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We develop a thorough analytical study of the O(1/N ) correction to the spectrum of regular random graphs
with N → ∞ nodes. The finite-size fluctuations of the resolvent are given in terms of a weighted series over the
contributions coming from loops of all possible lengths, from which we obtain the isolated eigenvalue as well
as an analytical expression for the O(1/N ) correction to the continuous part of the spectrum. The comparison
between this analytical formula and direct diagonalization results exhibits an excellent agreement, confirming
the correctness of our expression.
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I. INTRODUCTION

Spectral graph theory has established itself as a fundamental
tool to study problems in various disciplines [1]. On the side
of physics, the understanding of stationary and dynamical
properties of models defined on random graphs depends
crucially on the spectral analysis of the adjacency and the
Laplacian matrix of the corresponding graph. The average
distribution of eigenvalues constitutes a primary object of
interest, due to its wide range of applications. Some notable
examples include the study of the vibrational spectra of
amorphous solids [2], the electronic properties of quantum
systems [3], and spherical spin models [4].

A central role in spectral graph theory is played by
sparse random regular graphs (RRGs), since they constitute a
benchmark for analyzing the spectral features of more complex
graph structures. Random regular graphs are constructed by
drawing, from an uniform probability space, simple undirected
graphs where all vertices have the same degree. Sparse RRGs
become locally treelike when the total number of nodes N

grows to infinite, such that only long loops of length O(ln N )
are present. Thanks to the absence of degree fluctuations and to
the local treelike structure, many spectral properties of RRGs
can be analytically studied using nonrigorous [5,6] as well as
rigorous mathematical approaches (see Ref. [7] and references
therein). In this context, the most prominent example is the
average eigenvalue distribution of the adjacency matrix, which
converges, for N → ∞, to a simple analytical expression
known as the Kesten-McKay (KM) law [8,9].

Much less is known about the finite-size fluctuations
of the spectra of sparse random graphs. The existence of
short loops on graphs with a finite size and the impact of
these topological fluctuations on the spectral properties is
an interesting problem on its own right. In addition, sparse
random graph models usually lead, due to its local treelike
topology, to a mean-field description of models defined on
finite-dimensional lattices and, in a certain sense, the con-
struction of a perturbative expansion in powers of O(1/N ) for
random graph models constitutes an indirect route to study the
intricate role of loops on their finite-dimensional counterparts.
In fact, analogous ideas have been put forward in the context
of Anderson localization and statistical mechanics of spin
systems [10–13], where the behavior of models defined on

finite-dimensional lattices is studied perturbatively around the
mean-field saddle-point corresponding to sparse random graph
models.

Here we implement these ideas to study the O(1/N) cor-
rection to the average eigenvalue distribution of the adjacency
matrix of RRGs, which are simple enough to render a full
analytical study possible. We show that the O(1/N ) correction
to the resolvent of the adjacency matrix is given by a sum over
loops comprising all length scales, each loop contributing with
a term proportional to the difference of its effective resolvent
with respect to the resolvent of an infinite closed chain. Within
the replica approach for random matrices [14,15], this result is
derived from an integration of the O(1/

√
N ) fluctuations of a

functional order-parameter around its saddle-point solution,
following analogous steps as those developed recently to
the study of finite-size corrections of models with quenched
disorder [16,17]. We show how the divergent loop series
can be summed, leading to a compact analytical expression
for the O(1/N ) correction to the KM law. The correctness
of this analytical formula is confirmed by its very good
agreement with numerical diagonalization results. In addition,
our approach allows us to identify the largest eigenvalue,
separated from the continuous band by a gap, as a singularity
in the O(1/N) correction to the resolvent. To our knowledge,
a closely related problem has been considered so far only in
some recent works [18–20], where it is shown rigorously that
the fluctuations of the linear eigenvalue functional of RRGs
converge to a random variable defined in terms of a sum over
cyclically nonbacktracking walks of all possible lengths.

The rest of the paper is organized as follows. In the next
section we define the ensemble of RRGs. In Sec. III we
explain how to recast the problem in terms of a saddle-point
integral using the replica method, and how one can integrate
the fluctuations around the saddle-point solution. In Sec. IV
the loop series for the O(1/N ) correction to the eigenvalue
distribution is obtained in replica symmetry, while the isolated
eigenvalue and the final analytical expression for the finite-size
correction to the continuous band, together with a comparison
with direct diagonalization results, are presented in Sec. V. In
the last section we present some final remarks. The Appendix A
shows more details on how to derive the saddle-point integral
with the replica method, while the Appendix B discusses the
correspondence between our results and those of Ref. [20].
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II. THE ENSEMBLE OF RANDOM REGULAR GRAPHS

Let us consider the adjacency matrix A of an undirected
random graph containing N nodes or vertices, without self-
loops and multiple edges between adjacent nodes [1]. The
N × N symmetric random matrix A specifies the topology of
the graph and it is constructed by setting Aij = 1 if there is an
edge between nodes i and j , and Aij = 0 otherwise. Defining
the eigenvalues of A as λ1, . . . ,λN , the average spectral density
reads

ρ(N)(λ) =
〈

1

N

N∑
α=1

δ(λ − λα)

〉
, (1)

with 〈. . . 〉 denoting the ensemble average over the distribution
of A. We study an ensemble of random c-regular graphs, where
each node is connected to c � 3 neighbors and the adjacency
matrix is drawn from the distribution

p({Ai<j }) = 1

AN

⎧⎨
⎩

∏
i<j

[ c

N
δAij ,1 +

(
1 − c

N

)
δAij ,0

]⎫⎬
⎭

×
(

N∏
i=1

δc,
∑N

j=1 Aij

)
, Aii = 0. (2)

The product
∏

i<j runs over all distinct pairs of nodes and AN

is the normalization factor. In this model, the probability that
two nodes are connected by an edge is c/N , and the Kronecker
δ ensures that all vertices are adjacent to c neighbors. The
averaged resolvent associated to A can be defined as

R(N)(z) = 1

N
〈Tr G(z)〉 , (3)

where the matrix G(z) is given by G(z) = (z − A)−1 and
z = λ − iη contains the regularizer η > 0. The resolvent
R(N)(z) is an analytic function in the lower-half sector of the
complex plane, except at the points or segments of the real
axis corresponding to the eigenvalues of A, at which R(N)(z)
exhibits singularities. In general, the poles of R(N)(z) can be
different than the simple poles exhibited by Tr G(z), since
the latter quantity is the resolvent before the average over the
distribution of A is performed. The average distribution of
eigenvalues is extracted from the limiting procedure

ρ(N)(λ) = 1

π
lim

η→0+
Im[R(N)(z)]. (4)

By introducing the generating function

ZN (z) =
∫ (

N∏
i=1

dφi

)
exp

(
− iz

2

N∑
i=1

φ2
i

)

× exp

⎛
⎝ i

2

N∑
ij=1

φiAijφj

⎞
⎠, (5)

R(N)(z) is rewritten as follows:

R(N)(z) = − 2

N

∂

∂z
〈ln ZN (z)〉. (6)

In this way, we formulate the problem of computing ρ(N)(λ)
in the language of statistical mechanics of disordered systems.

