scaling
for the high diffusion case is much weaker than those for the
low diffusion case, it seems promising to find other exponents
accurately by investigating the PCPD for large d.

TABLE I. Critical points of the PCPD for various d . The numbers
in parentheses indicate uncertainty of the last digits.

d pc

0 0.077 0905(5)a

0.001 0.1019(1)b

0.005 0.1023(1)b

0.01 0.1028(1)b

0.02 0.1038(1)b

0.05 0.1066(1)b

0.1 0.111 158(1)
1
3 0.133 519(3)c

0.5 0.152 4755(5)
0.9 0.2334(1)b

0.95 0.258 112(2)
0.99 0.2968(1)b

1 1
3

d

aFrom Ref. [28].
bDetailed analysis not shown in the paper.
cFrom Ref. [14].
dMean field critical point. See Sec. IV B.

IV. CROSSOVER

To get a hint to the crossover behavior occurring at two
limiting cases d = 0 and d → 1, we found critical points for a
wide range of d, which are summarized in Table I. Because the
estimate of the critical points within error 10−4 is relatively
easy with the present computing power, we just present the
resulting critical points without showing the details.

The phase boundary of the PCPD in the d−p plane shown
in Fig. 10 has two salient features at the two end points, d = 0
and d = 1. The phase boundary is discontinuous at d = 0 and
the phase boundary approaches the mean field critical point
with infinite slope as d → 1. Each singular behavior signifies
a crossover; crossover from the PCP to the PCPD at d = 0 and
that from the mean field PCPD to the one dimensional PCPD
at d = 1. In this section, we will investigate these two kinds
of crossover behaviors one by one and find the corresponding
crossover exponents.

mean field critical point

the critical point of the PCP

d

p c

10.80.60.40.20

0.35

0.3

0.25

0.2

0.15

0.1

0.05

FIG. 10. Plot of pc vs d for the PCPD. The critical point of the
PCP without diffusion and the mean field critical point are indicated
by respective arrows.
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A. From the PCP to the PCPD

The discontinuity of the phase boundary at d = 0 can be
understood as follows. In this discussion, all exponents are
of the DP class. Consider the system at p = pc(0) + �p

with 0 < �p � pc(0), where pc(0) is the critical point of
the PCP. If d = 0, the system is in the absorbing phase and
the pair density decays exponentially if time t exceeds the
relaxation time ξt ∼ �p−ν‖ . On the other hand, the particle
density should approach a certain nonzero value ρs(p). If
0 < dξt � ρs(p)−2, it is unlikely for isolated particles to
meet each other purely by diffusion when t is smaller than
ξt . Hence, effectively, the initial PCP dynamics is almost
decoupled with diffusion before t = ξt and only when t

exceeds ξt can pairs formed by diffusion appear. Since we
are considering an infinite system, the pair density is nonzero
for any finite t although it can be extremely small. As soon as
pairs appear by diffusion, the so-called defect dynamics of the
PCP begins. Since the probability that two consecutive sites
are occupied by diffusion is roughly ρs(p)2, the mean distance
between two pairs formed by diffusion should be 1/ρs(p)2. Let
P (ξx) be the probability that the defect dynamics continues
until the cluster size becomes ξx ∼ �p−ν⊥ . P (ξx) should be
the same order as the survival probability that the defect
dynamics continues until ξt , which for small �p becomes
ξ

−β/ν‖
t ∼ �pβ . This is because the scaling form of the survival

probability is t−β/ν‖f (t/ξt ), where f (x) is a scaling function
with finite value of f (1). Then the mean distance between
the starting points of two successfully spreading clusters
should be ∼1/[ρs(p)2P (ξx)]. If ξx � 1/[ρs(p)2P (ξx)] or
ρs(p)2ξxP (ξx) � 1, a merger of two spreading clusters into
a single cluster happens frequently and the system should
survive indefinitely. Hence, the condition that the system
dynamics continue indefinitely by any small but finite d is
ρs(p)2ξxP (ξx) � 1 or ρs(p)2(�p)−ν⊥+β � 1. Since ν⊥ > β,
there should be a finite range of �p which satisfies the above
criterion. Thus, the phase boundary should be discontinuous
at d = 0. Using ρs(p) at the critical point of the PCP (see the
inset of Fig. 11) and the DP exponents β ≈ 0.27, ν⊥ ≈ 1.09,
the validity of the above criterion gives �p < 0.03 which is
comparable to the numerical result.

