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Arrays of stochastic oscillators: Nonlocal coupling, clustering, and wave formation

Daniel Escaff,1 Italo’Ivo Lima Dias Pinto,2 and Katja Lindenberg3

1Complex Systems Group, Facultad de Ingenierı́a y Ciencias Aplicadas, Universidad de los Andes,
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We consider an array of units each of which can be in one of three states. Unidirectional transitions between
these states are governed by Markovian rate processes. The interactions between units occur through a dependence
of the transition rates of a unit on the states of the units with which it interacts. This coupling is nonlocal, that
is, it is neither an all-to-all interaction (referred to as global coupling), nor is it a nearest neighbor interaction
(referred to as local coupling). The coupling is chosen so as to disfavor the crowding of interacting units in the
same state. As a result, there is no global synchronization. Instead, the resultant spatiotemporal configuration is
one of clusters that move at a constant speed and that can be interpreted as traveling waves. We develop a mean
field theory to describe the cluster formation and analyze this model analytically. The predictions of the model
are compared favorably with the results obtained by direct numerical simulations.
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I. INTRODUCTION

The emergence of self-organization in systems out of
equilibrium has received a great deal of attention in the
last few decades. These self-organizing systems have the
fascinating common property that although formed from
many microscopic constituents, they are capable of exhibiting
coordinated macroscopic dynamics. Examples of this kind of
behavior can be found in many contexts, ranging from spatial
patterning [1,2] to synchronization phenomena [3].

The interactions of the microscopic constituents in these
systems range from global (all-to-all interactions), as in many
models of synchronization [3], to local, as in many pattern
forming systems where transport phenomena are diffusive [1].
Between these two extremes lie what we call spatially nonlocal
(but not global) interactions. For instance, neural models of
pattern formation must take into account the effects of nonlocal
interactions among neurons. Models that provide a good
description of the mechanism involved in stripe formation in
the visual cortex [2] involve firing rates of cells stimulated
by close neighbors (activation) and depressed by more distant
neighbors (inhibition).

Nonlocal interactions are invoked in many contexts and
may induce new dynamical states. A well known example
is the appearance of chimera states [4] whose emergence
seems to require nonlocal interactions. Chimeras have been
found experimentally in the context of Belousov-Zhabotinksky
chemical oscillators [5]. The concept of nonlocal interactions
has been generalized beyond spatial coupling. For instance,
Abrams et al. [6] have suggested a model of a population
of identical oscillators separated into two subgroups. The
oscillators in each subgroup are globally coupled to all other
oscillators in that subgroup, and also to the oscillators of the
other subgroup, but with different coupling strengths. The
role of nonlocal interactions has also been pointed out in
the context of vegetation dynamics in arid zones [7], where
scarcity of resources induces a variety of self-organizing
patterns. Nonlocal interactions have also had an impact in

the field of nonlinear optics [8]. In this case, nonlocality may
arise, for instance, in thermal nonlinear optical media and
in left-handed materials. In the area of population dynamics,
nonlocal interactions can induce pattern formation [9] and
the stabilization of localized states [10]. In fact, when strong
nonlocal coupling is taken into account [11], a new mechanism
to stabilize localized states has recently been reported [12], one
that has no analog when the interactions are purely local.

Most of the models mentioned above lead to self-
organization in the mean field. They describe the self-
organization process by a set of field variables that account
for densities related to the underlying microscopic dynamics.
However, the mean field neglects the role that fluctuations
play in the self-organization process, and may even miss some
effects and phenomena entirely. For example, a model for
population dynamics has been considered in Ref. [13] (a
binary cellular automaton) which exhibits pattern formation
via intermittence that cannot be described by a continuous
mean field theory.

In this paper we focus on an array of units each of which can
be in one of three possible states. Transitions between these
states are governed by stochastic Markov processes. Hence, in
contrast with the deterministic model presented in Ref. [13],
here we can control fluctuations by a suitable scaling of the
model parameters and implement a mean field theory for the
self-organizing dynamics exhibited by the model. We fully
analyze this mean field theory and compare the results with
those obtained by direct numerical simulations of the model.

In the context of synchronization of coupled oscillators,
units of discrete states may model a coarse-grained phase space
of excitable and oscillatory units [14]. These kinds of systems
have served as a fruitful tool to study synchronization as well
as fluctuations [14–20]. One version of the model of Wood
et al. [15–17] consists of arrays of three-state Markovian units
globally coupled by highly nonlinear (exponential) coupling. It
turns out that three is the minimum number of states for arrays
of Markovian units to exhibit oscillatory synchronization when
the coupling is sufficiently strong. The simplicity of the units
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FIG. 1. (Color online) (a) Single unit dynamics. Each colored or
grey-scale dot represents a state. (b) Small coupled array of size N =
8 with periodic boundary conditions. Here each dot is a three-state
unit, and its color or shade represents the state of that unit. The unit at
the top of the sketch “interacts” with (or is “aware” of) four neighbors.

(small number of states, no memory effects) makes it possible
to analyze these arrays in great detail, partly analytically and
partly numerically. As a result, even though these models are
not meant to represent any particular physical system, they
have provided a wealth of information about synchronization
of coupled arrays.

In this paper we present a nonlocal generalization of
the model proposed by Wood et al. [15], and analyze the
resulting self-organized spatial structures. Originally, this
model was proposed to study global synchronization, that is,
to determine conditions for the majority of the units of the
ensemble to oscillate together. For that reason, the coupling
between units used in that study favors the “crowding” or
accumulation of units in the same state. In contrast, here
we study the case of coupling that disfavors crowding. Due
to the nonlocal interaction, this anticrowding coupling may
induce the formation of traveling clusters of different phases
of oscillation.

The goal of our work is to present a nonlocal generalization
of the model of Wood et al. [15] to the anticrowding regime. We
will show that this regime exhibits a different self-organizing
behavior, and we develop a mean field theory for this self-
organizing phenomenon. We also discuss the capability of this
mean field theory to describe what we observe from direct
numerical simulations of the model. To fulfill these goals, the
paper is organized as follows. In Sec. II we propose our model.
In Sec. III we present a numerical study of the model, showing
the self-organizing phenomenon. In Sec. IV we fully analyze
the mean field description of the process, and in Sec. V, we
present our conclusions. Some mathematical derivations are
presented in the Appendix.