According to Eqs. (4)–(6), in order to calculate ρ(N)(λ) and its
finite-size fluctuations, one needs to study the average energy
density of a system with real valued “spins” φ1, . . . ,φN placed
on the vertices of a random regular graph and interacting
through ferromagnetic couplings.

With the purpose of computing the average of the “free-
energy” ln ZN (z) over the random graph topology, we invoke
the replica method [14,15,21,22]:

R(N)(z) = −2
∂

∂z
lim
n→0

∂

∂n

1

N
ln 〈[ZN (z)]n〉. (7)

The idea consists in calculating the average 〈. . . 〉 of integer
powers of the generating function and, once the limit N → ∞
is performed, the number of replicas is analytically continued
to n → 0. In this setting, the computation of 〈[ZN (z)]n〉
is written in terms of an integral over an order-parameter
functional, which can be solved, in the limit N → ∞,
by means of the saddle-point method, leading to the KM
distribution. As we will discuss in the next section, the O(1/N)
correction to limN→∞ ρ(N)(λ) arises from the fluctuations of
the order-parameter around the saddle-point solution.

III. THE SADDLE-POINT INTEGRAL AND THE
FLUCTUATIONS AROUND THE STATIONARY SOLUTION

The average of the replicated generating function is given
by

〈[ZN (z)]n〉 =
∫ (

N∏
i=1

dφi

)
exp

(
− iz

2

N∑
i=1

φ2
i

)

×
〈

exp

⎛
⎝i

∑
i<j

Aijφi .φj

⎞
⎠

〉
, (8)

with φ = (φ1, . . . ,φn) denoting a vector in the n-dimensional
replica space. The average over the distribution p({Ai<j }) is
calculated using integral representations for the Kronecker δ’s
in Eq. (2). After expanding the integrand exponent in Eq. (8)
up to order O(N0), site decoupling is achieved through the
introduction of appropriate order parameters, which leads to
the compact expression (see Appendix A)

〈[ZN (z)]n〉 =
√

det (c U)
∫

D
 exp [−NS(N)(
)]. (9)

The object 
(φ) is the functional order parameter and U
can be seen as a matrix in the configuration space of the
replica vectors, with elements U (φ,ψ) = exp (iφ.ψ). The
functional integration measure can be intuitively written as
D
 = ∏

{φ}
√

N/2π d
(φ), where the product runs over all
possible values of the vector φ. The action S(N)[
] has been
expanded up to order O(N−1),

S(N)[
] = S0[
] + 1

N
S1[
] , (10)

where the coefficients are given by

S0[
] = c

2

∫
dφ dψ 
(φ)U (φ,ψ)
(ψ) − c

2

− ln

{∫
dφHz(φ)

[∫
dψ U (φ,ψ)
(ψ)

]c}
,

(11)
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S1[
] = 1

4
(c2 + 1) + (c − 1)

2

∫
dφ r(φ)U (φ,φ)

+ (c − 1)2

4

∫
dφ dψ r(φ) [U (φ,ψ)]2 r(ψ)

− c2

2

∫
dφ dψ 
(φ)U (φ,ψ)
(ψ) − 1

2
ln 2.

(12)

In the above expressions we have defined

Hz(φ) = exp

(
− iz

2
φ2

)
, (13)

r(φ) = Hz(φ)
[ ∫

dψ U (φ,ψ)
(ψ)
]c−2∫

dφHz(φ)
[ ∫

dψ U (φ,ψ)
(ψ)
]c . (14)

The details involved in the derivation of Eqs. (9)–(14) are
discussed in Appendix A.

In the limit N → ∞, the integral in Eq. (9) is dominated
by the stationary solution 
s(φ), fulfilling

δS0[
]

δ
(φ)

∣∣∣∣

s

= 0, (15)

from which follows the saddle-point equation


s(φ) = Hz(φ)
[ ∫

dψ U (φ,ψ)
s(ψ)
]c−1∫

dφHz(φ)
[ ∫

dψ U (φ,ψ)
s(ψ)
]c ,

= rs(φ)
∫

dψ U (φ,ψ)
s(ψ). (16)

In order to extract the O(1/N) correction to the distribution
of eigenvalues, we need to consider the effect of finite-size
fluctuations in 
s(φ). The full action S(N)[
] can be formally
expanded around 
s(φ) as follows:

S(N)[
] = S(N)[
s] +
∫

dφ
δS(N)[
]

δ
(φ)

∣∣∣∣

s

[
(φ) − 
s(φ)]

+ 1

2

∫
dφ dψ

δ2S(N)[
]

δ
(φ)δ
(ψ)

∣∣∣∣

s

× [
(φ) − 
s(φ)] [
(ψ) − 
s(ψ)] . (17)

Assuming that the deviations from 
s(φ) are of O(1/
√

N ) and
retaining terms up to order O(1/N ) in the above expansion, we
substitute Eq. (17) in Eq. (9) and integrate over the Gaussian
fluctuations to obtain

〈[ZN (z)]n〉 =
√

det (c U)√
det J0

exp [−NS0(
s) − S1(
s)], (18)

where Eq. (10) has been used. The elements of J0 read

J0(φ,ψ) = δ2S0[
]

δ
(φ)δ
(ψ)

∣∣∣∣

s

. (19)

The explicit computation of the derivatives in Eq. (19) and the
subsequent use of Eq. (16) leads to the following expression
for J0:

J0 = c U − c U T , (20)

where we have introduced the matrices

T (φ,ψ) = (c − 1)M(φ,ψ)

− c

∫
dψ ′U (ψ,ψ ′)
s(φ)
s(ψ

′) (21)

and

M(φ,ψ) = U (φ,ψ)rs(φ). (22)

By inserting Eq. (20) into Eq. (18) and employing the identity
ln det X = Tr ln X (here X denotes a generic matrix), we
obtain the expression

1

N
ln〈[ZN (z)]n〉 = −S0[
s] − 1

N
S1[
s] + 1

N

∞∑
L=1

TrTL

2L
.

