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We show how to obtain all the models of the continuous description of membranes by constructing the
appropriate nonlinear realizations of the Euclidean symmetries of the embedding. The procedure has the advantage
of giving a unified formalism with which the models are generated and highlights the relevant order parameters
in each phase. We use our findings to investigate a fluid description of both tethered and hexatic membranes,
showing that both the melting and the loss of local order induce long-range interactions in the high-temperature
fluid phase. The results can be used to understand the appearance of intrinsic ripples in crystalline membranes in
a thermal bath.
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I. INTRODUCTION

An effective model of membrane is the continuous descrip-
tion of an intrinsically two-dimensional object. Examples of
nature’s realized membranes are ubiquitous and are of both
biological and nonbiological nature. On the biological side,
cells membranes, which are characterized by both fluid (am-
phiphilic bilayers) and crystalline (cytoskeleton) properties,
are a significant example [1]. On the other hand, the interest
in nonbiological two-dimensional crystals has been renewed
in recent years due to the discovery of graphene and similar
materials with enormous potential technological applications
[2]. From both a theoretical and a phenomenological point of
view, it is of interest to investigate the phase diagram of these
structures to gain better knowledge of their behavior under
thermal and mechanical stresses.

In a statistical mechanics framework the phase diagram can
be obtained by assigning a microscopic (bare) Hamiltonian to
the membrane model and computing the corresponding free
energy via a path-integral formalism. The formalism allows
one to identify the critical points of the model, which separate
the salient mechanical phases of the membrane. For the sake
of this introduction, it is useful to consider the membrane as
an effective description of a layer of fundamental constituents
(monomers) linked together by a bonding interaction of fixed
connectivity (crystal). The phase diagram of a theory of mem-
branes is generally very complex because two-dimensional
geometry allows for various definitions of local order with
corresponding order parameters.

In a continuous formulation the membrane is the image of
a map

r : Rd → RD, (1)

where in the physically interesting case of a two-dimensional
membrane embedded in three-dimensional space one has d =
2 and D = 3, but for the sake of generality in most of this
work we will leave the couple (d,D) general. As a general
requirement, we demand any membrane model to be invariant
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under the isometries of the embedding

rμ → R(α)μνr
ν + bμ, (2)

where R(α) is any D-dimensional rotation parametrized by
some angles α and b is a general translation vector in RD .
The continuous formulation is of course only an effective
description of the fundamental monomers’ interactions. If a

is the typical intramonomer length, the effective continuous
description will generally work well for hcβ � a, where
β = 1/kBT is the inverse of the temperature in units of
the Boltzmann constant. In fact, the examples cited above
are characterized by a ∼ 1 nm (bilayers and graphene) and
a ∼ 1 μm (cytoskeleton) and admit an accurate continuous
description at higher length scales of 10a–100a.

We refer to the study of statistical field theories of (1)
as the Kosterlitz-Thouless-Nelson-Halperin-Young (KTNHY)
description [3–5]. To summarize it, it is convenient to introduce
the binding energy scale Eb, which might or might not be of
order 1/a. One can distinguish low- T � Eb/kB , high- T �
Eb/kB , and intermediate-temperature T � Eb/kB phases.
Ideally, at low temperatures the bindings are intact and the
monomers are in their natural crystalline phase. In this phase
the local connectivity is unaltered, thus the thermal fluctuations
are elastic and can affect only the bindings’ lengths. At high
temperatures the bindings melt and the membrane undergoes
a fluid phase that is characterized by the absence of both local
connectivity and order. In the intermediate-temperature phase,
the binding interactions are assumed to be relevant, but not
dominant. The intermediate regime describes the melting and
the local connectivity plays the role of the order parameter
[6,7].

