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Generalized exclusion processes: Transport coefficients
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A class of generalized exclusion processes with symmetric nearest-neighbor hopping which are parametrized
by the maximal occupancy, k � 1, is investigated. For these processes on hypercubic lattices we compute the
diffusion coefficient in all spatial dimensions. In the extreme cases of k = 1 (symmetric simple exclusion process)
and k = ∞ (noninteracting symmetric random walks) the diffusion coefficient is constant, while for 2 � k < ∞
it depends on the density and k. We also study the evolution of the tagged particle, show that it exhibits a normal
diffusive behavior in all dimensions, and probe numerically the coefficient of self-diffusion.
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I. INTRODUCTION

Exclusion processes constitute an important class of lattice
gases that plays a prominent role in numerous subjects
including nonequilibrium statistical mechanics, soft matter,
traffic models, biophysics, combinatorics, and probability
theory [1–9]. By definition, exclusion processes are lattice
gases supplemented with stochastic hopping and obeying the
constraint that at most one particle per site is allowed. In
simple exclusion models, only hops to nearest-neighboring
sites are allowed. These models are exactly solvable in low
dimensions [4,10,11], and they have become benchmarks to
test general theories for nonequilibrium behaviors [12–17].

Because of its ubiquity and usefulness, numerous more
complicated variants of the basic exclusion process have been
investigated (see [3,9,10] and references therein). One natural
generalization is to alleviate the exclusion constraint by allow-
ing k particles per site (k � 1 is a fixed integer). More precisely,
this process is defined in d dimensions, say on the hypercubic
lattice Zd , as follows: (i) each particle attempts to hop to its 2d

neighbors with the same unit rate to each neighbor (symmetric
hopping); (ii) every hopping attempt is successful when the
target site is occupied by less than k particles, otherwise the
hopping attempt is rejected (Fig. 1). The symmetric exclusion
process (SEP) is recovered when k = 1, whereas for k = ∞
the model reduces to independent random walks undergoing
symmetric nearest-neighbor hopping. Letting k vary from 1
to ∞ allows us to interpolate between a strongly interacting
to a noninteracting system. (In quantum systems, restricting
the maximum number of particles in a given quantum state to
an integer k, with 1 < k < ∞, leads to the so-called Gentile
statistics [18,19] interpolating between Fermi-Dirac statistics
and Bose-Einstein statistics. In this paper we consider only
classical lattice gases.)

Generalized exclusion processes (GEPs) with maximal
occupation number 1 < k < ∞ have been studied in [20–22];
see also Refs. [23–33] for other versions of GEPs. Some
of these models can be mapped onto multispecies exclusion
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processes [34–36] but with nonconserving species. Overall,
the GEPs are considerably less understood than the ordinary
exclusion process—the integrability properties of the SEP do
not carry over to the GEPs and a different perspective is
required.

The objective of this work is to investigate the GEP at a
coarse-grained level and to calculate the transport coefficients
that underlie the hydrodynamic description. Section II reviews
known properties of the GEP and outlines its macroscopic
(i.e., hydrodynamic) regime which is governed by a diffusion
equation. We also formulate our main result, namely a para-
metric representation of the diffusion coefficient. In Sec. III, we
present the derivation of the diffusion coefficient. In Sec. IV,
stationary density profiles are computed and compared with
simulations. In Sec. V, we examine the evolution of a tagged
particle in the GEP in various spatial dimensions. We derive the
self-diffusion coefficient using a mean-field approximation.
We also probe the self-diffusion coefficient numerically and
show a reasonable qualitative agreement with mean-field
predictions. We summarize our results, and mention remaining
challenges and possible extensions, in Sec. VI.

II. HYDRODYNAMIC BEHAVIOR

For the generalized exclusion process with symmetric
hopping, steady states are remarkably simple and are given
by a product measure [2,5,6,27]. In other words, one only
needs to know the probabilities Pj to have j particles per site
and the stationary weight of any configuration factors into the
product of these basic probabilities. The basic probabilities are
given by an elementary formula [6,25,27]

Pj = λj

j !

