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Annealed Ising model with site dilution on self-similar structures
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We consider an Ising model on the triangular Apollonian network (AN), with a thermalized distribution of
vacant sites. The statistical problem is formulated in a grand canonical ensemble, in terms of the temperature
T and a chemical potential μ associated with the concentration of active magnetic sites. We use a well-known
transfer-matrix method, with a number of adaptations, to write recursion relations between successive generations
of this hierarchical structure. We also investigate the analogous model on the diamond hierarchical lattice (DHL).
From the numerical analysis of the recursion relations, we obtain various thermodynamic quantities. In the
μ → ∞ limit, we reproduce the results for the uniform models: in the AN, the system is magnetically ordered
at all temperatures, while in the DHL there is a ferromagnetic-paramagnetic transition at a finite value of T .
Magnetic ordering, however, is shown to disappear for sufficiently large negative values of the chemical potential.
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I. INTRODUCTION

Apollonian networks (ANs) are scaling-invariant graphs
with a number of small-world properties [1,2]. Triangular
Apollonian networks are generated by a recurrence procedure,
which starts with a single triangle that is divided into three
smaller triangles by considering a central node and linking
this node to the vertices of the original triangle. This same
procedure is successively repeated with all the newly formed
triangles. Investigations of the behavior of statistical models
on ANs, in particular spin model systems, have been reported
in some recent publications [1–3]. The methods to treat these
problems take advantage of the geometric scale invariance
of the network. The well-known star-triangle transformation
[4,5] leads to exact real-space renormalization-group transfor-
mations for the simple Ising model on the standard (triangular)
AN with nearest-neighbor and homogeneous interactions [2].
Suitable adaptations of the transfer matrix (TM) method have
been used to treat slightly more involved problems, such as
a network with generation-dependent node-node interactions
and networks with nodes of distinct degrees [1,3,6], and to
investigate the effects of quenched disorder [7].

Previous analyses of uniform ferromagnetic Ising and Potts
models on the AN indicate that there is no temperature-
dependent phase transition [1,3]. If the coupling constants Jij

between nodes i and j depend on the node degree k, with
Jij = J0/(kikj )α , there is a crossover value α = 1, so that
the system is magnetically ordered for α < 1 and completely
disordered for α > 1 [6]. The same type of ordering still
remains if the model includes two nearest-neighbor antifer-
romagnetic interactions in each triangle in the network, but it
is completely destroyed if we consider triangular plaquettes
with antiferromagnetic couplings only. In a recent work, it has
been numerically shown that there is no critical behavior even
in a spin-glass version of the Ising model on the Apollonian
network [2].

In this paper we consider the relatively simple case of a
thermalized (annealed) site-diluted spin-1/2 Ising model on
a triangular AN. There are a number of motivations to carry
out these calculations. At the mean-field level, it is known that
thermalized site dilution may change the critical behavior of

the Ising model into a discontinuous phase transition [8,9]. We
then hope that a signature of this effect may still be present
in a hierarchical structure, even if we start from a situation
with no phase transition. Also, it is important to point out that
Apollonian networks may be used to model a large variety
of soft-matter systems [10], including situations of annealed
disorder [11,12], which do not require the use of the more
involved methods associated with the quenched disorder of
solid-state physics. The TM methodology developed in this
investigation may be easily extended to treat several lattice
models of physical interest.