II. MODEL

We consider an array of N units numbered k =
1,2,3, . . . ,N , each of which may be in one of three possible
states, say, state 1, state 2, or state 3. Transitions between these
states are cyclical (unidirectional), from 1 to 2, 2 to 3, and 3
to 1, as illustrated in Fig. 1(a). This unidirectionality of course
implies that the system is out of equilibrium. The transitions
are Markov processes of rates gi , where i is the initial state
of the transition. The interaction among units is shown in
cartoon form in Fig. 1(b) and is modeled by taking the rate

at which a transition occurs from one state to the next in a
given three-state unit to depend on the states of a number of its
neighbors. More precisely, suppose we focus on a particular
unit, say unit k, and furthermore suppose that this unit “is
aware” of the instantaneous states of Nk of its neighbors. The
transition rate out of state i of that unit is then denoted by gk

i

and is assumed to be of the Arrhenius form

gk
i (t) = exp

(
a

nk
i+1(t) − nk

i (t)

Nk

)
. (1)

Here nk
j (t) is the number of units among the Nk that are in

state j at time t , and i + 1 = 1 when i = 3.
This model has been explored in considerable detail when

the coupling parameter a is positive [15]. When there are all-to-
all interactions, that is, when Nk = N , the coupling is global.
The positive coupling parameter implies that if many units are
in a given state, then they leave that state more slowly than if
there are only a few. In the thermodynamic limit N → ∞, the
stable state of the system when the coupling parameter is small
is the globally symmetric state, where 1/3 of the units are in
each state. This state becomes unstable as the parameter a

increases beyond a critical value. There is then a supercritical
transition to global synchronization [15], and in the stable
state most of the units oscillate around the three-state circuit in
unison. These behaviors can be found via a mean field analysis.

Continuing with the global coupling case, the oscillations
slow down as the parameter a increases further. When the
coupling parameter increases beyond a second critical value,
the system undergoes another transition. The oscillatory state is
lost via an infinite-period bifurcation, and the system reaches a
static stationary state in which most of the units are in the same
state. There are of course three such possible over-crowded
static states [16]. In other words, as a becomes more and more
positive, and the tendency of crowding becomes more and
more intense, the symmetry between the three states is broken.

Generalizations of model (1) have also been consid-
ered [17], enriching the bifurcation scenario. For instance,
while the transition to synchronization obtained with global
coupling and the transition rates given above is supercritical,
a change in the structure of the exponent leads to a subcritical
transition to synchronization. In any case, for all these variants
of the model with global coupling, the crowding effect seems
to be crucial for the occurrence of synchronous behavior.

At the opposite extreme of global coupling, but still with
a positive coupling constant a > 0, lies the case of local
coupling. In this case we have a regular network (e.g.,
hypercubic) in which each unit interacts only with its nearest
neighbors [15]. Therefore, in Eq. (1) we now have Nk = 2d,
where d is the spatial dimensionality of the array (global
coupling is equivalent to infinite dimension). In this case,
even in the thermodynamic limit global synchronization is not
guaranteed. Global synchronization requires a dimensionality
d � 3, that is, a cubic or hypercubic array. Here it is no longer
possible to use a mean field analysis. Instead, the transition to
synchronization is found via a renormalization group analysis
that requires numerical implementation [15].

We now turn to the case of a negative coupling constant,
a < 0, which we call “anti-crowding coupling.” This form
of coupling has been considered for a two-state model [18],
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FIG. 2. (Color online) Array of N = 1024 units, with n = 200. Left panel: a = 2. Middle panel: a = 0. Right panel: a = −15. In the three
panels t ∈ [0,40]. Each color or grey scale represents a different state as in Fig. 1.

where synchronization is not possible with either positive
or negative coupling with Markovian transition rates. We
considered a model in which one of the transitions, say from
state 1 to state 2, is Markovian, but the reverse transition, from
state 2 to state 1, is a non-Markovian process. The return of
an uncoupled unit from state 2 to state 1 in that model occurs
exactly τ time units after arrival at state 2. The time τ , a
parameter of the model, is thus a refractory period. Coupling
among units causes the refractory period of each unit to
depend on the configuration of the system. Specifically, the
coupling is such that after arrival of a unit at state 2, return to
state 1 occurs after a time that is shorter (longer) than τ if at the
time of arrival of that unit in state 2 that state is overcrowded
(sparsely populated). When coupling is weak, the only steady
state is quiescent, that is, on average the populations in states 1
and 2 remain static. However, at sufficiently strong coupling,
the shortening of the refractory period when either state is
overcrowded induces a high-amplitude oscillation that never
destabilizes the quiescent state.

This is the case we consider in this paper, that is,
anti-crowding coupling in arrays of three-state units with
Markovian transition rates. It might be tempting to conjecture
that anti-crowding coupling, a < 0, might always induce
disordered phases because the units attempt to differentiate
one from another as much as possible. However, we will show
that when nonlocal coupling is considered, the system can
organize itself by forming propagating clusters. These clusters
are spatially distributed, and, at a given location, they oscillate
(alternate) between over-crowding and anti-crowding, which
is another manifestation of propagating clusters. Thus, on
average there are no globally ordered phases, and yet the
system displays clear spatially structured synchrony.

To achieve this outcome, not only do we need to focus
on negative coupling, but the model can neither be entirely
global nor entirely local, as were the models considered for
positive coupling. The array is still in the configuration shown
in Fig. 1(b), and each unit interacts with n neighbors on
each side. The transition rates are as given in Eq. (1), with
Nk = 2n (since we take Nk to be independent of k, all the
units are identical). Global coupling corresponds to n = N/2,
that is, Nk = N , and local coupling to n = 1, that is, Nk = 2.
We implement periodic boundary conditions as shown in the
figure. The system dynamics are characterized by the three
parameters {a,n,N}.