In this paper we show how to derive the three main effective
models of the KTNHY description in a unified formalism by
considering the breaking of the global symmetries of the em-
bedding spaceRD due to the presence of the membrane [8]. For
this purpose we will use the formalism of the Maurer-Cartan
form (MCF), which proves very efficient in the investigation
of symmetry-breaking patterns. The MCF formalism has the
advantage of clearly identifying the order parameters of the
broken symmetries through a coset construction. The order
parameters obtained in this way thus enjoy a formal definition
as outlined in [9].
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II. COSET CONSTRUCTION AND ISO(D)

In this section we want to briefly review the use of the
MCF in the construction of a coset model that represents
the symmetry-breaking pattern of a theory of membranes (1)
and involves the breaking of both internal and embedding
symmetries [10]. The interested reader can find more details
in the excellent recent review in [11]. Let G be the symmetry
group of a membrane theory and let it be the direct product
of ISO(D), which is the Euclidean isometry group of the
embedding (2), and some compact internal symmetry group
Gint related to the crystalline structure of the membrane

G = ISO(D) × Gint. (3)

The group G is thus generated by the standard Euclidean
translation Pμ and rotation Jμν operators that enjoy the algebra

[Jμν,Jρσ ] = i(δμρJνσ + permutations),

[Jμν,Pρ] = i(δμρPν − δνρPμ), (4)

[Pμ,Pρ] = 0,

as well as by some generator Tm of the internal symmetry
group Gint such that

[Tm,Jμν] = 0, [Tm,Pμ] = 0. (5)

We assume that a general membrane configuration breaks
G spontaneously to the unbroken subgroup H ⊂ G. We also
assume that H might be noncompact, implying that some
translations of ISO(D) might not be broken by the physical
configurations. Excluding the unbroken translations from H ,
it is possible to identify a compact subgroup H0 ⊂ H , which is
generated by the unbroken rotations and internal symmetries
of G. In this case an effective membrane model can be obtained
as the coset

G/H0. (6)

From the general theory of cosets, the effective model will
be manifestly invariant under the subgroup H0, but it will
maintain the full G symmetry, albeit it will be realized, at least
partly, nonlinearly.

Any element of the coset (6) can be parametrized by an
equivalence class of elements of G under the right action of H0.
It is convenient to choose a representative for the equivalence
class of the form

ω(r,ξ ) = eirμPμeiξAXA, (7)

where XA are all the broken generators of both embedding and
internal symmetries. The equivalence class is thus related to
ω(r,ξ ) as

[ω(r,ξ )] = {ω(r,ξ ) · h ∀h ∈ H0} (8)

and by construction any of its elements has the same physical
field content. In general, ω(r,ξ ) is parametrized by the field
content of the model rμ and by the Goldstone fields ξA

associated with the broken symmetries. By construction, the
element (7) transforms under G by the left action of a generic
element g ∈ G as ω(r,ξ ) → g · ω(r,ξ ). The action of G may
bring one coset representative into another inequivalent one,
thus defining implicitly the transformation properties of rμ

and ξA via

ω(r,ξ ) → g · ω(r,ξ ) ≡ ω(r ′,ξ ′) · h′, (9)

where h′ belongs to the unbroken H0 and returns the represen-
tative to the form (7).

The effective model for the field arguments of (7) can be
constructed using the MCF, which is defined as

L = ω(r,ξ )−1dω(r,ξ ), (10)

which by construction belongs to the algebra of G. Once the
physical content of L is identified via its algebra components,
an effective Hamiltonian for the theory with broken symme-
tries can be written down. In the following we will follow this
method, adopting physically motivated symmetry-breaking
patterns for all the models of the KTNHY description.

III. TETHERED MEMBRANE

At low temperatures the bonding interactions among the
monomers are intact and favor a crystalline structure [6,12].
In this situation each monomer fluctuates under mechanical
stresses as a pointlike object as in Fig. 1. A pointlike object
has a definite position in space, therefore its configurations
break all translations, while leaving the Euclidean rotations
invariant. For simplicity, in this section we neglect any internal
symmetry group of the monomers’ lattice.