In this work we consider two sets of degrees of freedom,
orientational Ising spin variables {σi = ±1} and site-diluted
variables {τi = 0,1} on the sites of an Apollonian network
where τi = 1 if a site i is occupied, and τi = 0 if a site i

is empty. In this model, we remark that “empty” sites as
well as occupied sites can have +1 and −1 spin values. In
a thermalized system, the orientational variables are treated on
the same basis as the positional disorder degrees of freedom. It
is then convenient to formulate the statistical problem in terms
of an effective Hamiltonian in a grand-canonical ensemble,
depending on temperature T and a chemical potential μ, which
is associated with the concentration of occupied sites. It is
known that this problem can be mapped onto a spin-1 Hamil-
tonian [10], but in this case the star-triangle transformation
does not work without the inclusion of some extra multispin
interaction terms. We then resort to an adaptation of the TM
method, which is particularly effective for this type of problem.
This TM scheme amounts to deriving a number of (nonlinear,
discrete) maps for the free energy and other auxiliary variables
through successive generations of the hierarchical structure.
In simple situations, such as the problem of the Ising model
with nearest-neighbor interactions, which do not require the
addition of extra multispin interactions, the TM maps are
completely equivalent to the recursion relations of the usual
real-space renormalization-group (RG) calculations. For more
complex model systems, such as we investigate in the present
work, the TM scheme seems more advantageous. The TM
maps are derived in a straightforward way, requiring no
assumptions about the form of the renormalized Hamiltonian.
The only difficulty is the size of the transfer matrix and the
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number of independent matrix elements to be renormalized.
Although the site-diluted model on the AN demands the
iteration of ten independent mapping equations, this may be an
easier task than manipulating the extra multispin interaction
terms required by the application of the usual RG technique.

Thermodynamic and magnetic quantities are obtained by
taking temperature or field derivatives of the free energy and
require an extra number of maps for each derivative [13].
This investigation indicates that the site-diluted system on the
Apollonian network is disordered for μ < μc, and orders fer-
romagnetically if μ � μc. This formalism reproduces all of the
results for the corresponding uniform model (in the μ → ∞
limit). We have also analyzed the same site-diluted problem on
a diamond hierarchical lattice (DHL)[14,15], which provides a
point of contact with results for a real Euclidean lattice. Indeed,
it is known that the exact recursion relations for the simple
DHL structure correspond to the approximate relations of
the Migdal-Kadanoff bonding-moving scheme for the square
lattice [14].

This article is organized as follows. In Sec. II we discuss
some basic features of the annealed Ising model and the
construction of the Apollonian network. Section III is devoted
to the development of the transfer-matrix formalism and the
derivation of the recursion maps for the AN structure. Results
are discussed in Sec. IV, with emphasis on the differences
between the AN and the DHL structures. Some concluding
remarks are presented in Sec. V.

II. THE DILUTED MODEL AND SELF-SIMILAR
STRUCTURES

The ferromagnetic site-diluted Ising model is given by the
Hamiltonian

Hg = −J
∑
(i,j )

τiτjσiσj − H

Ng∑
i=1

τiσi, (1)

where τi = 0,1, σi = ±1, the first sum is performed over first-
neighbor pairs of sites, J > 0, and the subscript g indicates
a restriction to a particular generation g of the hierarchical
structure. We use the label g for all related quantities in the
g generation, such as the total number of sites (nodes) Ng ,
and the number of edges (bonds) Bg , of this generation. Given
a configuration {τi}, we write the total number of occupied
(magnetic) sites,

N+
g =

∑
i

τi = Ngρg, (2)

where ρg is the number density of occupied sites.
The hierarchical construction, which is based on the recur-

sive substitution of a simple geometrical element by a more
complex set of elements, turns out to be particularly suitable
to be treated by using analytic methods that explore scale-
invariant properties, such as real-space renormalization-group
[14,15] and transfer-matrix techniques [13,16]. However, in
comparison with other hierarchical structures, ANs have a
much shorter history in the physics literature [17]. They can
be derived in the context of a problem of filling the plane space
with tangent circles, as seems to have been first proposed by
the Greek geometer Apollonius of Perga. The AN is simply
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FIG. 1. Geometrical construction of the first three generations
(g = 0, 1, and 2) of the AN.

related to the resulting circle pattern, since it can be defined
by edges linking the centers of any pair of tangent circles. In
Fig. 1 we show the first AN generations, and illustrate how
we have to proceed to go from generation g to generation
g + 1. In this construction, we just place a node within each
existing triangle and connect this node to the three corners of
the triangle.