(23)

By substituting Eq. (23) in Eq. (7) and noting that the following
identity holds,

TrTL = (−1)L + (c − 1)L(TrML − 1), (24)

the first two terms of the series in Eq. (23) cancel exactly with
S1[
s] and we arrive at the following expression for R(N)(z):

R(N)(z) = R0(z) + 1

N
R1(z), (25)

where

R0(z) = 2
∂

∂z
lim
n→0

∂

∂n
S0[
s], (26)

R1(z) = 2
∂

∂z
lim
n→0

∂

∂n

∞∑
L=3

(c − 1)L

2L
(1 − TrML). (27)

This formula should be compared to similar formulas in
Refs. [16,17]. Substituting Eq. (25) in Eq. (4), we obtain the
leading term ρ0(λ) and the O(1/N ) correction ρ1(λ) to the
eigenvalue distribution:

ρ0(λ) = 1

π
lim

η→0+
Im[R0(z)], ρ1(λ) = 1

π
lim

η→0+
Im[R1(z)].

(28)

In the next section we show how the limit n → 0 is taken by
assuming a particular form for the saddle-point solution 
s(φ).

IV. THE DISTRIBUTION OF EIGENVALUES IN THE
REPLICA SYMMETRIC THEORY

The structure of Eq. (16) suggests that we seek for
a saddle-point solution 
s(φ) invariant under orthogonal
transformations. Indeed, it has been established that the replica
symmetric (RS) saddle-point, which preserves both rotational
and permutation symmetry in the replica space, yields exact
results for the eigenvalue distribution of several sparse random
graph models [15,21–26]. In particular, the correct analytical
expression for limN→∞ ρ(N)(λ) in the case of regular random
graphs is recovered by the RS solution. These results are
also confirmed by Ref. [27], where the exactness of the RS
assumption is proved rigorously for a large class of sparse
random graphs with arbitrary degree distributions.
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We thus assume that 
s(φ) is an uncountable superposition
of Gaussians [21,22],


s(φ) = 1

F(n)

∫
dgQ(g)

n∏
α=1

(
i

2πg

) 1
2

exp

(−iφ2
α

2g

)
, (29)

where Q(g) is the normalized distribution of the complex
variance g with Im g > 0, such that the above integral is
convergent. The factor F(n) accounts for the fact that 
s(φ) is
not normalized for arbitrary n, as can be noted from Eq. (16).
Plugging Eq. (29) into Eq. (16) and integrating over φ, one
can determine F(n) up to order O(n),

[F(n)]2 = 1 + n

2

∫
dgW (g) ln

(
2πg

i

)

− n

2

∫
dgQ(g) ln

(
2πg

i

)
, (30)

and, in addition, the self-consistent equations for the distribu-
tions Q(g) and W (g)

Q(g) =
∫ [

c−1∏
k=1

dgkQ(gk)

]
δ

(
g − 1

z − ∑c−1
k=1 gk

)
, (31)

W (g) =
∫ [

c∏
k=1

dgkQ(gk)

]
δ

(
g − 1

z − ∑c
k=1 gk

)
. (32)

Equations (31) and (32) can also be derived trough the more
intuitive cavity method, where a clear physical interpretation
emerges [28]. The function W (g) is the distribution of
{Gii(z)}i=1,...,N , while Q(g) is the distribution of the diagonal
elements of G(z) on the cavity graph, namely, a graph where
a randomly chosen vertex and all its edges are removed. It is
straightforward to check that Q(g) = δ(g − gc) and W (g) =
δ[g − (z − c gc)−1] solve, respectively, Eqs. (31) and (32),
with gc denoting one of the roots of the quadratic equation

(c − 1)g2
c − zgc + 1 = 0. (33)

The fact that Q(g) and W (g) are δ-peak distributions simply
reflects the absence of fluctuations on the degrees and on the
edges of the graph.

One needs to be careful in choosing the root of Eq. (33)
depending on the value of z. The natural choice for gc is the
following:

gc =
⎧⎨
⎩

1
2(c−1)

(
z +

√
z2 − λ2

b

)
if |z| < |λb|

1
2(c−1)

(
z −

√
z2 − λ2

b

)
if |z| � |λb|

, (34)

where |λb| = 2
√

c − 1. Equation (34) ensures that the leading
term of the resolvent R0(z) is an analytic function of z =
λ − iη. Besides that, this choice for gc reproduces the correct
physical behavior R0(z) = 1/z for |z| → ∞, since gc → 0 in
this case [29]. This decay of R0(z) implies in the normalization∫

dλ ρ0(λ) = 1, as can be noted from the Stieltjes transform
of ρ(N)(λ).

Inserting the RS ansatz for 
s(φ) into Eq. (11) and taking
the limit n → 0, an analytical expression for R0(z) is derived
through Eq. (26). For η → 0+, R0(z) has a nonzero imaginary
part only if |λ| < |λb|, from which the KM law follows using

Eq. (28):

ρ0(λ) =
{

c
2π

√
λ2

b−λ2

(c2−λ2) for |λ| < |λb|
0 for |λ| � |λb|

. (35)

For the calculation of R1(z) one needs to obtain the RS form
of rs(φ). This is achieved by substituting Eq. (29) in Eq. (14)
and expanding the result up to order O(n),

rs(φ) =
[

1 − n

2
ln

(
2πgc

i

)]
exp

{
iφ2

2
[(c − 2)gc − z]

}
,

(36)

which allows us to perform the limit n → 0 in Eq. (27) and
derive the expression

R1(z) =
∞∑

L=3

(c − 1)L

2L

∂

∂z

[
L ln gc − 2 ln Z

(c)
L (gc)

]
. (37)

The object Z
(c)
L (gc), defined analogously to Eq. (5), is the

generating function associated to the L × L tridiagonal matrix
H, whose elements are given by

Hij = (c − 2) gc δij + δi,j−1 + δi,j+1 , i + N ≡ i. (38)

The physical meaning of Eq. (37) is quite transparent. The
object ∂

∂z
ln Z

(c)
L (gc) can be seen as the resolvent of a 1D

closed chain or loop of length L, where each node receives
an effective field gc from each one of its (c − 2) neighbors
living outside the loop. We point out that, at the level of the
O(1/N ) correction, each node belongs only to a single loop,
i.e., there are no intersecting loops, since these objects arise on
average in a fraction O(1/N2) of nodes. The quantity ∂

∂z
ln gc

is the resolvent of a 1D closed chain of infinite length [30].
As a consequence, the O(1/N) fluctuations due to all loops
of a certain length L modify R(N)(z) by a term proportional
on average to the difference between the resolvent of an
infinite loop and the resolvent of a finite loop of length L.
The weight (c−1)L

2L
is the average number of loops of length

L in a regular random graph of degree c [31,32]. A result
analogous to Eq. (37) has been derived in the study of the
O(1/N ) corrections to the free-energy of disordered spin
systems defined on sparse random graphs [16].