The full group of symmetries is thus G = ISO(D), while
the unbroken symmetries are H0 = SO(D). The coset is thus

ISO(D)/SO(D). (11)

As representative of the coset we choose the simple

ω = eirμPμ . (12)

We now introduce a set of coordinates xα of Rd and compute
the MCF as

Lα = ω−1∂αω = i∂αrμPμ. (13)

The components eμ
α ≡ ∂αrμ of the MCF are the Goldstone

bosons of the broken translations and are formally defined
as the order parameters of the model in the sense of [9]. By
construction, the components eμ

α transform linearly under the

FIG. 1. Tethered membrane. Each monomer (black dot) is re-
garded as a pointlike object that breaks fully the translational
invariance of the embedding. In the crystalline phase the bindings
(lines) are intact; it is relevant to deform the membrane by displacing
each single monomer in any direction.
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SO(D) rotation subgroup of (2), but are scalars under the
broken translations:

eμ
α → R(α)μν eν

α for rμ → R(α)μν rν,

eμ
α → eμ

α for rμ → rμ + bμ. (14)

A general Hamiltonian for a crystalline phase can thus be
constructed only from eμ

α and its derivatives. Up to fourth order
in a derivative expansion and expressing eμ

α in terms of the
membrane configuration rμ, the most general Hamiltonian is

βHt [r] =
∫

ddx

{
ε0 + μt

2
(∂αrμ)2 + κt

2
(∂2rμ)2

+u(∂αrμ∂βrμ)2 + v(∂αrμ∂αrμ)2

}
, (15)

which is known as the tethered membrane model [6,12].
We neglected possible boundary terms and adopted a rather
general notation for the couplings that have been introduced: ε0

is a chemical potential for the monomer number that can be ne-
glected at fixed membrane volume, μt is the surface tensions,
κt is the extrinsic rigidity, and u and v are Lamé coefficients
parametrizing the elastic properties of the membrane.

The fields eμ
α are the order parameters of the model and

distinguish the possible mechanical phases of the theory. To
be more precise we introduce a path integral with which
Boltzmann averages of any operator O[r] can be computed
as

〈O[r]〉 =
∫

DrO[r]e−βHt [r], (16)

where we defined a properly normalized measure Dr that is
invariant under (14). Two mechanical phases can be roughly
distinguished as〈 ∫

ddx e2
α

〉/ ∫
ddx = 0 (crumpled),

〈 ∫
ddx e2

α

〉/ ∫
ddx �= 0 (flat),

(17)

where e2
α indicates the square of the order parameter e2 =∑

μ eμ
α eμ

α (no summation over α). Each order parameter
eμ
α enjoys a separate treatment, thus anisotropic phases in

which the membrane is crumpled along some directions while
extended along the others are possible [13]. For a more detailed
description of these phases we refer to [1]. The order of the
phase transition separating crumpled and flat phases is still
subject to investigation and is potentially very relevant for
applications in the developing physics of graphene. The most
recent nonperturbative treatment as well as lattice simulations
suggests that the crumpled-to-flat transition is of first order
[14,15].

IV. FLUID MEMBRANE

At high temperatures the bindings among the monomers
melt, which are then free to diffuse along the membrane [16].
At macroscopic equilibrium, two membrane configurations
cannot be distinguished if a monomer is translated along
the tangential directions of the membrane as in Fig. 2. To
picture the phase, it is convenient to consider the infinitesimal

FIG. 2. Fluid membrane. The monomers are free to diffuse, so the
in-plane displacements do not change the (macroscopic) continuous
description of the membrane.

plaquette of the membrane in position rμ defined by rμ +
drμ = rμ + ∂αrμdxα . Infinitesimally, the plaquette breaks
spontaneously the translations perpendicular to the plane
generated by ∂αrμdxα and the rotations that do not leave the
same plane invariant. Again, we shall neglect any possible
internal symmetry group in the course of this section.