Due to the discontinuity, the phase boundary does not give
any information about the crossover exponent φ. Rather, we
find φ by data collapse using the following scaling ansatz:

ρ(p,d; t) = ρs(p) + t−δDP
ρ(t |p − pc(0)|ν‖ ,tdν‖/φ),

ρp(p,d; t) = t−δDP
p(t |p − pc(0)|ν‖,tdν‖/φ), (17)

where ρs(p) is the steady state particle density at d = 0, φ

is the crossover exponent, 
ρ , 
p are scaling functions, and
δDP ≈ 0.1595 and ν‖ ≈ 1.732 are the critical exponents of the
DP class. We observe the best collapse when we use φ = 2.6
as shown in Fig. 11. Thus, we conclude φ = 2.6(1). Note that
this crossover exponent is different from that of the crossover
from the DP class with infinitely many absorbing states to the
DP class with finite number of absorbing states [28].

The existence of the nontrivial crossover behavior at d = 0
has nothing to do with the change of universality classes. In
fact, this crossover originates from the drastic decrease of the
volume of absorbing states in the configuration space [28].
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10−8

ρ
(t

)
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t−δDPd
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δ D

P

FIG. 11. (Color online) Log-log plots of ρptδDP vs tdν‖/φ (top
curves) and (ρ − ρs)t δDP vs tdν‖/φ (bottom curves) for d = 10−5,
10−6, 10−7, and 10−8. ρs is the steady state density of particles for
d = 0, which is estimated as ≈0.2414. δDP 
 0.1595 and ν‖ 
 1.732
are the critical exponents of the DP. In the scaling collapse, we use
φ = 2.6. Inset: Plot of ρ(t) vs t−δDP at the PCP critical point. The
extrapolation gives ρs = 0.2414(3).

However, the discontinuity at d = 0 in the phase boundary
raises a criticism on the Hinrichsen’s argument explained in
Sec. I. This criticism starts from numerical observation that
diffusion makes the system more active as the system at p =
pc(0) with nonzero d is in the active phase. Now consider
the system at p = pc(0) and 0 < d � 1. In this case, clusters
spreads even faster than the critical spreading in the long time
limit. Repeating Hinrichsen’s argument, one can conclude that
diffusion of isolated particles is negligible in the long time
limit and, in turn, isolated particles can join a cluster by the
spreading of clusters not by their own diffusion, which is the
crucial feature of immobile isolated particles in the PCP. If
this were the case, the critical point should approach pc(0)
as d → 0 and the phase boundary should be continuous at
d = 0 just as the inhibitory route in Ref. [28]. Obviously,
this is contradictory to the numerical result. Also note that
the origin of the discontinuity is the active role of isolated
particles, which is completely neglected in the Hinrichsen’s
argument. In other words, one cannot deduce a right conclusion
by simply comparing the speed of spreading clusters with
that of diffusion. Hence, we cannot neglect the effect of pure
diffusion and there should be a strong correlation between
diffusion and the critical cluster spreading, which can mediate
the change of the universality class.

B. From the mean field PCPD to the PCPD

The mean field equation for the PCPD is obtained by setting
ρp(t) = ρ(t)2 and ρt (t) = ρ(t)3 in Eq. (3), which gives

dρ

dτ
= (1 − 3p)ρ2 − (1 − p)ρ3, (18)

where τ = (1 − d)t . The critical point of the mean field theory
is p0 = 1

3 at which the density decays as

ρc(τ ) = ρ0(
1 + 4ρ2

0τ/3
)1/2 ∼ τ−1/2, (19)
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where ρ0 is the initial density (we will set ρ0 = 1). When
3|p0 − p|ρ2

c � (1 − p)ρ3
c , ρ(t) is indistinguishable from ρc(t)

and clear deviation from Eq. (19) is observable when 3|p0 −
p|ρ2

c � (1 − p)ρ3
c , or |p − p0|τ−1 � τ−3/2. In other words,

the critical density decay is observable when τ � |p − p0|−2

and the off-critical behavior dominates when τ � |p − p0|−2.
Hence, the critical exponent ν‖ for the mean field theory
is 2.

The relation between the mean field equation and the PCPD
under d → 1 limit can be understood as follows (similar
argument is also found in Ref. [29]): Under the limit d → 1
with τ kept finite, any correlation generated by reaction
dynamics will be removed by diffusion immediately. Since
the mean field theory assumes no correlation for all time τ ,
Eq. (18) becomes exact in this limit. Even for finite 1 − d,
the mean field equation is an accurate approximation if the
relaxation time of diffusion of a randomly chosen region is
much smaller than the time between two consecutive reaction
dynamics in the same region.