In the AN, we have Ng = (3g + 5)/2 and Bg = (3g+1 + 3)/2
at each generation. The inflation rule that is based on the
inclusion of new nodes in the space limited by the edges, but
not along the edges themselves, keeps a unit distance between
the first three nodes of the initial g = 0 generation. The largest
distance between any two nodes increases with the logarithm
of the total number of sites. The short distance of a given
site from any other site in its neighborhood is the reason for
the peculiar collective behavior of the AN as compared to
Euclidian lattices and even to geometrical structures such as
the diamond hierarchical lattices and Cayley trees.

III. TM MAPS FOR ANNEALED DISORDER

Although the TM method has been discussed in a series of
articles, we believe that it is relevant to call attention to some
different features associated with the treatment of annealed
disorder. In this case, orientation and disorder degrees of
freedom are treated at the same level. We then assume a
fixed value of the number N+

g of occupied sites, and write
the canonical partition function

Zg(T ,H,Ng,N
+
g ) =

∑
{σi }

∑′

{τi }
exp(−βHg), (3)

where β = 1/T , Hg is given by Eq. (1), and the prime
in the sum over the dilution configurations {τi} indicates
the restriction given by Eq. (2). This restriction is removed
if we introduce a chemical potential μ and change to a
grand-canonical ensemble. The grand partition function is
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given by

�g(T ,H,Ng,μ) =
∑
N+

g

Zg(T ,H,Ng,N
+
g ) exp

(
βμ

∑
i

τi

)
,

(4)
which can be written in terms of unrestricted sums,

�g(T ,H,Ng,μ) =
∑
{σi }

∑
{τi }

exp

⎡
⎣βJ

∑
(i,j )

τiτjσiσj

+ βH

Ng∑
i=1

τiσi + βμ
∑

i=1Ng

τi

⎤
⎦ . (5)

In this formalism, the concentration of magnetic atoms is given
by

ρg = 〈N+
g 〉

Ng

= 1

Ng

∂ ln �g

∂μ
. (6)

It is interesting to remark that the grand partition function,
given by Eq. (5), is related to the partition function of a
Blume-Capel (BC) model [18–21] on the same structure.
This relation is obtained if (i) the three states of the variable
σBC = +1,−1,0 are associated with the (1,1), (1,−1), and
(0,±1) pairs of (τ,σ ) variables; (ii) the crystalline field, which
is usually represented by an interaction parameter D in the BC
Hamiltonian, is associated with the chemical potential μ, and
takes into account the double degeneracy of the σBC = 0 state.
In the present work, however, it is not interesting to resort to
this equivalence.

Let us briefly sketch the TM formalism. Given a two-
state system Hamiltonian H0 = −Jτ1τ2σ1σ2, we begin the
application of the formalism by writing the matrix

M0 =

⎛
⎜⎜⎜⎝

a0 b0 d0 d0

b0 e0 f0 f0

d0 f0 c0 c0

d0 f0 c0 c0

⎞
⎟⎟⎟⎠ . (7)

Any row or column label (say i = 1,2,3,4) corresponds to
the pairs of values (1,1), (1,−1), (0,1), and (0,−1), in
the expression of the Hamiltonian H0(τi,σi). Although the
Boltzmann weights expressed by the matrix elements of M0

can take only three different values (βJ , −βJ , and 0), we
write M0 with six distinct entries. The main reason is that, for
larger values of g, nonzero values of μ and H break this large
degeneracy and require a more complex structure of elements,
as displayed by Eq. (7). The matrix M0 contains all Boltzmann

weights depending on different two-spin configurations of
the two outer sites limiting the geometric substrate. The
TM method amounts to constructing similar matrices Mg ,
the elements of which depend on the configurations of the
outer sites only, and which consists of partial traces over all
contributions of the configurations of the internal sites.