The (compact) unbroken subgroup for the fluid membrane
is therefore H0 = SO(d) × SO(D − d) and includes both the
SO(d) subgroup of local frame rotations on the plaquette and
the subgroup SO(D − d) of rotations of its normal space. The
coset is thus

ISO(D)/SO(d) × SO(D − d). (18)

In this section we will follow closely the construction of
[11], which was developed in a different context, but applies
here with minor modifications. Before choosing a coset
representative, it is convenient to switch to a system of
coordinates in RD that locally aligns the first d axes with
the tangents of the membranes and the remaining D − d ones
with their normal space. In the new system of coordinates
the membrane is described by the couple rμ = (rα,ri). The
coset representative is then chosen to include all the broken
generators as well as the unbroken translations

ω = eirαPα+iriPi eiξαiJαi . (19)

For later use, we introduce a further set of coordinates ya on
the membrane whose purpose will become clear below.

In order to correctly identify the field content of the model,
we first choose a general parametrization of the MCF of the
form

La = iea
α(Pα + ∇απiPi + ∇αξγ iJγ i + Aα

βγ Jβγ ), (20)

where both πi and ξγ i have to be thought of as Goldstone fields
of the broken translations and rotations, respectively, while
Aα

βγ are unimportant tensors corresponding to unbroken local
rotations on the membrane. The components ∇απi correspond
to the broken normal translations. Whenever translations are
broken in a system the usual counting of the degrees of freedom
of the Goldstone theorem is more subtle, as there is not nec-
essarily one Goldstone field for each broken-symmetry gener-
ator. The mismatch in the counting follows what is known as
the inverse Higgs mechanism. The redundant Goldstone modes
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can be eliminated by imposing a so-called inverse Higgs con-
straint [17]. The simplest possible constraint for our system is

∇απi = 0, (21)

while all other possible choices can be related to this one
by a redefinition of the couplings. The solution of (21) can
then be used to express the Goldstone fields of the broken
translations πi in terms of those of the broken rotations
ξαi . Through this mechanism the correct counting of the
Goldstone fields is achieved. From a physical point of view,
it is possible to interpret the theory constrained by (21) in
various complementary ways [11]. In this context, we can
understand the constrained theory as the one in which the
modes πi have been effectively integrated out and refer to
Sec. V for further insights on this interpretation.

Using (19), the explicit computation of the components of
the form (20) corresponding to the translations gives

ea
α = ∂ar

μR(ξ )μ
α,

ea
α∇απi = ∂ar

μR(ξ )μ
i,

(22)

where we introduced the orthogonal rotation R(ξ )
parametrized by the Goldstone fields of the broken rotations.
The condition (21) simply implies

∂ar
μR(ξ )μ

i = 0, (23)

which defines the orthonormal basis R(ξ )μi = ni
μ. The normal

basis is obviously directly related to the Goldstone fields of
the broken rotations.

The fields ea
α transform covariantly under the unbroken

rotations and can be used as frames on the membrane. To
show this and give a geometrical meaning to the construction
we introduce the metric

gab = ea
αeb

βδαβ. (24)

Using (22) and the invariance of the embedding space metric
δαβ under orthogonal rotations it is very easy to see that the
metric corresponds to the induced metric on the membrane
gab = ∂ar

μ∂br
νδμν using the new coordinate patch ya . From

now on, latin indices from the beginning of the alphabet will be
raised and lowered using gab and its inverse. The derivatives of
the Goldstone fields can be interpreted geometrically too. We
first compute the components of the form (20) corresponding
to the broken rotations

ea
α∇αξγ i = [R(ξ )−1∂aR(ξ )]γ i . (25)

Introducing the inverse frame eα
a ≡ e−1

α
a , it can be directly

inverted and related to the normal basis as

∇αξγ i = eα
aR(ξ )−1γμ∂an

i
μ. (26)

This expression should be compared with the definition of
extrinsic curvature of a membrane, which we manipulate using
the constraint (23) as

Ki
ab ≡ ∂br

μ∂an
i
μ = eb

βR(ξ )β
μ∂an

i
μ. (27)

Combining (26) and (27), we immediately see that the
derivatives of the Goldstone fields of the broken rotations are
directly related to the extrinsic curvatures as