III. NUMERICAL OBSERVATIONS

In this section we display a numerical study of the model
described at the end of the previous section for negative
coupling constant, a < 0, including a comparison of results
with those of a positive coupling constant. We start by
showing in Fig. 2 the typical scenarios that we observe in our
simulations. The horizontal axes represent positions (units) in
the array, and the vertical axes show time. The size of our linear
array is N = 1024, and the number of neighbors with which
any unit interacts is n = 200 on each side. The different colors
represent different states (1, 2, or 3). For sufficiently large
positive values of a (see Fig. 2, left panel), we observe that
our system oscillates as a whole from one over-crowded state
to another, exhibiting global synchronization as occurs for the
global coupling case in the thermodynamic limit [15]. For low
positive coupling strength or no coupling at all (see Fig. 2,
middle panel), the system exhibits a completely disordered
configuration where, on average, 1/3 of the units are in each
state.

On the other hand, and of interest to us here, when the
coupling strength is large in magnitude and negative (a < 0)
(see Fig. 2, right panel), the system exhibits a new form of
self-ordering. Clusters appear in which one of the states is
over-crowded, and yet an average over the full array shows
no global crowding in any of the states. The fuzziness at the
edges of the fringes are caused by fluctuations that arise due to
the Markovian transition rates and, more importantly, due to
the finite number n of units coupled to each unit in the array.
Note that the clusters move with a well-defined velocity. This
appears as a well-defined slope in the spatiotemporal diagram.
Due to the isotropy of the model, the motion of the clusters
is equally likely to the left or right of the array. The direction
depends on initial conditions and on fluctuations. Note that
these clusters seem to be highly ordered in space, perhaps a
reminiscence of some type of Turing self-organization.

To display the transition to self-organization more clearly,
in Fig. 3 we follow the spatiotemporal configuration as the
value of a becomes increasingly negative. Here we work with
an array of N = 512 units and set n = 104. For a = −5 (upper
left panel), the spatiotemporal diagram is dominated by noise,
and no pattern is evident. For a = −9 (upper right panel) we
note the beginnings of the formation of clusters, but with a
strong presence of noise. As we continue to increase the anti-
crowding coupling strength, the clusters become increasingly
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FIG. 3. (Color online) Array of N = 512 units with n = 104. Top left panel: a = −5. Top right panel: a = −9. Bottom left panel: a = −13.
Bottom right panel: a = −17. In the four panels t ∈ [0,400].

evident (a = −13, lower left, and a = −17, lower right). We
again observe that these clusters move with a well defined
velocity. As noted earlier, the motion is equally likely to be
in either direction, determined by the initial conditions and by
the fluctuations. In fact, for a = −17, after a short transient,
in this realization the clusters clearly move to the right. On
the other hand, for a = −13, even though the clusters at first
move to the right, they rather suddenly change direction and
continue to move to the left. This phenomenon is likely a
fluctuation-induced transition.

The periodic distribution of these clusters (affected by
noise) can be seen if we define the quantity

νk
i (t) = nk

i (t)

2n
, (2)

which is less noisy than would be a rendition of the states of
each unit along the array at a given time, especially as −a

increases. Figure 4 shows the spatial profile of this quantity
for a given time for the same parameters as in Fig. 3. As we
increase the anti-crowding coupling strength, a clearer regular
pattern emerges, showing that the system becomes more and
more self-organized. Figure 5 displays the absolute value Am

of the Fourier transform of νk
1 (t),

Am = 1√
N

∣∣∣∣∣
N∑

k=1

νk
1e2πimk/N

∣∣∣∣∣ (3)

(obviously, the i in the exponent is the complex unit number,
not a state index), which exhibits a clear peak at wave number
m = 4. Therefore, we can describe these clusters as traveling

waves with well defined wave number 8π/N , amplitude,
and speed. All of these phenomena occur in the presence of
fluctuations.

Finally, in Fig. 6 we show the results of numerical
simulations for two different values of N and lower values
of n. The effects of reducing n are interesting. The formation
of traveling waves is again clear, a result we observe only if
n > 5. For lower n the system displays a noisy desynchronized
phase. When the pattern appears in this regime as n is modestly
increased, however, one observes the coexistence of domains
with left-moving and right-moving waves. These domains are
separated by interphases that may be recognized as sources
and sinks of waves. This is a well documented phenomenon
for spatially extended oscillatory systems out of equilibrium
in the mean field limit [21]. However, contrary to those cases,
in our case these defects seem to appear and move in a
random way. In the top panel of Fig. 6 the defects seem to
quickly appear and disappear. In the bottom panel, on the
other hand, the defect trajectories are neater and longer. Their
direction is quite random: perhaps the direction along the array
executes a sort of Brownian motion. In addition, it is also
possible to observe islands where one direction of propagation
predominates immersed in a region where the other direction
predominates.

IV. MEAN FIELD THEORY FOR WAVE FORMATION

We wish to support our numerical findings with analytic
results. We begin by constructing a master equation in discrete
space which we then approximate by a continuous space
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FIG. 4. (Color online) Spatial distribution of the ratio νi = ni/2n

as a function of position k in the array at a given instant of time.
Black: state i = 1. Green or lighter: state i = 2. From top to bottom
a = −5, − 9, − 13, − 17 (N = 512 and n = 104 in all panels).
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FIG. 5. (Color online) Absolute value of the Fourier transform of
the spatial distribution of the n1 neighbors of an arbitrary unit in state
1 that interact with that unit and that are in state 1. The peak at m = 4
is evident. Different colors or shades are used for different values of
a as indicated on the right upper corner.

master equation using a scaling argument. Next we implement
a mean field approximation which leads us to a solution. This
solution in turn leads to a stable quiescent stationary state when
the coupling parameter is small. As the parameter increases, in
either the positive or negative directions, the quiescent solution
becomes unstable. A positive coupling constant at this point

FIG. 6. (Color online) Upper panel: N = 200, n = 7, and a =
−16. Lower panel: N = 2000, n = 9, and a = −16. In the lower
panel we have plotted only the first 500 units of the array on the
horizontal position axis to facilitate visualization of the wave patterns.
In both panels t ∈ [0,400].
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then leads to a crowding solution that is spatially uniform
but temporally oscillatory, as obtained in earlier work [15]. A
negative coupling constant at the point of instability leads to the
onset of an anti-crowding spatiotemporal oscillatory solution,
as we have seen in the previous section. In this latter case we
then go on to characterize the wave evolution when a single
mode first becomes unstable, and analyze this self-organizing
evolution with our numerical results in mind.