We point out that, since both μ and H are associated with
each site, the field contributions are taken only once as we
perform the sums in Eq. (5) through successive generations.
It should be emphasized that the system at generation g is
formed by sharing a subset of sites belonging to the g − 1
generation. Some of these sites play no role in the construction
of generation g + 1, and will be called internal sites of g.
The sites that take part in the construction of the new g + 1
structure are called external (or outer) sites of generation g.
The strategy to account for the field action within the TM
formalism consists in writing M0 in a field-free situation and,
as we go from generation g − 1 to g, letting the fields act only
on those external sites of g − 1 that become internal sites of
generation g. For instance, the fields are applied in site i = 4
at the generation g = 2, as illustrated in Fig. 1.

The AN triangular structure requires the consideration of
nonsquare matrices. For g = 1, we define a matrix B1 given
by the elements

(B1)i,jk = (M0)i,j (M0)j,k(M0)i,k, (8)

with i,j,k = 1,2,3,4. The square matrix (M1)i,k is obtained
by taking the trace of B1 over the index j . For g � 1, the
recurrence maps for the matrix elements of Bg+1 and Mg+1

are given by

(Bg+1)i,jk =
∑

	

(Bg)i,	k(Bg)i,	j
(
BT

g

)
	k,j

× exp{β[(hσ	τ	 + μτ	)/2]} (9)

and

(Mg+1)i,j =
∑

k

(Bg+1)i,jk. (10)

The matrices Mg have the same structures of matrix
elements as defined by Eq. (7). However, the recurrence
relations cannot be expressed in simple form by matrix
operations. Since the matrix Mg is not needed for the definition
of Bg+1, it is more convenient to iterate the matrix elements of
matrices Bg , which are given by the structural form

Bg =

⎛
⎜⎜⎜⎝

ag bg cg cg bg gg eg eg cg eg fg fg cg eg fg fg

bg gg eg eg gg dg hg hg eg hg ig ig eg hg ig ig

cg eg fg fg eg hg ig ig fg ig jg jg fg ig jg jg

cg eg fg fg eg hg ig ig fg ig jg jg fg ig jg jg

⎞
⎟⎟⎟⎠ . (11)

We remark that there are ten distinct matrix elements. Each
one of these elements obeys a recursion relation that connects

the value in generation g + 1 with the values of all the elements
belonging to generation g. We now use a transformation of
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variables, define a free energy given by

φg(T ,H,μ) = �g(T ,H,μ,Ng)/Ng = − T

Ng

ln(ag), (12)

as well as nine other variables that will be globally indicated
by xg = xg/ag . In Appendix A, we list the complete set of ten
recurrence maps that are required to obtain the results to be
discussed in the following section. In Appendix B we list the
corresponding maps for the diluted model system on the DHL
structure.

IV. THERMODYNAMIC BEHAVIOR

The numerical iteration of the maps in the Appendixes
produces a series of results in terms of the parameters T ,
H , and μ. For any set of these parameters, this iterative
procedure produces values that rapidly converge to a fixed
value. Thus, the maps are iterated until a generation g∗ so
that, for numerical variables with 16 significant digits, the free
energy φg becomes a constant for g � g∗. The value of g∗
depends on the particular parameters, but the convergence is
usually achieved for g < 50. The thermodynamic properties
expressed in terms of derivatives of the free energy can be
obtained either by numerically differentiating the φg map, for
g � g∗, or by iterating a larger set of maps for the derivatives of
φg+1 and x̄g+1 as functions of φg and x̄g and their derivatives.
The results of these calculations can be better appreciated by
showing some graphs, which were obtained by setting J = 1.