Ki
ab = ea

αeb
β∇αξ i

β . (28)

The most general Hamiltonian that can be constructed
from the MCF can only be a function of ea

α , ∇αξ i
β , and

their derivatives. Due to the geometrical meaning of these
quantities, it can thus be written as a function of metric gab

and extrinsic curvatures Ki
ab. The Hamiltonian will also be

reparametrization invariant for transformations of the arbitrary
coordinate ya . Neglecting boundary terms, the most general
invariant Hamiltonian up to second order in the derivatives is

βHf [r] =
∫

ddy
√

g

{
μf + κf

2
K2 + κ̄

2
R

}
, (29)

where K2 is the square K2 = KiKi of the traces of the
extrinsic curvatures Ki = gabKi

ab, gab is the inverse of the
induced metric (24), R = gabRab = gabRca

c
b is the (intrinsic)

curvature scalar, Rab
c
d is the Riemann tensor defined by

[∇a,∇b]vc = Rab
c
dv

d , ∇a is the metric-compatible connec-
tion defined by ∇av

b = ∂av
b + �a

b
cv

c with the Christof-
fel symbols obtained from the induced metric �a

b
c =

1
2gbd (∂agdc + ∂cgad − ∂dgac), and g = det gab is the determi-
nant of the metric. This is the so-called fluid membrane model,
which is also well known in string theory [18]. The coupling
μf is the surface tensions, κf is the (fluid) extrinsic rigidity,
and κ̄ is known as the Gaussian rigidity of the membrane.

In the fluid model reparametrization invariance has a clear
physical origin that we shall outline before concluding the
section. The general mechanical deformation of the fluid
membrane would perturb it along both tangential and normal
directions like in the tethered model of the previous section. It
can be parametrized as

rμ → rμ + νa∂ar
μ + νin

μ

i . (30)

From the discussion above, however, it is clear that at its equi-
librium the fluid membrane macroscopic state is unaffected by
tangential deformations νa corresponding to translations of the
monomers along the membrane. Reparametrization invariance
ensures that the transformations νa can be absorbed by a
corresponding reparametrization of the coordinates ya , which
are infinitesimally parametrized by a vector field tangent to
the membrane itself. A path integral can be constructed using
(29) as

〈O[r]〉 =
∫

DrrepO[r]e−βHf [r]−βHGF , (31)

where Drrep is a new normalized measure that respects
reparametrization invariance and HGF is an opportune gauge-
fixing term. When constructing (31) it is often convenient to
adopt the background field method and choose the physical
gauge for which νa = 0, which is analogous to the Landau
gauge of Yang-Mills theories. Albeit quite different from the
point of view of the coset construction, the fluid membrane
shares the same mechanical phases of the tethered membrane
and the same discussion of (17) applies [19]. It can however
manifest a phase transition of different order. We will return
to this point in the next section, highlighting a substantial
difference between the two models.

V. FROM TETHERED TO FLUID MEMBRANE

In this section we attempt a fluid model description of the
tethered membrane. We will achieve it by properly integrating
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the appropriate Goldstone fields. For simplicity we will deal
with the Hamiltonian of the tethered model (15) truncated to
the second order of the derivative expansion

βHt [r] =
∫

ddx

{
ε0 + μt

2
(∂αrμ)2

}
, (32)

which has to be regarded as a toy model that neglects both
the rigidity and the elastic properties. We notice that this
Hamiltonian is evidently not reparametrization invariant and
this is the main difference from the fluid model of the previous
section. In this sense we interpret the coordinates xα as a
fiducial set that describes the position of the monomers on the
membrane and has a special role if compared to the arbitrary
coordinate patch ya introduced for the fluid model.

The task is now to rewrite this action in terms of the fields
appearing in the nonlinear realization (20) before imposing
the inverse Higgs constraint. This can be done performing the
symmetry transformation

∂ar
μ → R(ξ )μν∂ar

ν, (33)

however it is also necessary to perform a coordinate change
from the crystalline patch xα to the arbitrary coordinate patch
ya with the determinant

∂xα/∂ya = ea
α. (34)

The result of the manipulations is

βHt [r] =
∫

ddy
√

g

{
ε0 + d

2
μt + μt

2
(∇aπ

i)2

}
, (35)

where gab is again the induced metric (24) and πi was
introduced in (20).