The Gaussian integral in Z
(c)
L (gc) is evaluated using the

eigenvalues of the matrix H, given by an = gc(c − 2) +
2 cos (2πn/L), n = 0, . . . ,L − 1, which allows us to compute
in Eq. (37) the derivative with respect to z:

R1(z) =
∞∑

L=3

(c − 1)L

2L

×
{

L−1∑
n=0

[
1 − (c − 2) ∂gc

∂z

]
[
z − (c − 2)gc − 2 cos

(
2πn
L

)] + L

gc

∂gc

∂z

}
.

(39)

From now on, the calculation depends, according to Eq. (34),
whether |z| < |λb| or |z| � |λb|, from which the following
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expression for ∂gc

∂z
is obtained

∂gc

∂z
=

⎧⎨
⎩

gc√
z2−λ2

b

if |z| < |λb|
− gc√

z2−λ2
b

if |z| � |λb| . (40)

This leads to the following simplified form of R1(z):

R1(z) = sgn (|z| − |λb|)
2
√

z2 − λ2
b

∞∑
L=3

(c − 1)L

×
{

[(c − 2)z + cB(z)]

2π
GL(z) − 1

}
, (41)

where we have defined

GL(z) = 2π

L

L−1∑
n=0

Fz(xn), xn = 2πn

L
, (42)

B(z) = sgn(|z| − |λb|)
√

z2 − λ2
b, (43)

with

Fz(x) = 1

cz + (c − 2)B(z) − 4(c − 1) cos (x)
, (44)

and sgn(0) ≡ 1. In the limit L → ∞,GL(z) becomes simply an
integral of the periodic function Fz(x), which is solved using
standard contour integration methods. The result reads

lim
L→∞

GL(z) =
∫ 2π

0
dxFz(x) = 2π

(c − 2)z + cB(z)
. (45)

It follows that the individual terms of the loop series in Eq. (41)
are composed of the exponential growing factor (c − 1)L

multiplied by a function that is going to zero for L → ∞.
The key point consists in understanding how fast this function
vanishes as a function of L. We will see in the next section
that one can extract the explicit dependence of the summands
with respect to L by borrowing techniques used to compute
the discretization error in the trapezoidal method of numerical
integration.

V. THE LOOP SERIES AND THE FINAL EXPRESSION
FOR ρ1(λ)

The problem of studying how GL(z) approaches its asymp-
totic form limL→∞ GL(z) is equivalent to evaluate the error
of replacing the sum in Eq. (42) by the integral of Eq. (45).
This is analogous to compute the discretization error in some
numerical integration methods, where several techniques are
available [33]. Here we extract the dependence of GL(z) with
respect to L via a Fourier analysis, following steps typically
employed to compute the discretization error in the trapezoidal
rule of numerical integration [33–35].

Let us expand Fz(x) in a Fourier series,

Fz(x) = a0

2
+

∞∑
k=1

ak cos (kx), (46)

ak = 1

π

∫ π

−π

dx cos (kx)Fz(x), (47)

and assume that this series converges at the points xn

(n = 0, . . . ,L − 1) defined in Eq. (42). Plugging the above
expansion into GL(z) and noting that limL→∞ GL(z) = πa0,
we obtain an exact equation for the deviation of GL(z) with
respect to its L → ∞ limit

GL(z) − lim
L→∞

GL(z) = 2
∞∑

m=1

∫ π

−π

dx cos (mLx)Fz(x). (48)

The asymptotic behavior of GL(z) is governed by the con-
vergence rate of the Fourier series for Fz(x), in full analogy
with the error formula for the trapezoidal quadrature [34,35].
In order to make further progress, Eq. (48) is substituted in
Eq. (41) and the above integral over Fz(x) is transformed in
a contour integral along the unit circle in the complex plane,
traversed once in the counterclockwise direction,

R1(z) =
−[

sgn(|z| − |λb|)(c − 2)z + c

√
z2 − λ2

b

]
4πi(c − 1)

√
z2 − λ2

b

×
∞∑

L=3

(c − 1)L
∞∑

m=1

∮
dω ωmL

ω2 + 2Zz ω + 1
, (49)

where

Zz = − 1

4(c − 1)
[cz + (c − 2)B(z)]. (50)

The rest of the analysis amounts to study, in the integrand
of Eq. (49), the behavior of the poles, i.e., the roots of
the quadratic equation ω2 + 2Zz ω + 1 = 0. In general, one
root ωd lies inside the unit circle in the complex plane,
while the other root ωf lies outside. Using Eq. (34) and
the quadratic equation gc = [z − (c − 1)gc]−1, one can show
that Zz = − 1

2 (gc + g−1
c ), from which the roots ωd and ωf are

computed explicitly [36]

ωd = gc, ωf = 1

gc

. (51)

This allows us to solve the contour integral in Eq. (49) through
the residue theorem and derive the following expression:

R1(z) = C(z)
∞∑

L=3

(c − 1)L
gL

c

1 − gL
c

, (52)

where the prefactor C(z) is given by

C(z) =
⎧⎨
⎩

(z−c gc)gc√
z2−λ2

b(g2
c −1)

if |z| < |λb|
− (z−c gc)gc√

z2−λ2
b(g2

c −1)
if |z| � |λb|

. (53)

The O(1/N) correction R1(z) to the resolvent is an analytic
function of z with singularities located possibly only on the
real axis. In the regime |z| → ∞, we have that gc = O(1/z)
and C(z) = O(1/z), such that the loop series in Eq. (52) also
converges to zero for large z. It follows that R1(z) vanishes
faster than 1/z, which implies that

∫
dλ ρ1(λ) = 0, as can

be checked using the Stieltjes transform of ρ(N)(λ). This is
consistent with the normalization of both the full eigenvalue
distribution ρ(N)(λ) and its leading term ρ0(λ). In the sequel
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we study, separately in the sectors |z| � |λb| and |z| < |λb|,
the behavior of R1(z) as η → 0+.