A. Master equation

We start our analysis with the master equation that governs
the evolution of the probability pk

i (t) that unit k in our
array of N units is in state i at time t . In view of the
conservation of probabilities, pk

1(t) + pk
2(t) + pk

3(t) = 1, we
only need equations for two of these probabilities:

ṗk
1(t) = gk

3(t)p3(t) − gk
1(t)p1(t)

= gk
3(t) − [

gk
1(t) + gk

3(t)
]
pk

1(t) − gk
3(t)pk

2(t), (4)

ṗk
2(t) = −gk

2(t)pk
2(t) + gk

1(t)pk
1(t), (5)

where gk
i (t) is defined in Eq. (1).

B. Continuous limit

We next introduce the scaling variable

ν = n

N
, (6)

and take the limits N → ∞ and n → ∞ keeping the value of ν

constant. Space can then be described by the continuous vari-
able x = k/N , with x ∈ [0,1], and dx = N−1. We implement
the changes

pk
i (t) → pi(x,t), gk

i (t) → gi(x,t), (7)

so that the master equations (4) and (5) take the form

∂p1(x,t)

∂t
= g3(x,t) − [g1(x,t) + g3(x,t)]p1(x,t)

− g3(x,t)p2(x,t), (8)

∂p2(x,t)

∂t
= −g2(x,t)p2(x,t) + g1(x,t)p1(x,t). (9)

The periodic boundary condition takes the form

pi(x + 1,t) = pi(x,t). (10)

C. The mean-field approximation

Equations (8) and (9) are not autonomous unless we can
express the rates gi(x,t) in terms of the probabilities p1(x,t)
and p2(x,t). To do this, we go back to the definition νk

i (t)
for the finite system given in Eq. (2) and relate its statistical
properties to the probabilities. Its time dependent mean value
can be expressed as

〈
νk

i (t)
〉 = 1

2n

n∑
k′=1

(
pk+k′

i (t) + pk−k′
i (t)

)
, (11)

and the standard deviation as√〈[
νk

i (t) − 〈
νk

i (t)
〉]2〉

=

√
n∑

k′=1
pk+k′

i (t) − [
pk+k′

i (t)
]2 + pk−k′

i (t) − [
pk−k′

i (t)
]2

2n
.

(12)

In the limit N → ∞, we have

νk
i (t) → 1

2ν

∫ ν

−ν

dx ′pi(x + x ′,t) + O

(
1√
n

)
. (13)

The last term, of O(1/
√

n), expresses the order of magnitude
of the fluctuations. If n goes to infinity with N , this mean
field theory becomes exact. Otherwise, fluctuations will always
be present, and this mean field theory will only describe the
deterministic drifts that lead the system to self-organization.
Finally, in the continuous limit we set

gi(x,t) = exp

(
a

2ν

∫ ν

−ν

dx ′[pi+1(x + x ′,t) − pi(x + x ′,t)]
)

.

(14)

With these substitutions, Eqs. (8) and (9) become a closed
deterministic dynamical system, that is, the equations become
autonomous.

Note that for the global coupling case ν = 1/2, Eqs. (8)
and (9) with (14) can be reduced to the standard mean field
equations presented in [15]. In fact, if we define the global
probability

Pi(t) =
∫ 1

0
pi(x,t)dx (15)

and apply the periodic boundary condition (10), the system (8)
and (9) with (14) can be reduced to the set of ordinary
differential equations for Pi(t) reported for the globally
coupled network in [15]. We emphasize that this reduction
is only possible if ν = 1/2, which corresponds to the all-to-all
interaction in this notation.

At the other extreme, we have the local coupling limit
ν → 0, which is very singular. Moreover, since fluctuations
decay as 1/

√
n = 1/

√
νN , the local limit is mostly ruled

by fluctuations, and, therefore this mean field description
fails. In this case, the renormalization group analysis reported
in [15], which predicts that there is no synchronization in one
dimension, is more appropriate. This is also consistent with our
simulations for low n (n < 5), where even for strong coupling
we observe no synchronization.

D. Quiescent array and its linear stability

A trivial steady state solution of Eqs. (8) and (9) with
Eq. (14) is the quiescent configuration

p1(x,t) = p2(x,t) = 1/3, (16)

which represents a disordered configuration in which each unit
can be in any of the three possible states with equal probability.
Each unit of course undergoes continual state changes, but
on average the three states will be equally populated. The
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quiescent array is always a solution in the steady state because
the system has permutation symmetry (i → i + 1, with 3 →
1). However, the symmetry may be spontaneously broken by
an instability of the symmetric configuration. More explicitly,
suppose we perturb the symmetric configuration with a planar
wave,

pj (x,t) = 1/3 + εj exp(iκx + λt), (17)

with |εj | � 1. From (8) and (9) with (14) we obtain the
dispersion relation

λ(κ) = 1
2 (2â(κ) − 3 ± i

√
3), (18)

where

â(κ) = a
sin(κν)

κν
. (19)

The quiescent configuration (16) becomes unstable when
Re[λ] is positive for some value(s) of κ . For coupling that
favors crowding (a > 0), the instability occurs at ac = 3/2
with κ = 0 regardless of the value of ν. With this zero wave
vector one expects that at least near the onset of the instability
the system as a whole begins to oscillate with no spatial
structure. Farther from the transition value other wave vectors
might lead to positive Re[λ] and nonzero values of κ , and
spatial structures may appear. In contrast with the crowding
scenario, when anti-crowding coupling (a < 0) is considered,
at the first point of instability we find that κ �= 0, and therefore
spatiotemporal patterning is expected. In this case the coupling
at which the quiescent configuration first loses stability as well
as the selected wave number depend on ν. Figure 7 displays
the shape of the spectrum (18) for both types of coupling.