The task is now to integrate the field πi , which here plays
the role of the order parameter for the breaking of the symmetry

SO(D) → SO(d) × SO(D − d),

which characterizes the compact symmetry content of the
transition from the tethered to the fluid descriptions. The
fields πi transform as D − d scalars under SO(d). The path
integration of the Goldstone fields πi is performed using the
properly normalized measure Dπ as

e−βHt-f [r] =
∫

Dπe−βHt [r,π] (36)

and provides a physical realization of the inverse Higgs
mechanism (21) of Sec. IV. For simplicity we shall consider
the physical model with d = 2 and D = 3. In this case πi = π

is a single scalar and thus an integration of its kinetic term in
(35) that preserves reparametrization invariance gives the well
known Liouville action (see, for example, [20]). We obtain an
effective fluid Hamiltonian for the tethered model as

βHt-f [r] =
∫

d2y
√

g

{
μR − 1

96π
R

1

�
R

}
, (37)

where we introduced a renormalized tension

μR = ε0 + d

2
μt

that could be easily evinced from (35), the Laplacian operator
� = −∇a∂a , and the curvature scalar of the induced metric
R. The new effective Hamiltonian enjoys reparametrization

invariance as required for a fluid description. Interestingly,
the integration of the local order parameter controlling the
breaking of the symmetry interfacing a tethered-fluid transition
gives rise to long-range interactions among the intrinsic
curvatures of the fluid phase.

Long-range interactions such as that of (37) are of
particular importance in two-dimensional systems, as they are
known to provide a way out of the Mermin-Wagner theorem
[21] and are responsible for the nontriviality of systems that
undergo a Kosterlitz-Thouless type of transition [3]. The sole
presence of the long-range interactions casts the question of
whether the tethered and fluid models should share the same
phase diagram. A complete answer to this question is still
unknown, even though in the past it has been investigated at
length using lattice methods [15,22]. To gain a better insight
physical quantities should be compared among the different
phases of the two models at least qualitatively. The advantage
of the formalism described in this paper is that it makes
possible a quantitative comparison of the results for the phase
diagrams of the two models.

One particularly important observable in the continuum
is the fractal (Hausdorff) dimension df of the membrane
[7], which here represents how fuzzy a crystalline membrane
becomes in the process of melting. Given (37), we can compute
an estimate of the membrane’s fractal dimension using results
originally developed for the hexatic model, which will be
discussed in the next section. Using either the one-loop result
of David et al. [7] or the nonperturbative renormalization-
group result of [23], we obtain

df = 14, df = 2.57 (38)

for the one-loop and nonperturbative results, respectively.
The high numerical difference between the two numbers is
due to the fact that an expansion in the inverse coupling
of the Liouville action is performed in the one-loop result,
making the nonperturbative result more reliable. The physical
understanding of these numbers goes as follows: The Liouville
interaction of (37) tends to attract intrinsic curvatures of
different sign, making the surface more and more fuzzy as
different curvatures are packed together as hinted by Fig. 3.

The nonperturbative result resums the curvature interac-
tions to a higher extent and thus includes some higher-order
screening that considerably lowers the value of df . Since we
are neglecting any internal symmetry, the melting tethered
surface under consideration is not characterized by local order.
Our result thus predicts that an unstructured crystal undergoes
a crinkled phase characterized by a definite fractal dimension

+ +

+
−

FIG. 3. Naive visualization of the long-range interactions in the
fluid description of tethered and hexatic membranes. Configurations
of the membrane with alternating sign of the scalar curvature are
energetically favored.
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in the process of melting. In the crinkled phase the membrane
is characterized by intrinsic ripples of the surface. The physics
of ripples is relevant for the understanding of the stability of
two-dimensional crystals [24].