In Fig. 2 we draw some graphs of the specific heat
C as a function of temperature T , for different values of
the chemical potential μ, all of which display characteristic
smooth Schottky profiles. A qualitative inspection of these
graphs indicates that, independently of the value of μ, the
specific heat is always smooth for T > 0. This might lead to
the conclusion that qualitative aspects of the thermodynamic
behavior are completely unaffected by the chemical potential.
This is not the case, as we illustrate in Fig. 3, by drawing
graphs of ρ as function of T for several values of μ. These
graphs point out the existence of a peculiar behavior at
very low temperatures, with ρ(T → 0) → 1 for μ > −3,
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FIG. 2. (Color online) Specific heat C of the diluted system on the
AN as a function of temperature T for various values of the chemical
potential μ.
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FIG. 3. (Color online) Concentration ρ of the magnetic sites of
the dilute model on the AN as a function of temperature for various
values of chemical potential μ. At zero temperature, there is a
discontinuous behavior of ρ as the chemical potential changes through
the characteristic value μ = −3.

ρ(T → 0) → 0 for μ < −3, and ρ(T → 0) = 0.356 63 . . .

for μ = −3. Strictly speaking, this nonanalytic behavior does
not characterize a phase transition at a finite temperature, but
it does suggest a first-order transition at T = 0 and μ = −3.

The existence of a singular behavior can also be observed
in the low-temperature dependence of the entropy with respect
to the chemical potential μ. This can be seen in Fig. 4, which
indicates the existence of a residual entropy for μ � −3. It
is interesting to remark that the same limiting values, s(T =
0; H = 0) = 0, for μ > −3, and s(T = 0; H = 0) = ln 2, for
μ < −3, are also obtained in the exact calculations for a
one-dimensional version of this diluted Ising model. In these
lattice models, at zero temperature, and sufficiently large and
negative values of the chemical potential, there is an entropic
effect associated with the random orientation (σi = ±1) of the
magnetically nonactive sites. At zero temperature and μ = −3,
however, the residual entropy on the AN reaches a larger
value, s(T = 0; H = 0; = 3) = 0.8432 . . .. This value can be
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FIG. 4. (Color online) Entropy s on the AN lattice as a function
of temperature for various values of chemical potential μ. There
is a residual entropy for μ � −3. At the critical value μ = −3,
the residual entropy is s(T = 0) = 0.8432 . . . .This value changes
to s(T = 0) = ln 2 for μ < −3.
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FIG. 5. (Color online) Magnetization in zero field on the AN as
a function of temperature for various values of the chemical potential
μ. As in Fig. 3, at zero temperature, there is a discontinuous behavior
of the magnetization at μ = −3.

analytically derived by considering only the dominating terms
in the maps in Appendix A when T → 0 and μ = −3. In this
case, there are several configurations with τ = 1 that have the

same Boltzmann weights as the the usual doubly degenerate
configurations σ = ±1 and τ = 0, which are responsible for
the residual entropy ln 2. For instance, in the first generation,
it is easily seen that the dominant terms are those with all
sites in the (σ = 1,τ = 1) state and all external sites in the
(σ = 1,τ = 1) state and the central site in the (σ = ±1,τ = 0)
state. In the subsequent generations, these configurations
occur recurrently, while new configurations where the three
external and the central sites have exactly the same config-
urations as for g = 1 emerge in each new generation. As
a result, not only is the residual entropy larger, but also
the density of sites with magnetic properties (i.e., τ = 1) is
nonzero.

The observed singular behavior of the entropy s and the
density ρ is also confirmed by the graphs of the spontaneous
magnetization, as we illustrate in Fig. 5, for different values
of μ.

It is interesting to remark that the spontaneous mag-
netization m = −∂φ/∂H does not become identically zero
at a well-defined temperature value. The graphs of m, for
μ > −3, are similar to those obtained for the uniform,
nondiluted, ferromagnetic Ising model, m(T = 0) = 1, while
m(T → ∞) → 0 exponentially. The T = 0 limit persists for
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FIG. 6. (Color online) Specific heat C of the diluted model on the DHL as a function of temperature for several ranges of values of the
chemical potential μ. (a) explores large intervals of μ, illustrating phase transitions at Tc(μ) indicated by cusps for μ = 30, 3, and 0. No
cusp appears for μ � −3. (b) illustrates patterns consisting of cusps with a broad maximum superposed for μ = −2.0, −2.3, and −2.6.
At μ = −2.8 the cusp to the left of the broad maximum reaches a very large value �29.15. (c) shows the huge increase of C(Tc) as μ

decreases, which is related to the presence of a tricritical point; μ = −2.95 is the lowest value of μ where the cusp can be well characterized,
as C(Tc) ∼ 1013.