A. |λ| � |λb|: the isolated eigenvalue

The idea now consists in setting z = λ and then making
an analytical continuation from λ → ∞, where R1(λ) is
convergent, to smaller values of λ. In the regime |λ| � |λb|,
the quantity gc reads

gc = 1

2(c − 1)

[
λ − sgn(λ)

√
λ2 − λ2

b

]
. (54)

One can check that, for λ > c, gc fulfills 0 < gc < 1/(c − 1)
and the loop series in Eq. (52) is convergent. For λ = c,
we have that gc = 1/(c − 1), and the loop series in Eq. (52)
becomes divergent. This singular behavior is consistent with
the existence of an isolated eigenvalue, located at λ = c,
outside of the support (−|λb|,|λb|) of the continuous part of the
spectrum. Indeed, for this simple model of RRGs, this isolated
eigenvalue can be computed directly from the eigenvalue
equation and it corresponds to the uniform eigenvector.

For |λb| < λ < c, we have that 1/(c − 1) < gc <

1/
√

c − 1 and the loop series of Eq. (52) is divergent. However,
we can rewrite this series as follows:

∞∑
L=3

(c − 1)L
gL

c

1 − gL
c

=
∞∑

L=3

(c − 1)LgL
c

+
∞∑

L=3

(c − 1)L
g2L

c

1 − gL
c

. (55)

The second term on the right-hand side is a convergent series,
while we can assign a finite value for the summation of the
first term using the standard expression for the geometric
series [37], leading to a finite result for R1(λ) in the range
|λb| < λ < c. Finally, we have that gc = 1/

√
c − 1 for λ =

|λb| and a second singularity arises, which corresponds to the
edge of the continuous band.

For a given point λ in the regime λ < −|λb|, gc is given by
minus its value at |λ|. Thus, the qualitative behavior of R1(λ)
for λ < −|λb| is completely analogous to the case λ > |λb|,
with the exception that R1(λ) is finite for λ = −c, since the
first term on the right-hand side of Eq. (55) is an alternating
divergent series that can be summed using the summation
formula for the geometric series [37]. Consequently, R1(λ)
remains finite in the whole sector λ < −|λb|, exhibiting a
singularity only at λ = −|λb|. We point out that, according
to Eq. (54), gc ∈ R for |λ| � |λb|. This implies that, for the
different sectors of λ where R1(λ) attains a finite value, we
have that ρ1(λ) = 0, since R1(λ) is also a real-valued function
[see Eqs. (52) and (53)].

B. |λ| < |λb|: the continuous band of eigenvalues

For η → 0+ and |λ| < |λb|, gc is obtained from Eq. (34):

gc = 1

2(c − 1)

(
λ + i

√
λ2

b − λ2
)
. (56)

Inserting the above form of gc in Eq. (53), one can show
that Re C(λ) = 0. Thus, by taking the imaginary part of

Eq. (52), the following expression is derived for the O(1/N)
correction ρ1(λ) to the continuous part of the eigenvalue
distribution

ρ1(λ) = C(λ) Re

[ ∞∑
L=3

(c − 1)L
gL

c

1 − gL
c

]
, (57)

with

C(λ) = 1

π

√
λ2

b − λ2
. (58)

Equation (57) can be derived from the average of the finite-
size fluctuations of the linear eigenvalue functional defined in
Ref. [20]. The correspondence between ρ1(λ) and the rigorous
results of Ref. [20] is discussed in Appendix B.

The last step consists in handling the loop series in Eq. (57),
which is irremediably divergent since |gc| = 1/

√
c − 1. How-

ever, we can rewrite this series according to

∞∑
L=3

(c−1)L
gL

c

1 − gL
c

=
∞∑

L=3

(c−1)LgL
c +

∞∑
L=3

(c − 1)Lg2L
c

+
∞∑

L=3

(c − 1)L
g3L

c(
1 − gL

c

) , (59)

and, despite the fact that the first two terms on the right-hand
side are divergent, they can be summed using the summation
formula for the geometric series [37]. The series containing
g3L

c is clearly convergent and, in this way, we arrive at the final
expression for ρ1(λ),

ρ1(λ) = C(λ) Re

[
(c − 1)gc

1 − (c − 1)gc

+ (c − 1)g2
c

1 − (c − 1)g2
c

]

+C(λ) Re

[ ∞∑
L=3

(c − 1)L
g3L

c(
1 − gL

c

) − K(gc)

]
, (60)

where the factor K(gc) accounts for the absence of the terms
with L = 1 and L = 2 in Eq. (59):

K(gc) = (c − 1)gc + c(c − 1)g2
c + (c − 1)2g4

c . (61)

Equation (60) constitutes the central result of this work: it
provides the analytical expression for the O(1/N ) correction
to the KM distribution for |λ| < |λb|.

There is one important point as far as the behavior near
±|λb| is concerned. In the limit λ → ±|λb|, we have that
C(λ) diverges as O[(|λb| ∓ λ)−1/2], while the real part of the
loop series in Eq. (60) is numerically shown to converge
to a negative finite value. Thus, ρ1(λ) is a distribution
with integrable singularities at λ = ±|λb|. There is also a
contribution proportional to δ(λ ± |λb|) because the resolvent
has poles at these points. The details of the behavior at the
band edges will not be investigated here.

In Fig. 1 we compare Eq. (60) with direct diagonalization
results of the adjacency matrix of regular random graphs with
N = 500, generated according to the algorithm presented in
Ref. [38]. The agreement between theoretical and numerical
results is excellent. For finite N , the regular graph becomes
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FIG. 1. (Color online) The O(1/N ) correction to the average
eigenvalue distribution of the adjacency matrix of an ensemble of
regular random graphs with degree c, where the isolated eigenvalue
λ = c has been omitted. In the main graph, the solid black curves
depict the analytical result of Eq. (60) for different c, while the
symbols represent numerical diagonalization results obtained from
matrices of size N = 500. In the inset, the solid black line shows
the analytical expression for c � 1, given by Eq. (62), and the red
symbols are direct diagonalization results for c = 40 and N = 500.
The histograms from numerical diagonalizations are obtained by
averaging the results over 5 × 106 samples.

sensibly nonbipartite due to the presence of loops, which is
reflected in the breaking of the symmetry λ → −λ in ρ1(λ).