VI. HEXATIC MEMBRANE

The hexatic membrane can be understood as a melting
tethered membrane or as a fluid membrane with the residual
effect of the local order that breaks the internal rotations, thus
describing the intermediate temperature phase separating the
crystalline low-temperature phase with the high-temperature
fluid one [7]. In the physical case, the crystalline structure has
to break the local SO(2) rotations tangent to the membrane
as depicted in Fig. 4. To generalize this situation while
maintaining the desired d = 2 limit, we assume that the crystal
has an internal Gint = SO(d)cr symmetry with generators
TA = Sαβ emerging from the continuous description of some
discrete lattice group, but more general breaking patterns can
be studied in similar ways. Differently from the previous
sections, the full group of symmetries is enhanced to

G = ISO(D) × SO(d)cr. (39)

The local rotations on the membrane with generators Jαβ are
broken, but a combined rotation of the membrane and lattice
leaves the configuration invariant. We thus require that the
subgroup

SO(d) × SO(d)cr ⊂ ISO(D) × SO(d)cr (40)

is broken to the diagonal SO(d) generated by Mαβ =
Jαβ − Sαβ .

As coset representative we choose a structure that enhances
the breaking pattern (20) to the internal rotations

ω = eirαPα+iriPi eiξαiJαi+(i/2)ξαβJαβ . (41)

The MCF is then parametrized as

La = iea
α
(
Pα + ∇απiPi + ∇αξγ iJγ i + 1

2∇αξβγ Jβγ

)
,

where the fields ea
α still play the role of frames for the

membrane and new Goldstone fields ξβγ for the breaking of
SO(d) appear. The first three components are in a form equal

FIG. 4. Hexatic membrane. The crystalline structure breaks the
local rotations of the membrane. The arrows represent the order
parameter for the associated phase transition. A disordered phase
is depicted.

to (22) and (25), while the remaining one can be computed as

ea
α∇αξβ

γ = [R(ξ )−1∂aR(ξ )]β
γ (42)

for a rotation R(ξ ) that is parametrized by ξβ
i and ξβ

γ .
As in the fluid case, the constraint ∇απi = 0 identifies a set

of orthonormal vectors defined by ni
μ = R(ξ )μi . In this case,

however, an additional set of orthonormal tangent vector fields
is identified as N

γ
μ = R(ξ )μγ and describes the breaking of the

local rotations. They are related to the new Goldstone fields
through the MCF as

∇αξβγ = eα
aR(ξ )−1βμ∂aN

γ
μ . (43)

The construction of the Hamiltonian follows closely the
fluid case, but includes the new order parameter for the
broken rotations. At second order in the derivative expansion
the Hamiltonian contains (29) and new terms involving the
Goldstone field ξαβ that can only be of the form

βH[r,ξ ] = KA

2

∫
ddy

√
gIαβγ δ∇aξ

αβ∇aξγ δ, (44)

where Iαβγ δ is a tensor containing the details of the breaking
of the combination of rotations and internal symmetries. The
coupling KA has been introduced to parametrize the strength
of the new Goldstone fields interaction and is known as hexatic
rigidity. For the case of diagonal breaking the symmetry
requirement implies that we simply have Iαβγ δ = δαγ δβδ .

In the physically interesting case of d = 2 and D = 3
there is only one local rotation on the membrane, which is
fully broken by almost all possible discrete lattice rotations.
The corresponding Goldstone field is an angular SO(2)
variable θ = ξ 12, which we can associate with a tangent
vector on the membrane defining Nα = cos θe1

α + sin θe2
α .