052112-5



V. S. T. SILVA, R. F. S. ANDRADE, AND S. R. SALINAS PHYSICAL REVIEW E 90, 052112 (2014)

μ � −3, as observed for μ = −2.9. On the other hand,
m(T = 0) = 0.356 63 . . . for μ = −3, whereas m(T = 0) = 0
for μ < −3.

If we restrict the calculations to the T → 0 limit, the
highly nonlinear maps in Appendix A can be simplified by
excluding all but the necessary dominant terms. In this case,
it is possible to derive analytic expressions for φ and its
derivatives. This tedious although straightforward procedure
leads to the confirmation of the reported values for the residual
entropy, concentration, and magnetization at μ = −3. These
calculations also lead to asymptotic expressions for the entropy
and magnetization at low temperatures T 
 1.

We now turn to the behavior of the site-diluted model
on the diamond hierarchical lattice, which comes from the
iteration of the recursion relations that are explicitly written
in Appendix B. If we consider the simple ferromagnetic
Ising model, it is known that the exact recursion relations
for the DHL correspond to the approximate relations for a
Euclidian square lattice, as obtained by the application of
the Migdal-Kadanoff bond-moving scheme. We then use the
results for the DHL structure, which might be closer to a
real square lattice, to provide a basis of comparison with the
findings for the Apollonian structure.

In Fig. 6, we illustrate the behavior of the specific heat
C versus temperature T for several ranges of values of μ.
The three panels in this figure indicate distinct features of the
behavior of C as compared to the analogous model on the
AN. If we let μ → ∞, we reproduce the uniform (undiluted)
model, which is characterized by the presence of a cusp
singularity at Tc, the critical temperature of a second-order
ferromagnetic-paramagnetic phase transition. These global
features are shown in Fig. 6(a). The cusp that is associated with
the second-order phase transition is observed in this figure for
μ = 0, 3, and 30. For μ � −3, the specific heat displays just
a broad (Schottky-type) maximum.

In Fig. 6(b), we display the typical behavior of C in the
interval −2.8 � μ � −2.0. In this range of values of μ,
besides the characteristic cusp associated with the second-
order transition, we note the emergence of a broad (Schottky)
maximum, whose relative position with respect to the cusp
changes with μ. As we mentioned in the last paragraph, this
broad maximum is still present for μ < −3.

In Fig. 6(c), we consider a very small interval, −2.90 �
μ � −2.80, within which we observe important changes in
the critical behavior. In this interval, as μ decreases, the height
of the cusp of the specific heat, which we call C (Tc), increases
very sharply. We were able to extend these calculations beyond
the values in the graphs, and followed the behavior of the
specific heat down to μ = −2.95, with a cusp as large as 1013.
The broad maximum survives for μ < −3, but the values of the
critical temperature are very small. Due to the quick divergence
of the Boltzmann weights, we have numerical difficulties in
analyzing the maps listed in the Appendixes.