After rescaling the adjacency matrix elements as Aij →
Aij√
c−1

, one can show that, in the regime 1 � c � N , the
dominant contribution to ρ1(λ) is given by ρ1(λ) = c γ (λ),
where the coefficient γ (λ) reads

γ (λ) = 2 − λ2

2π
√

4 − λ2
. (62)

The numerical diagonalization results converge for large c to
Eq. (62), as illustrated in the inset of Fig. 1. Although the
leading term ρ0(λ) converges to the Wigner semicircle law for
c � 1, this is not the case for the O(1/N) fluctuations, as can
be seen by comparing Eq. (62) with the corresponding results
in Refs. [39,40].

VI. FINAL REMARKS

The average eigenvalue distribution of a regular random
graph with N vertices converges, in the limit N → ∞, to
the well-known Kesten-McKay (KM) law. In this work we
have derived an exact analytical expression for the O(1/N)
correction to the KM law using the replica approach for
random matrices. The O(1/N) correction is incorporated in
the replica scheme by taking into account the O(1/

√
N )

fluctuations around the mean-field saddle-point solution.
Although the intermediate steps in the replica method are
not very intuitive, the interpretation of the final expression

for the O(1/N) fluctuations of the resolvent, cf. Eq. (37),
from which follows our analytical result, given by Eq. (60), is
rather clear: it consists of a sum over the average contributions
coming from loops of all possible lengths, each loop of finite
length contributing with a term proportional to the deviation
of its effective resolvent with respect to the resolvent of
an infinite loop. The approach discussed in this work is
also capable to determine the isolated eigenvalue, since the
latter has a weight of O(1/N ) in the average eigenvalue
distribution.

The ideas presented here can be possibly extended to more
general random graph models, including disordered edges
and fluctuating connectivities, which opens the possibility to
analyze, for instance, finite-size fluctuations in the Anderson
model on the Bethe lattice [3]. Despite the noncritical behavior
of the average density of states along the localization transition,
the study of finite-size corrections in such mean-field models
may provide some valuable insights on the influence of loops in
the electronic properties of finite-dimensional models. Besides
that, the study of finite-size corrections to the density of states
can be considered as a warm-up to the more complicated task
of considering relevant quantities to the localization transition,
such as the inverse participation ratio.

On the methodological side, a derivation of Eq. (37) through
the cavity method would be a meaningful exercise, since the
latter approach, being conceptually simpler, usually provides
additional physical insights, which are obscured by the replica
calculation. Work along some of these lines is underway,
following the lines of Refs. [16,17].

Finally, it would be also interesting to examine the uni-
versality status of the level correlation function in the case of
sparse random graph models [41], using the ideas presented in
this paper.
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APPENDIX A: DERIVATION OF THE
SADDLE-POINT INTEGRAL

The purpose of this Appendix is to discuss the main steps
involved in the derivation of Eq. (9). The average over the
topological disorder in Eq. (8) is calculated using integral
representations for the Kronecker δ’s in the distribution
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p({Ai<j }), leading to

〈[ZN (z)]n〉 = 1

AN

∫ [
N∏

i=1

dφiHz(φi)

]∫ 2π

0

(
N∏

i=1

dxi

2π
ei c xi

)
exp

⎛
⎝1

2

N∑
ij=1

ln

{
1 + c

N

[
e−i (xi+xj )U (φi ,φj ) − 1

] }⎞
⎠

× exp

(
−1

2

N∑
i=1

ln

{
1 + c

N

[
e−2ixi U (φi ,φi) − 1

]})
,

where U (φ,ψ) = exp (iφ.ψ) and Hz(φ) is defined by Eq. (13). Since we are interested in the O(1/N ) correction to the average
spectrum, we need to determine the exponent of the above integrand up to O(N0). After performing an expansion in powers of
1/N , the sites are decoupled via the introduction, by means of the Fourier integral representation of the Dirac δ, of the functional
order parameters

μ1(φ) = 1

N

N∑
i=1

δ(φ − φi)e
−ixi , μ2(φ) = 1

N

N∑
i=1

δ(φ − φi)e
−2ixi ,

which allows us to recast 〈[ZN (z)]n〉 in the form

〈[ZN (z)]n〉 = exp
( − Nc

2 − c2

4 + c
2

)
AN

∫
Dμ1Dμ̂1Dμ2Dμ̂2 exp

{
i

∫
dφ[μ1(φ)μ̂1(φ) + μ2(φ)μ̂2(φ)]

}

× exp

[
N ln I(μ̂1,μ̂2) − c

2

∫
dφμ2(φ)U (φ,φ)

]
exp

[
c

2
(N + c)

∫
dφdψμ1(φ)U (φ,ψ)μ1(ψ)

]

× exp

{
−c2

4

∫
dφdψμ2(φ)[U (φ,ψ)]2μ2(ψ)

}
, (A1)

where

I[μ̂1,μ̂2] =
∫

dφ Hz(φ)
∫ 2π

0

dx

2π
exp

[
icx − i

N
μ̂1(φ)e−ix − i

N
μ̂2(φ)e−2ix

]
. (A2)

Each integration measure Dμ1, . . . ,Dμ̂2 in Eq. (A1) includes an unimportant factor 1/
√

2π coming from the Fourier
representation of the Dirac δ function. The integral over x in Eq. (A2) is calculated using the power-series representation,

exp

[
− i

N
μ̂I (φ)e−iIx

]
=

∞∑
k=0

[
− i

N
μ̂I (φ)

]k
e−iIkx

k!
, (A3)

with I = 1, 2. By substituting Eq. (A3) in Eq. (A2) and integrating over x, we obtain

I[μ̂1,μ̂2] =
∫

dφ Hz(φ)
∞∑

k=0

[−iμ̂2(φ)]k

k!