More can be said because we have not yet implemented the
periodic boundary condition (10), which restricts the allowed
values of κ to those that satisfy

κ = κm = 2πm, (20)

where m is an integer. For a given value of ν, the quiescent
disordered solution destabilizes to an oscillatory solution of
wave number mc when the parameter a reaches the critical
value ac that satisfies the condition

ac sin(2πmcν)

2πmcν
= 3

2
. (21)

For all other values of m,

ac sin(2πmν)

2πmν
<

3

2
. (22)

As an example, let us fix ν = 0.2 and take a as the control
parameter. Then, the instability occurs at ac

∼= −7.93, select-
ing the wave number mc = 4. This wave number remains as the
only unstable one up to a ∼= −9.62, where m = 3 also becomes
unstable. Numerically solving the mean field equations (8)
and (9) [using (14)] in the range a ∈ [−9.62,−7.93], we
observe the formation of traveling waves with wave number
m = 4. The amplitude of these traveling waves increases as
a becomes more negative. Figure 8 displays the wave profile
at a given instant for three different values of a, showing the
increase in the amplitude.

The wave number that first becomes unstable strongly
depends on the values of ν and a. In Figs. 9 and 10 we show

-200 -100 100 200

-2

0.5

-200 200

-10

-2

k

k

Re[λ]

a < 0

a > 0

Re[λ]

FIG. 7. (Color online) Spectrum of Eq. (18) for ν = 0.1. Top:
long dashed (green), a = 1; solid (red), a = 1.5; short dashed
(blue), a = 2. Bottom: long dashed (green), a = −4; solid (red),
a = −6.905; short dashed (blue), a = −9.

the critical curves

Re[λ(2πm)] = 0 (23)

for different values of the wave number m. Here λ is given in
Eq. (18). Inside each tongue the associated mode is unstable.
When tongues intersect there is more than one unstable mode.
Figure 9 displays the instability tongues encountered in a short
interval of m ranging from 2 to 6. Note that a wave with m = 1
is not allowed for ν < 1/2. Figure 10 displays a large range
of ν where the quiescent configuration is unstable, and waves
are seen with m ranging 2–100. This covers almost the entire
regime where the quiescent state is unstable. Tongues begin to
appear for lower values of ν as m increases, and begin to leak
into the region ν → 0 where the mean field approximation is
not valid.

We have thus shown that in the mean field approximation we
are able to calculate the critical coupling constant for a given
value of the range of the interactions at which the quiescent
configuration of the array with equal populations in each of the
three states first becomes unstable. We are also able to calculate
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a = - 8 and ν= 0.2
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a = - 8.5 and ν= 0.2
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a = - 9.5 and ν= 0.2
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x

x
FIG. 8. (Color online) Probability distribution wave profiles at a

given instant of time for different values of the coupling parameter
beyond the critical value ac

∼= −7.93 for ν = 0.2, but within the
range where only one wave number is unstable. Top panel: a = −8.0;
middle panel: a = −8.5; lower panel: a = −9.5. Solid (blue): p1;
dashed (purple): p2. Note the increase in amplitude as the magnitude
of the negative coupling parameter increases.

the wave number of the first oscillatory instability, the next
one that follows when the coupling strength increases, etc.
The results obtained in the mean field approximation mimic
those obtained from direct numerical simulations of the
microscopic model carried out in the previous section. The
wave number predicted by the mean field theory at the
first instability agrees with our results from the microscopic
dynamics. The critical coupling predicted by the mean field
theory will be discussed further below.

E. Single mode wave evolution

In order to characterize the wave evolution just beyond
the first appearance of the instability, we consider the case
when a single mode κc is unstable. Then, we use the ansatz
to write the probability just beyond the appearance of the first

0.0 0.1 0.2 0.3 0.4 0.5
-14

-12

-10

-8

-6

ν

a
m=6

m=5 m=4

m=3
m=2

FIG. 9. (Color online) Regions of instability of modes m ∈
{2, . . . ,6} as a function of a and ν. Note that the first unstable mode
in this figure at around ν = 0.2 is m = 4 at a value of ac ≈ −7.93.
As ν increases, m = 3 becomes unstable next, at a larger value of ac.
These results are consistent with those discussed in the text. Regions
of overlap indicate that two modes are unstable.

instability as

pj (x,t) ≈ 1/3 + √
εψj [AL(τ ) exp(iκcx + i
t)

+AR(τ ) exp(−iκcx + i
t)] + c.c., (24)

where c.c. stands for complex conjugate, AL is the amplitude
of the left propagating waves, and AR is the amplitude of the
right propagating waves.

The constant ε that appears in Eq. (24) is related to the
distance from threshold,

ε = (a − ac) sin(2πmcνc)

2πmcνc

, (25)

which is assumed to be small and positive, 0 < ε � 1 [note
that the sin function here is negative, cf. Eq. (21)]. The
oscillatory term is thus a small “distance” away from the
uniform solution. 
 is the natural frequency of oscillation
of the system at the first instability,


 =
√

3

2
= Im[λ]. (26)

0.0 0.1 0.2 0.3 0.4 0.5

-14

-12

-10
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0

Stable quiescent state

Unstable quiescent state

ν

a

FIG. 10. (Color online) Regions of instability of a large range of
modes, m ∈ {2, . . . ,100}, as a function of a and ν. This figure covers
almost the entire range of parameters and modes where the quiescent
state is unstable for negative a.
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We implement the usual assumption of perturbation theories,
namely, that the amplitudes of the oscillations vary much more
slowly than the oscillations themselves. This is captured in the
amplitude dependence on a slow time scale τ ,

τ = εt. (27)

The remaining constants are given by ψ1 = 1 − i
√

3 and
ψ2 = −2 (see Appendix for details).

Detailed calculations for arriving at evolution equations for
the amplitudes are given in the Appendix; here we summarize
and analyze the resulting equations, which are

∂AL

∂τ
= AL − (α|AL|2 + β|AR|2)AL, (28)

∂AR

∂τ
= AR − (α|AR|2 + β|AL|2)AR, (29)

where

α = 54 − 27(2 + i
√

3)

2[1 + i
√

3 − cos(kcνc)]
,

(30)

β = 108 − 81(2 + i
√

3)

3i
√

3 − 2ac + 3
.

To analyze Eqs. (28) and (29), we separate the real and
imaginary parts,

AL = ρL exp(iθL), AR = ρR exp(iθR),
(31)

α = αRe + iαIm, β = βRe + iβIm.