To find the criterion for the validity of the mean field
theory for small but finite 1 − d, consider the mean field
dynamics at p = p0. According to the mean field solution,
the mean distance �(τ ) at time τ between two nearest particles
is �(τ ) = ρ−1 ∼ τ 1/2. Now consider a region of size O(�(τ )) at
time τ and assume that two consecutive reaction events occur
at τ and τ + �τ in this region. We also assume that during �τ ,
this region is not correlated with outside of this region. Since
the number of particles is finite in this region, �τ should be
O(1); recall that τ is rescaled time. Since the diffusion constant
in rescaled time τ is d/(1 − d) ≈ 1/(1 − d), the relaxation
time of diffusion of this region is O(�(τ )2)(1 − d) ∼ (1 − d)τ .
If (1 − d)τ � �τ ∼ 1, two consecutive reaction events are
uncorrelated and the mean field theory becomes accurate. On
the other hand, if (1 − d)τ � 1, two consecutive reaction
events become correlated and the mean field theory fails to
describe the system correctly. Hence, the crossover from the
mean field PCPD to the PCPD occurs when τ ∼ (1 − d)−1

and (1 − d)τ becomes a proper scaling parameter.
According to the above argument, the particle density in

the asymptotic regime should take the scaling form

ρ(p,d,τ ) = τ−1/2�ρ(τ |p − p0|2,τ (1 − d)), (20)

where τ = (1 − d)t as above and �ρ is a scaling function. We
also conjecture the scaling form of the pair density as

ρp(p,d,τ ) = τ−1�p(τ |p − p0|2,τ (1 − d)), (21)

where �p is another scaling function. From the mean field
theory, �ρ(0,0) = √

3/2 and �p(0,0) = 3/4. Hence, if 1 −
d � 1 and p = p0, plots of t1/2ρ(p0,d,τ ) against (1 − d)τ
should collapse onto a single curve for sufficiently large (1 −
d)τ . Furthermore, the phase boundary for 1 − d � 1 should
approach the mean field critical point as

|pc(d) − p0| ∼ (1 − d)1/2, (22)

where pc(d) is the critical point of the PCPD for given d < 1.
Hence, the crossover exponent is φ = 2.

To confirm the above argument, we simulated the PCPD for
1 − d = 10−3, 3 × 10−4, and 10−4 at p = 1

3 with the system
size L = 222. In Fig. 12(a), we depict ρ(τ ) vs τ and ρp(τ ) vs τ
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FIG. 12. (Color online) (a) Plots of particle density ρ and pair
density ρp as functions of τ = (1 − d)t for 1 − d = 10−3, 3 × 10−4,
10−4, and the mean field theory (bottom to top for each group). (b)
Scaling collapse plot of ρ

√
τ vs (1 − d)τ at p = p0 for same d’s in

(a). For comparison, �ρ(0,0) = √
3/2, is drawn as a line segment.

Inset: Scaling collapse plots of ρpτ vs (1 − d)τ for the same values
of d For comparison �p(0,0) = 3

4 is drawn as a line segment.

on a double-logarithmic scale. For comparison, the mean field
solution is also depicted. As argued, the regime where mean
field theory is accurate becomes larger as d gets closer to 1.
In Fig. 12(b), one can see a scaling collapse plot of ρ

√
τ vs

(1 − d)τ as well as ρpτ vs (1 − d)τ , which affirms that the
crossover exponent is 2.

V. SUMMARY

To sum up, we numerically studied the critical density
decay of the pair contact process with diffusion (PCPD) and
estimated the critical decay exponent by investigating effective
exponents after finding corrections to scaling for various
diffusion strength. For small diffusion probability (d � 0.5),
we found that the corrections-to-scaling term asymptotically
behaves as t−0.15 and for large diffusion probability (d = 0.95)
the corrections-to-scaling term decays as t−0.5 which is weaker
than that of the case with small d. All the same, the analysis
of the effective exponents for any d with the corresponding
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corrections-to-scaling term showed that the critical decay
exponent is δ = 0.173(3). Although this value is quite close to
that of the directed percolation (DP) universality class which
is 0.1595, the systematic deviation of δ for the PCPD from
the DP value for any d suggests that the PCPD does not
belong to the DP class and forms an independent universality
class.

We also studied the crossover from the pair contact process
(PCP) without diffusion to the PCPD which occurs around d =
0 and from the mean field theory (MFT) to the PCPD which
happens around d = 1. We found that the crossover at d = 0
is characterized by the discontinuity of the phase boundary
and that the crossover exponent is φ = 2.6(1). We showed
that applying the Hinrichsen’s argument [22] which supports
the DP hypothesis to this crossover leads to a contradictory
conclusion to the discontinuity of the phase boundary at d =
0. The crossover from the MFT to the PCPD, occurring at

d = 1, is described by the crossover exponent φ = 2, which
was argued to be exact.
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036101 (2001).
[5] H. Hinrichsen, Phys. Rev. E 63, 036102 (2001).
[6] K. Park and I.-M. Kim, Phys. Rev. E 66, 027106 (2002).
[7] G. T. Barkema and E. Carlon, Phys. Rev. E 68, 036113 (2003).
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