[−iμ̂1(φ)]c−2k

Nc−k(c − 2k)!
. (A4)

After performing the rescaling μ̂1(φ) → Nμ̂1(φ), Eq. (A4) can be expanded up to O(1/N ), which yields, after the substitution
of the result in Eq. (A1), the following expression:

〈[ZN (z)]n〉 = exp
( − Nc

2 − c2

4 + c
2

)
AN

∫
Dμ1Dμ̂1Dμ2Dμ̂2 exp

{
i

∫
dφ[Nμ1(φ)μ̂1(φ) + μ2(φ)μ̂2(φ)]

}

× exp

(
c

2
(N + c)

∫
dφdψμ1(φ)U (φ,ψ)μ1(ψ)− c

2

∫
dφμ2(φ)U (φ,φ)+N ln

{∫
dφ

c!
Hz(φ) [−iμ̂1(φ)]c

})

× exp

{
−c2

4

∫
dφdψμ2(φ)[U (φ,ψ)]2μ2(ψ) + i

∫
dφR[μ̂1(φ)]μ̂2(φ)

}
,

where we have defined

R[μ̂1(φ)] = c(c − 1)
Hz(φ)[μ̂1(φ)]c−2∫
dφHz(φ)[μ̂1(φ)]c

, (A5)
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and Dμ̂1 = ∏
{φ} N/

√
2π dμ̂1(φ), while the other integration measures are defined similarly, but without the factor N . Now one

can integrate over μ̂2, μ2, and μ1 to obtain

〈[ZN (z)]n〉 = exp
( − Nc

2 − c2

4 + c
2

)
AN

{
det

[
U

( − c − c2

N

)]} 1
2

∫
Dμ̂1 exp

{
c

2

∫
dφ R[μ̂1(φ)]U (φ,φ)

}

× exp

[
N

2c

(
1 − c

N

)∫
dφdψμ̂1(φ)U−1(φ,ψ)μ̂1(ψ)

]

× exp

{
−c2

4

∫
dφdψR[μ̂1(φ)][U (φ,ψ)]2R[μ̂1(ψ)]

}
exp

(
N ln

{∫
dφ

c!
Hz(φ)[−iμ̂1(φ)]c

})
, (A6)

where the integration measure becomes Dμ̂1 = ∏
{φ}

√
N/2π dμ̂1(φ). The last step consists in calculating the normalization

factor AN from Eq. (2)

AN = exp [N (−c + c ln c − ln c!)] exp

[
c

2
+ 1

4
− 1

2
ln 2 + O

(
1

N

)]
. (A7)

Substituting Eq. (A7) in Eq. (A6) and making the following change of the integration variable,

μ̂1(φ) = ic

∫
dψ U (φ,ψ)
(ψ), (A8)

one can rewrite 〈[ZN (z)]n〉 as in Eq. (9).

APPENDIX B: CORRESPONDENCE WITH
RIGOROUS RESULTS

The main rigorous result of Ref. [20] is the following
theorem:

Fix c � 3 and let GN be a random c-regular graph on N

vertices with adjacency matrix AN . Let λ1 � · · · � λN be the
eigenvalues of (c − 1)−1/2AN .

Suppose that f is a function defined on the complex plane,
analytic inside a Bernstein ellipse of radius 2ρ, where ρ =
(c − 1)α for some α > 3/2, and such that |f (z)| is bounded
inside the ellipse. Then f (x) can be expanded on [−2,2] as

f (x) =
∞∑

k=0

akk(x), (B1)

and Y
(N)
f = ∑N

i=1 f (λi) − Na0 converges in law as N → ∞
to the infinitely divisible random variable

Yf =
∞∑

k=1

ak

(c − 1)k/2
CNBW

(∞)
k . (B2)

Let us specify the important quantities that appear in this
theorem. The polynomials k(x) are defined according to

0(x) = 1, (B3)

2k(x) = 2T2k

(
x

2

)
+ c − 2

(c − 1)k
k � 1, (B4)

2k+1(x) = 2T2k+1

(
x

2

)
k � 0, (B5)

where Tk(x) are Chebyshev polynomials of the first kind,
which fulfill the orthogonality relations

∫ 1

−1

dx√
1 − x2

Ti(x)Tj (x) =
⎧⎨
⎩

0 if i = j

π if i = j = 0
π
2 if i = j = 0

. (B6)

The random variable CNBW
(∞)
k is the number of cyclically

nonbacktracking walks of length k in GN [20]. It has the
explicit form

CNBW
(∞)
k =

∑
j |k

2jC
(∞)
j , (B7)

where the sum runs over the values j = 3, . . . ,∞ such that
k
j

is an integer. The variables C
(∞)
j are independent Poisson

random numbers with average (c − 1)j /2j .
The above theorem makes a statement about the deviation

of a general linear functional of the eigenvalues, defined by∑N
i=1 f (λi), with respect to the quantity Na0, as N grows

to infinity. It tells us that the deviation
∑N

i=1 f (λi) − Na0

converges in distribution to a non-Gaussian random variable
Yf = O(1), defined in Eq. (B2). Hence, we can write down
the following equation for the ensemble average of the linear
functional:

1

N

〈
N∑

i=1

f (λi)

〉
= a0 + 1

N

∞∑
k=1

ak

(c − 1)k/2
Vk, (B8)

where

Vk =
∑
j |k

(c − 1)j . (B9)

The right-hand side of Eq. (B8) has been obtained by taking
the average over the Poisson random variables present in
CNBW

(∞)
k . Note also that V1 = V2 = 0, because the sum over

j in the definition of Vk starts at j = 3.
We have computed the O(1/N) correction to the averaged

resolvent,

RN (z) = 1

N
〈TrG(z)〉 = 1

N

〈
N∑

i=1

1

z − λi

〉
, (B10)
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with z = λ − iη. Thus, RN (z) is the ensemble average of a
linear functional of the form N−1 ∑N

i=1 f (λi), with f (λi) =
1/ (z − λi). From Eq. (B8), we expect that a0 gives the leading
behavior of RN (z), while the other coefficients, a1, . . . ,a∞,
contain information about the O(1/N) fluctuations. Thus, the
computation boils down to determine a0, . . . ,a∞.