Therefore, the moduli of the amplitudes satisfy an independent
set of equations,

∂ρL

∂τ
= ρL − (

αReρ
2
L + βReρ

2
R

)
ρL, (32)

∂ρR

∂τ
= ρR − (

αReρ
2
R + βReρ

2
L

)
ρR, (33)

while the evolution of the phases is completely determined by
the moduli,

∂θL

∂τ
= −αImρ2

L − βImρ2
R, (34)

∂θR

∂τ
= −αImρ2

R − βImρ2
L. (35)

Note that the evolution of the moduli is generated by the
potential

U(ρL,ρR) = −1

2

(
ρ2

L + ρ2
R

) + αRe

4

(
ρ4

L + ρ4
R

) + βRe

2
ρ2

Lρ2
R,

(36)

in terms of which we can write
∂ρL

∂τ
= − ∂U

∂ρL

,
∂ρR

∂τ
= − ∂U

∂ρR

. (37)

Hence, the dynamics of the amplitudes AL and AR are obtained
directly by the relaxation to the minimum of the potential (36)
via the condition

dU
dτ

= −
[(

∂U
∂ρL

)2

+
(

∂U
∂ρR

)2]
� 0. (38)

0.0

0.5

1.0

0.0

0.5

1.0

- 0.2

- 0.1

0.0

ρR
ρL

U

FIG. 11. (Color online) A typical rendition of the potential sur-
face U as a function of ρL and ρR .

Figure 11 shows the typical shape of the potential (36). It
has a maximum at AL = AR = 0, which gives the quiescent
configuration p1 = p2 = 1/3. Since we have assumed ε > 0
in our calculation, the quiescent configuration appears as an
unstable fixed point in this analysis. We have two minima that
represent traveling waves,

ρL = 0, ρR = 1√
αRe

, (39)

ρL = 1√
αRe

, ρR = 0, (40)

which are completely symmetric due to the isotropy of the
model. There is also a saddle point which represents a standing
wave,

ρL = ρR = 1√
αRe + βRe

. (41)

To establish which of these solutions is stable, we compute
the eigenvalues associated with each. For the standing wave
the eigenvalues are

�1 = −2, �2 = βRe − αRe

αRe + βRe
, (42)

and for the traveling waves

�1 = −2, �2 = αRe − βRe

αRe
. (43)

Therefore, if αRe < βRe, the traveling wave is an attractor and
the standing wave is a hyperbolic point. The reverse inequality
implies that the attractor corresponds to the standing wave.
To establish the direction of the inequality we compute the
quantity γ (η) = βRe − αRe, where η = 2πmcν is the only
relevant variable since ac can be written in terms of η using
the critical relation (21). Figure 12 displays the function γ (η),
showing that it is always positive, i.e., the traveling waves are
always stable, while the standing wave is always unstable. This
is consistent with the fact that, in direct numerical simulations
of the microscopic dynamics, we always observe traveling
waves (we have never seen a standing wave).
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FIG. 12. (Color online) Typical plot of γ vs η.

Therefore, as the quiescent configuration loses its stability,
traveling waves begin to form, selecting a direction of
propagation determined by the initial condition and, when
the number of units is finite, by the intrinsic fluctuations of
the system. Moreover, the noise may induce switching in the
direction of propagation, as we see, for example, in the bottom
left panel of Fig. 2. That is, driven by fluctuations the system
jumps between the two minima of the potential (36).

At the mean field level, the system is attracted by the stable
fixed points of Eqs. (32)–(35), that is,

pj (x,t) ∼= 1/3 + A cos[κc(x ± vt) + θj ] + O(ε). (44)

Here κc = 2πmc, O accounts for higher order corrections, the
amplitude is given by

A = 4
√

ε

αRe
, (45)

the phase velocity takes the form

v = 
 − ε(αIm/αRe)

κc

+ O(ε2), (46)

and the phase shift is

θ2 − θ1 = ±2π

3
. (47)

The + sign gives the phase shift for the left wave and the −
sign for the right wave.

F. Comparison between analytical predictions
and direct numerical simulations

To assess how well this theory captures the microscopic
rules that govern this system, we compare the results of the
theory with numerical simulations of the amplitude and the
phase shift.

We cannot compare numerical simulations directly with
the amplitude in Eq. (45) because the probabilities pj (x,t) are
not directly related to any observable density. The measured
density is νk

i (t) defined in Eq. (2). The two quantities are related
by Eq. (13),

νk
j (t) ≈ νj (x,t) = 1

2ν

∫ ν

−ν

dx ′pj (x + x ′,t), (48)

0

0.05

0.1

0.15

0.2

0.25

0.3

-12 -11.5 -11 -10.5 -10 -9.5 -9 -8.5 -8

2B

a

N = 1024
N = 2048
N = 4096

analytical result

FIG. 13. (Color online) Solid line: Amplitude 2B from Eq. (50).
Dots are numerical simulations for three different array sizes, as
indicated in the figure.

where x = k/N . With Eq. (44) we then have

νj (x,t) ≈ 1/3 + B cos[κc(x ± vt) + θj ], (49)

where

B =
(

sin(κcν)

κcν

)
A. (50)

Only the amplitude must thus be modified for direct compari-
son; the phase and phase velocity remain unchanged.

The comparison of this analytical prediction and the
numerical simulations for ν = 0.2 and three values of array
size N are shown in Fig. 13. Numerically, we compute the
average difference between the maximum and minimum of the
signal νk

j , which corresponds to 2B in the mean field approach.
The analytical prediction is clearly quite good. The numerical
simulation results are insensitive to the array size; the scatter
may in part be due to the fluctuations that the mean field theory
does not capture. Note that the simulated amplitude does not
go to zero at the critical coupling predicted by the mean field
theory. Perhaps this is the realization of a well documented
phenomenon in pattern forming systems (both experimentally
and theoretically), that in the presence of noise the pattern
appears below onset without noise. This is known as a noisy
precursor [22], or a stochastic Turing pattern [23].

Note also that the coupling strengths explored in Fig. 13 go
beyond the range of instability of a single mode. Actually,
for ν = 0.2 and a < −9.62, the modes with m = 4 and
m = 3 are both linearly unstable; cf. Fig. 9. However, the
amplitude equation only considers the first unstable mode, in
this case m = 4 (which destabilizes at ac = −7.93). In spite
of this, the predictions seem to be correct (at least in order of
magnitude) even far from the regime of strict applicability
of the perturbation assumption. We conjecture that in the
nonlinear saturation process the mode m = 3 may remain
inactive, perhaps even up to a = −12.