In the DHL, the sharp increase of C (T ) is related to the
presence of a tricritical point. A detailed analysis of the
Migdal-Kadanoff RG structure of fixed points and flow lines
of the spin-1 Blume-Emery-Griffiths (BEG) model in two
and three dimensions has been reported by Kaufman et al.
[22]. This Migdal-Kadanoff scheme on the square lattice
leads to exact recursion relations for a simple “necklace”
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FIG. 7. (Color online) Spontaneous magnetization m on the DHL
as a function of temperature for various values of the chemical
potential μ. Note that m → 0 at T = Tc(μ) for μ > −3, and that
m ≡ 0 at all temperatures for μ < −3.

hierarchical structure, which is similar (although not identical)
to the diamond hierarchical lattice that we have considered in
the present paper. In view of the mapping of the annealed
disordered problem into a BEG spin-1 Hamiltonian, it is then
clear that we do have a tricritical point in the phase diagram of
the Ising diluted system on the diamond hierarchical lattice, in
terms of temperature T and chemical potential μ.

In Fig. 7, we illustrate the behavior of the spontaneous
magnetization m as function of temperature for different values
of μ. For μ > −3, there is a non-zero spontaneous mag-
netization at low temperatures, which vanishes continuously
as T → Tc. For μ � −3, the spontaneous magnetization m

vanishes identically for all values of T .
The values of Tc were independently confirmed by calcu-

lations of the correlation length ξ and the susceptibility χ .
This agreement between independent calculations supports
the validity of the adaptation of the transfer matrix method
to the annealed systems. We are then confident to point out
the differences between the peculiar behavior of the annealed
system on the Apollonian network as compared to the results
for the diamond hierarchical lattice.

V. CONCLUSIONS

We have developed a suitable adaptation of the transfer-
matrix method to write exact recursion relations and investi-
gate the thermodynamic behavior of a simple ferromagnetic
Ising model in the presence of annealed site dilution on a
triangular Apollonian network. In order to provide a basis
of comparison, we have also analyzed the same spin system
on a diamond hierarchical lattice, whose recursion relations
are known to be identical to the approximate results obtained
from an application of the Migdal-Kadanoff bonding-moving
scheme to a square lattice. The problem is formulated in a
grand ensemble, in terms of the temperature T and a chemical
potential μ associated with the concentration ρ of active sites.

In the Apollonian network, although there is no phase
transition at finite temperatures, there is a peculiar low-
temperature behavior in terms of the chemical potential. We
show that ρ(T → 0) → 1 for μ > −3, ρ(T → 0) → 0 for

052112-6



ANNEALED ISING MODEL WITH SITE DILUTION ON . . . PHYSICAL REVIEW E 90, 052112 (2014)

μ < −3, and ρ(T → 0) = 0.356 63 . . . for μ = −3, which
indicates a first-order transition at T = 0 and μ = −3. The
spontaneous magnetization m displays a similar peculiar
behavior. For μ > −3, we have m(T = 0) = 1, which is the
typical result for the uniform Ising ferromagnet. Also, m (T ) �=
0 for all finite temperatures, and vanishes exponentially for
T → ∞. On the other hand, m(T = 0) = 0 for μ < −3. At
T = 0 and μ = −3, m and ρ reach the same value, m(T =
0) = ρ(T = 0) = 0.356 63 . . ., which reflects the effect of the
dilution.

We have analyzed the behavior of the zero-field entropy
of the annealed system on the Apollonian network. For μ >

−3, there is no residual entropy. For μ < −3, we find the
residual entropy s(T = 0,H = 0) = ln 2, which can be easily
understood in terms of a random occupation of the sites. At
μ = −3, however, the residual entropy reaches a larger value,
s(T = 0,H = 0,μ = −3) = 0.8432 . . . .

The thermodynamic behavior of the annealed system on
the DHL also presents interesting features. We paid particular
attention to the behavior of the specific heat as a function of
temperature for several values of μ. In the undiluted case,
it presents a cusp singularity at Tc, the temperature of a
second-order phase transition. In the diluted case, we find no
critical behavior for μ � −3. However, the same kind of cusp
singularity characterizes the interval μ > −3. Our calculations
have indicated a sharp increase of C(Tc) when μ � −2.95,
which is consistent with the presence of a tricritical point, as
has been discussed in previous studies. When μ → ∞, the
results of the undiluted model are reproduced. We have also
found that a residual entropy is found in the zero-temperature
limit when μ < −3. The calculation of the spontaneous
magnetization as a function of temperature, for different values
of μ, provides additional information on the critical line.
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APPENDIX A