From Eq. (B1), we can write

f (2x) = a00(2x) +
∞∑

k=1

a2k2k(2x)

+
∞∑

k=0

a2k+12k+1(2x). (B11)

By multiplying both sides by j (x)/
√

1 − x2, integrating over
x and using Eqs. (B3)–(B5) and (B6), one derives the following
expressions for the coefficients:

a0 = 1

π

∫ 1

−1

dx√
1 − x2

f (2x)

⎡
⎣1 − (c − 2)

∞∑
j=1

T2j (x)

(c − 1)j

⎤
⎦ ,

(B12)

a2k+1 = 1

π

∫ 1

−1

dx√
1 − x2

T2k+1(x)f (2x) k � 0, (B13)

a2k = 1

π

∫ 1

−1

dx√
1 − x2

T2k(x)f (2x) k � 1. (B14)

There are many ways to write down an explicit form
for the Chebyshev polynomials. Here we use the following
expression:

Tj (x) = 1

2
(x + i

√
1 − x2)j + 1

2
(x − i

√
1 − x2)j , (B15)

valid in the domain x ∈ [−1,1]. By substituting Eq. (B15) in
Eq. (B12), we get

a0 = 2c (c − 1)

π

∫ 1

−1
dx f (2x)

√
1 − x2

[c2 − 4x2(c − 1)]
. (B16)

The change of integration variables

x = λ

2
√

c − 1
, (B17)

leads to

a0 =
∫ 2

√
c−1

−2
√

c−1
dλ f

(
λ√

c − 1

)
ρ0(λ), (B18)

where ρ0(λ) is the leading contribution to the eigenvalue
distribution, as presented in Eq. (35). We do not need to
compute explicitly the above integral, since Eq. (B18) is the

Stieltjes transform of the eigenvalue distribution ρ0(λ): this
is nothing more than the definition of the averaged resolvent.
In order to evaluate the O(1/N ) correction, we need to write
down the coefficients a1, . . . ,a∞ in the same integral form.

By making the change of variables Eq. (B17) in Eqs. (B13)
and (B14), we get

a2j+1 =
∫ 2

√
c−1

−2
√

c−1
dλ f

(
λ√

c − 1

)
C(λ) T2j+1

(
λ

2
√

c − 1

)
,

(B19)

a2j =
∫ 2

√
c−1

−2
√

c−1
dλ f

(
λ√

c − 1

)
C(λ) T2j

(
λ

2
√

c − 1

)
,

(B20)

with C(λ) defined by Eq. (58). Now it is convenient to
introduce, for |λ| < 2

√
c − 1, the function gc(λ),

gc(λ) = 1

2(c − 1)
[λ + i

√
4(c − 1) − λ2], (B21)

which allows us to rewrite, using Eq. (B15), the Chebyshev
polynomials as follows:

Tj

(
λ

2
√

c − 1

)
= (c − 1)j/2Re[gc(λ)]j . (B22)

Substituting this form of Tj in Eqs. (B19) and (B20), and then
inserting the resulting expressions in Eq. (B8), we obtain

1

N

〈
N∑

i=1

f (λi)

〉
=

∫ 2
√

c−1

−2
√

c−1
dλ f

(
λ√

c − 1

)
(B23)

×
[
ρ0(λ) + 1

N
ρ1(λ)

]
, (B24)

where

ρ1(λ) = C(λ)Re

[ ∞∑
L=3

VLgL
c

]
. (B25)

The above summation starts at L = 3, because V1 and V2 are
zero.

The O(1/N ) contribution in Eq. (B24) is the Stieltjes
transform of ρ1(λ), which yields the finite-size correction
R1(z) to the averaged resolvent. In order to compare with our
results derived through the replica method, we rewrite Eq. (57)
according to

ρ1(λ) = C(λ)Re

[ ∞∑
L=3

(c − 1)L
∞∑

n=0

gL(n+1)
c

]
. (B26)

By comparing the coefficients VL, defined by Eq. (B9), with
those of the above equation, we conclude that Eqs. (B25)
and (B26) are the same.

[1] P. R. D. Cvetković and S. Simić, An Introduction to the Theory of
Graph Spectra (Cambridge University Press, Cambridge, 2010).

[2] A. Cavagna, I. Giardina, and G. Parisi, Phys. Rev. Lett. 83, 108
(1999).

[3] R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, J. Phys.
C: Solid State Phys. 6, 1734 (1973).

[4] R. Baxter, Exactly Solved Models in Statistical Mechanics
(Academic Press, New York, 1982).

052109-10

http://dx.doi.org/10.1103/PhysRevLett.83.108
http://dx.doi.org/10.1103/PhysRevLett.83.108
http://dx.doi.org/10.1103/PhysRevLett.83.108
http://dx.doi.org/10.1103/PhysRevLett.83.108
http://dx.doi.org/10.1088/0022-3719/6/10/009
http://dx.doi.org/10.1088/0022-3719/6/10/009
http://dx.doi.org/10.1088/0022-3719/6/10/009
http://dx.doi.org/10.1088/0022-3719/6/10/009


FINITE-SIZE CORRECTIONS TO THE SPECTRUM OF . . . PHYSICAL REVIEW E 90, 052109 (2014)

[5] T. Rogers, Ph.D. thesis, King’s College, London, 2010.
[6] Y. Kabashima, H. Takahashi, and O. Watanabe, J. Phys.: Conf.

Ser. 233, 012001 (2010).
[7] I. Dumitriu and S. Pal, Ann. Prob. 40, 2197 (2012).
[8] H. Kesten, Trans. Am. Math. Soc. 92, 336 (1959).
[9] B. D. McKay, Linear Algebra Appl. 40, 203 (1981).

[10] K. B. Efetov, Physica A 167, 119 (1990).
[11] A. Montanari and T. Rizzo, J. Stat. Mech.: Theory Exp. (2005)

P10011.
[12] G. Parisi and F. Slanina, J. Stat. Mech.: Theory Exp. (2006)

L02003.
[13] V. E. Sacksteder, Phys. Rev. D 76, 105032 (2007).
[14] S. F. Edwards and R. C. Jones, J. Phys. A: Math. Gen. 9, 1595

(1976).
[15] G. J. Rodgers and A. J. Bray, Phys. Rev. B 37, 3557 (1988).
[16] U. Ferrari, C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi,

and T. Rizzo, Phys. Rev. B 88, 184201 (2013).
[17] C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi, and

T. Rizzo Phys. Rev. E 90, 012146 (2014).
[18] G. B. Arous and K. Dang, arXiv:1106.2108.
[19] I. Dumitriu, T. Johnson, S. Pal, and E. Paquette, Prob. Theory

Related Fields 156, 921 (2013).
[20] T. Johnson, arXiv:1112.0704.
[21] D. S. Dean, J. Phys. A: Math. Gen. 35, L153 (2002).
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