In Fig. 14 we show the analytic result Eq. (47) along with
the results of the numerical simulation of this quantity. The
agreement is good, although there is scatter in the numerical
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FIG. 14. (Color online) Phase shift. Solid line: Eq. (47). Dots:
numerical simulations. The large scatter of the simulations at the
larger values of the phase shift may be due to fluctuations that become
more pronounced near the critical point.

simulations, especially at large values of the coupling parame-
ter. Perhaps here, again, the fluctuations become more relevant
near the critical point.

V. CONCLUSION AND FUTURE PROSPECTS

In this work we have analyzed arrays of three-state units
nonlinearly coupled to one another. Transitions between
states in each unit are unidirectional (that is, this is an
out-of-equilibrium driven system), and the transition rates
are Markovian stochastic processes. This stochasticity makes
this an inherently noisy system. The coupling is modeled by
further assuming that the Markovian transition rates of each
unit depend on the states of the units to which each unit is said
to be coupled. The model is inspired by one first studied by
Wood et al. [15]. In that work the coupling is taken to favor
crowding, that is, a unit is likely to remain longer in a state
occupied by a larger number of the neighbors to which it is
coupled. That coupling leads to synchronization of the entire
system via a supercritical bifurcation provided the coupling is
sufficiently strong and the system is at least three-dimensional.
Extensive analysis of many aspects of that model was carried
out, especially in the case of global coupling.

The most important feature of the work in this paper is
that the sign of the coupling coefficient has been changed
from positive to negative. This means that the coupling favors
anti-crowding, that is, a unit is likely to leave a state more
rapidly if it is coupled to many other units in that state. We
have taken the coupling to be nonlocal, that is, it is neither
nearest neighbor nor global. Instead, each unit is coupled to
a finite fraction ν = n/N of the total number of units N , and
this fraction is one of the parameters of the system. The most
noteworthy result of the model is a transition to the formation
of clusters that alternate between different oscillation phases
and that propagate in space. The transition from a disordered
configuration to the formation of clusters occurs when the
coupling coefficient is sufficiently negative. How negative this
coupling must be depends on the fraction of units coupled to
each unit.

We presented results of numerical simulations of the
equations of motion and compared them favorably with those
that result from a mean field theory that yields analytic results.
We calculated the conditions for instability of the quiescent
behavior of the array (the bifurcation here us supercritical),
and observed regions of instability of different frequency
modes as a function of the coupling fraction. We were able
to present an analytic treatment of the wave evolution just
beyond the first appearance of the instability. The analytic
prediction of the instability and the wave evolution just
beyond agree semiquantitatively with those of the simula-
tions. Quantitative differences between the two are few and
arise because the mean field theory does not address the
fluctuations that are captured by the simulations when N

is finite.
This work can be extended in many new directions. First,

we analyzed regions of instability where a single mode is
unstable. The analysis can be extended to regions where two
or more modes of different frequencies are simultaneously
unstable. Furthermore, by multimode analysis one may be able
to capture the defect dynamics observed for low ν (see, e.g.,
Fig. 6). We can also consider different forms of coupling, in
particular, a coupling considered by Wood et al. [17] that leads
to a subcritical bifurcation in the case of positive coupling
constant. It would be interesting to consider the effects of
spatial diversity caused by the presence of more than one type
of unit in the array. It would also be interesting to consider
an array of units in which the symmetry of the three states is
broken by having different transition rates between different
states; here we have considered these three rates to be equal.
We have also not systematically studied the consequences of
additional fluctuations introduced into the system by having
short arrays. In simulations shown in this paper we have
seen the important role of fluctuations in choosing an initial
direction of propagation and, in some cases, a sudden reversal
of that direction. We have made considerable progress in a
number of these extensions of this work.

Finally, we mention an avenue of work that will take us
back to the case of positive coupling. In the work first reported
by Wood et al. [15], the system was analyzed very carefully in
the determination of the value of the coupling constant leading
to synchronization and the frequency of the oscillations at
that point as a function of all the system parameters. It was
noted that with the coupling originally used in that work, the
frequency of oscillations decreases with increasing coupling,
but no further note was taken of this result. Later, Assis
et al. [16] took this result further and noted that a continued
increase in the coupling constant led to a symmetry-breaking
second transition, where the units slowed down completely and
the majority of units simply remained motionless in one of the
three states. We have continued in this positive direction and
increased the coupling constant even further, and have noted
the appearance of interesting moving and fluctuating patches
of units in different states. We are continuing this analysis as
well.
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APPENDIX: SINGLE MODE AMPLITUDE EQUATIONS

In order to derive the amplitude equations (28) and (29),
we first introduce the shifted distributions

qj (x,t) = pj (x,t) − 1/3, (A1)

and define the vector

�q =
(

q1

q2

)
, (A2)

which sets the quiescent configuration at �q = 0. Equations (8)
and (9) with the mean field approximation (14) then take the
form

∂ �q
∂t

= L�q + N (�q), (A3)

where we have separated the linear part L�q from the nonlinear
part N (�q).

We can write the nonlinear portion explicitly as a Taylor
series expansion,

N (�q) =
∞∑
l=2

Nl(�q), (A4)

where Nl(�q) denotes products of powers of q1 and q2 of total
order l. In other words, for any constant number ξ ,

Nl(ξ �q) = ξ lNl(�q). (A5)

The terms in this series can be evaluated by expanding
Eqs. (8), (9), and (14) in Taylor series.

The linear operator L is given by

L =
(

aL − 2 −1
1 aL − 1

)
, (A6)

where we have introduced the operator

Lf (x) = 1

2ν

∫ ν

−ν

dx ′f (x + x ′). (A7)

Note that the spatial translational invariance of the operator L
means that it is diagonal in Fourier space,

L exp(iκx) =
(

sin(κν)

κν

)
exp(iκx). (A8)

Due to the periodic boundary condition

�q(x,t) = �q(x + 1,t), (A9)

we can expand the shifted distribution in terms of Fourier
modes,

�q(x,t) =
∞∑

m=−∞
�φm(t) exp(iκmx), (A10)

where κm is defined in Eq. (20), and �φm(t) = �φ−m(t) because
�q(x,t) is real.