The recurrence maps for the ten distinct matrix elements
shown in Eq. (11) are rewritten in terms of the potential φg

defined by Eq. (12) and rescaled variables given by the ratio
of the other matrix elements by ag according to the following
definitions: rg = bg/ag, sg = cg/ag, pg = dg/ag, tg = eg/ag,

ug = fg/ag, qg = gg/ag,wg = hg/ag, xg = ig/ag, vg = jg/ag .
We also define y = exp(βμ/2) and z = exp(βh), and recall
that Ng = (3g + 5)/2.

φg+1 = 3φg

Ng

Ng+1
− T

Ng+1
ln

[
2s3

g + (
r3
gy

)
/z + yz

]
, (A1)

rg+1 = 2sgt
2
g + (

rgq
2
gy

)
/z + r2

gyz

2s3
g + (

r3
gy

)
/z + yz

, (A2)

sg+1 = 2sgu
2
g + (

rgt
2
gy

)
/z + s2

gyz

2s3
g + (

r3
gy

)
/z + yz

, (A3)

qg+1 = 2t2
gwg + (

pgq
2
gy

)
/z + r2

gqgyz

2s3
g + (

r3
gy

)
/z + yz

, (A4)

tg+1 = 2tgugxg + (tgqgwgy)/z + rgsgtgyz

2s3
g + (

r3
gy

)
/z + yz

, (A5)

ug+1 = 2u2
gvg + (

t2
gxgy

)
/z + s2

gugyz

2s3
g + (

r3
gy

)
/z + yz

, (A6)

pg+1 = 2w3
g + (

p3
gy

)
/z + q3

gyz

2s3
g + (

r3
gy

)
/z + yz

, (A7)

wg+1 = 2wgx
2
g + (

pgw
2
gy

)
/z + t2

gqgyz

2s3
g + (

r3
gy

)
/z + yz

, (A8)

xg+1 = 2x2
gvg + (

w2
gxgy

)
/z + t2

gugyz

2s3
g + (

r3
gy

)
/z + yz

, (A9)

vg+1 = 2v3
g + (

x3
gy

)
/z + u3

gyz

2s3
g + (

r3
gy

)
/z + yz

. (A10)

APPENDIX B

The TM formalism for the diluted model on the DHL
results in a set of six maps for distinct elements of a 4×4 matrix
with the same structure as in Eq. (7). As in the case of the
AN, they are rewritten in terms of the potential φg defined by
Eq. (12) and rescaled variables given by the ratio of the other
matrix elements to ag according to the following definitions:
rg = bg/ag, sg = eg/ag, tg = dg/ag, xg = cg/ag, vg = fg/ag .
As in Appendix A, we define y = exp(βμ/2) and
z = exp(βh), but now Ng = 2(4g + 2)/3.

φg+1 = 4φg

Ng

Ng+1
− T

Ng+1
ln

{[
r2
gy + z

(
2t2

g + yz
)]2

/z2
}
,

(B1)

rg+1 = [2tgvgz + rgy(sg + z2)]2[
r2
gy + z

(
2t2

g + yz
)]2 , (B2)

sg+1 =
[
s2
gy + z

(
2v2

g + r2
gyz

)]2

[
r2
gy + z

(
2t2

g + yz
)]2 , (B3)

tg+1 = [rgvgy + tgz(2xg + yz)]2[
r2
gy + z

(
2t2

g + yz
)]2 , (B4)

xg+1 =
[
v2

gy + z
(
2x2

g + t2
gyz

)]2

[
r2
gy + z

(
2t2

g + yz
)]2 , (B5)

vg+1 = [sgvgy + z(2vgxg + rgtgyz)]2[
r2
gy + z

(
2t2

g + yz
)]2 . (B6)
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