When expressed in terms of Nα , the Hamiltonian becomes a
well-known formulation of the hexatic term

βHhex[r,N ] = KA

2

∫
ddy

√
g∇aN

α∇aNα. (45)

At second order the vector N appears quadratically and can
thus be integrated away following the procedure of [7] that
brings the integration over the new field in a form similar to
(36). The result of the integration is again a Liouville action
contribution to the Hamiltonian of fluid model of the form

βHh−f [r] = − K̄A

8

∫
d2y

√
gR

1

�
R, (46)

where the coupling K̄A underwent only a finite renormalization
K̄A = KA − 1/12π . The same comments of the previous
section on the long-range interactions induced by a Liouville
action apply in this context as well. The term (46) is
fundamental to circumvent the fact that a fluid membrane has
an extended phase only at zero coupling (1/κf = 0) [25]. The
hexatic model, in fact, is known to display a nontrivial extended
phase for a finite value of κf . The fractal dimension of this
phase is known perturbatively [7] in an expansion in 1/K̄A as

df = 2 + D(D − 2)

3π
K̄−1

A + O
(
K̄−2

A

)
(47)

and has been investigated nonperturbatively in [23].
The nontrivial spectral dimension (47) is a manifestation

of the fact that the hexatic membrane has equilibrium
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configurations characterized by intrinsic ripples. Ripples are
well known and studied in the physics of graphene [24]. While
the results of Sec. V predict a definite spectral dimension when
interfacing a tethered and a fluid membrane, it is clear from
(47) that the characterization of the fractal properties of the
hexatic model require the experimental determination of the
hexatic rigidity, which enters as an effective parameter in (46).

VII. SUMMARY

In a unified formalism, we obtained all the models of
the KTNHY description of continuous membranes as field
theories that nonlinearly realize the Euclidean symmetries of
the embedding space. Each specific coset was constructed
using the very efficient formalism of the Maurer-Cartan
form and was motivated by the physical properties that the
fundamental constituents of the membrane are assumed to
possess according to the temperature of the thermal bath.
The inclusion of the physical properties of the constituents
and of their crystalline structure is essential for reproducing
all the distinct phases of the KTNHY description, therefore
distinguishing our effective models of membranes from those
in which the membrane is considered a fundamental object
such as string theory [8].

Immediately identified in the effective description obtained
through the Maurer-Cartan form are both the Goldstone bosons
of the broken symmetries of embedding and the relevant order
parameters for the phases of each model, which in these models
have immediate physical interpretations [11]. In all models, the
order parameters obtained via the coset construction coincide
with those that were already well established in the literature
[1], but within the coset construction they acquire a formal
definition in the sense of [9].

The construction of the KTNHY models shows clearly
the degrees of freedom that have to be effectively integrated
in the low- and intermediate-temperature regimes to obtain
effective fluid descriptions for all of them. The effective
integration of both the low-temperature crystalline phase and
the intermediate hexatic phase gives effective fluid models that
possess long-range interactions among intrinsic curvatures on

the membrane, which are believed to induce crinkled phases
at equilibrium [25]. The crinkled phase is determined by the
presence and interactions of intrinsic ripples of the surface
characterizing the membrane [24]. While the importance of
the role of long-range interactions among displacements of
the membrane is already well known for the characterization
of the flat phase of a crystalline membrane [14], we showed
how these effectively manifest in a fluid description and gave
a clear geometrical interpretation.

The long-range interactions are induced by the thermal
fluctuations, by the melting of the crystalline structure and
by the loss of local order among the fundamental constituents.
The sole presence of the long-range interactions casts doubt
on whether a crystalline and a fluid description may share
the same phase diagram. For a physical two-dimensional
membrane embedded in a three-dimensional space there is
no conclusive proof whether the phase diagram is shared or
not. This work can be considered as a step forward in the
direction of a better understanding of this question and a further
indication that it has to be addressed nonperturbatively [14,19].

Our results are especially relevant for the melting of both
regular and unstructured two-dimensional crystals into a fluid
phase. In such a scenario, the crystal undergoes a crinkled
phase that is characterized by an anomalous fractal dimension
of the membrane due to the presence of effective long-range
interactions among the monomers. In our computations, the
spectral dimension is a genuine prediction of the formalism
when the crystal does not exhibit local order even in the
crystalline phase, while it depends on the hexatic rigidity when
local order is present.
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