1. Critical point

If we linearize the evolution equation (A3) around the
quiescent state �q = 0, we obtain the set of equations

�̇φm = L(m) �φm. (A11)

Here

L(m) =
(

â(κm) − 2 −1
1 â(κm) − 1

)
, (A12)

where â(κ) is defined in Eq. (19).
From these equations we can easily deduce the critical

conditions Eqs. (21) and (22). Moreover, at the critical point
a = ac, m = mc for a given ν,

L(mc) = L0 =
(−1/2 −1

1 1/2

)
, (A13)

which has the eigenvalues and eigenvectors

L0 �ψ = i
 �ψ and L0 �ψ∗ = −i
 �ψ∗,

where 
 = √
3/2 is the natural frequency of the system, and

�ψ =
(

ψ1

ψ2

)
=

(
1 − i

√
3

−2

)
. (A14)

2. Unfolding the critical point

Next we investigate the nonlinear saturation of the instabil-
ity. Toward this purpose, we unfold the critical point,

a = ac + δa, (A15)

and define the expansion parameter

ε = δa sin(2πmcν)

2πmcν
(A16)

[cf. Eq. (25)]. Since ε > 0 this corresponds to an expansion
into the unstable situation. Moreover, near onset of the
instability ε � 1.

Note that we are only moving the control parameter a,
keeping the chosen value of ν fixed. Furthermore, we are
addressing the generic situation of penetrating only one of the
tongues of Figs. 9 or 10, not two at the same time. Therefore,
we fix an appropriate value of ν, which fixes mc while we
move a.

In this situation, we have a four-dimensional critical
subspace S generated by the vectors that belong to the basis

S = { �ψ exp(iκcx + i
t), �ψ exp(−iκcx + i
t),

�ψ∗ exp(−iκcx − i
t), �ψ∗ exp(iκcx − i
t)},
that is, the critical subspace S corresponds to the set of all
possible linear combinations of the elements that belong to the
basis set S.

Hence, we can write the evolution equation (A3) in the form

∂ �q
∂t

= (L0 + εL1)�q +
∞∑
l=2

Nl(�q), (A17)

where we have separated the linear operator into two parts,
namely, the critical part

L0 =
(

acL − 2 −1
1 acL − 1

)
, (A18)
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and the unfolding part, which has the form

L1 =
(

1 0
0 1

)(
κcνc

sin(κcνc)

)
L. (A19)

Now we introduce the assumptions that we use in our pertur-
bative calculations. We work under the following hypotheses:

Hypothesis 1: We can expand the solution of the evolution
equation in a power series in

√
ε, at least near the onset of the

instability.
Hypothesis 2: The first order of the expansion is completely

determined by the critical modes that belong to the critical
subspace S.

Hypothesis 3: There are two time scales.
A fast time scale, which is related to the oscillation of

frequency


 =
√

3

2
. (A20)

A slow time scale, which is related to the growth of the
unstable modes,

τ = εt. (A21)

We formally treat these two time scales as independent
variables by setting

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
. (A22)

We next introduce the ansatz

�q(x,t,τ ) = √
ε{ �ψAL(τ ) exp(iκcx + 
t)

+ �ψAR(τ ) exp(−iκcx + 
t) + c.c.}

+
∞∑

α=2

εα/2 �Wα(x,t,τ ). (A23)

Substituting this ansatz into the evolution equation (A17), and
separating each order εα/2, we obtain a set of equations of the
form (

L0 − ∂

∂t

)
Wα = Fα with α ∈ {2, . . . ,∞}. (A24)

The right hand sides Fα of this set of equations must be
computed order by order from Eq. (A17). Furthermore, each
Fα depends on the results for previous orders.

We have therefore transformed the nonlinear evolution
equation (A17) into an infinite set of linear inhomogeneous
equations for the corrections Wα . All of these equations involve
the same linear operator (L0 − ∂

∂t
). Hence, the validity of the

expansion demands that all the right hand sides Fα belong to
the image of the operator (L0 − ∂

∂t
).

Since we are formally treating the two time scales (t,τ ) as
independent variables, from the ansatz (A23) it follows that

the solutions Wα will be periodic functions of t with a period
T = 2π/
. More precisely,

Wα(x,t,τ ) = Wα(x,t + T ,τ ) = Wα(x + 1,t,τ ). (A25)

Therefore, we can generate these functions from the basis

B = {�mn,�
∗
mn}∞m,n=−∞, (A26)

where

�mn = �ψ exp(i2πmx + in
t). (A27)

That is, Wα and Fα belong to the space B of the all possible
linear combinations of the elements of the basis set B.
Moreover, for any linear combination of the elements of this
basis we assume that the coefficients can be functions of the
slow time scale τ .

Note that the basis of the critical subspace S ⊂ B, and it
may be written in this notation as

S = {�mc1,�−mc1,�
∗
mc1,�

∗
−mc1}. (A28)

Furthermore, the critical subspace S corresponds to the kernel
of the operator (L0 − ∂

∂t
), that is,

if σ ∈ S then

(
L0 − ∂

∂t

)
σ = 0. (A29)

We can use this fact to elucidate the image of this operator. We
define the complementary set

BC = B − S, (A30)

and denote the subspace of all possible linear combinations of
the elements of BC by BC . It is then clear that the image of the
operator (L0 − ∂

∂t
) corresponds to BC .

Therefore, at each order we must impose the solvability
condition

Fα ∈ BC. (A31)

Moreover, to avoid ambiguities in the selection of the particular
solutions for the corrections Wα , we also impose Wα ∈ BC .
This choice can be motivated as in perturbation theory
in quantum mechanics. The first order in the perturbative
expansion (A23) belongs to the critical subspace S. We are
therefore requiring that the higher orders have, in some sense,
no projection in S. This avoids any ambiguity in the form of
the corrections Wα .

The steps that now follow are straightforward implementa-
tions of these prescriptions. At order α = 2, the right hand side
F2 naturally belongs to BC . Hence, we can directly compute
W2 to use it for the next order. At order α = 3, however, the
right hand side F3 contains terms in the critical subspace S.
The solvability condition (A31) demands that these terms must
vanish. This imposition leads to the amplitude equations (28)
and (29), which we fully analyze in the main text.
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