1

Zk(λ)
. (1)

To justify (1) it suffices to use the factorization and verify that
the flow (i,j ) =⇒ (i − 1,j + 1), which is given by iPiPj ,
is equal to the flow (i − 1,j + 1) =⇒ (i,j ), which is given
by (j + 1)Pi−1Pj+1. With the choice (1), we indeed get
iPiPj = (j + 1)Pi−1Pj+1. The “partition function” Zk(λ),
which appears in Eq. (1), is fixed by the normalization
requirement

∑
0�j�k Pj = 1. It is equal to an incomplete
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FIG. 1. GEP with k = 3 in one dimension. Hopping into a site
occupied by three particles is forbidden; other hopping events occur
with the same (unit) rate. Thus the total hopping rate from every site
is equal to the number of particles at the site times the number of
neighboring sites which are not fully occupied.

exponential function:

Zk(λ) =
k∑

j=0

λj

j !
. (2)

The “fugacity” parameter λ is implicitly determined by the
density ρ:

ρ =
k∑

j=0

jPj = λ
Zk−1(λ)

Zk(λ)
. (3)

Furthermore, GEPs with rather general hopping rates depend-
ing on the number of particles on the exit site have been also
studied; see, e.g. [6,20,24,25,27,37]. In all these models the
steady-state probabilities are also given by a product measure.
We emphasize that this product measure structure is akin to that
of the zero-range process [38,39], although the two processes
are fundamentally different (in the GEP, the jump rate of a
particle does depend on the state of the target site, contrary to
what is assumed in the zero-range process).

In order to study the dynamics of the system, the knowledge
of the steady-state distribution is not sufficient and a full
description of the evolution requires the complete spectrum
and eigenstates of the evolution matrix. Yet the large scale
“hydrodynamic” behavior is conceptually simple. The only
relevant hydrodynamic variable is density and it evolves
according to a diffusion equation. In one dimension, for
instance, it reads

∂ρ

∂t
= ∂

∂x

[
Dk(ρ)

∂ρ

∂x

]
. (4)

This generic result is valid for lattice gases with symmetric
hopping [2,5,6]. Thus the detailed microscopic rules underly-
ing the dynamics of the lattice gas play little role; namely, they
are all encapsulated in a single density-dependent function, the
diffusion coefficient.

The determination of the diffusion coefficient is in principle
a very difficult problem as we do not assume the lattice gas to be
dilute. For the GEP, the diffusion coefficient Dk is known in the
extreme cases, namely for symmetric random walks (k = ∞)
and for the SEP (k = 1). In both these cases the diffusion
coefficient is constant; with our choice of the hopping rates,
we have

D1 = D∞ = 1. (5)

For other maximal occupancies (1 < k < ∞), the diffusion
coefficient is density dependent. This already follows from the
asymptotic behaviors

Dk(ρ) =
{

1, ρ → 0,

k, ρ → k.
(6)
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FIG. 2. (Color online) Diffusion coefficient (7) as a function of
density for the GEP with k = 2,3,4,5.

The small-density asymptotic corresponds to the diffusion of
a single particle in the empty system, while the behavior in
the ρ → k limit can be understood by considering a single
vacancy in the fully occupied system.

The computation of Dk(ρ) for all k will be presented in
Sec. III. We will show that

Dk = �k − ρ
d�k

dρ
, �k(ρ) = 1 − Pk(ρ). (7)

Using (1) and (3) one obtains the parametric representation of
�k(ρ):

ρ = λ�k(λ), �k(λ) = Zk−1(λ)

Zk(λ)
. (8)

These formulas apply to all 1 � k � ∞ including the extreme
cases. For the SEP we have �1 = 1 − ρ, while for random
walks �∞ = 1; in both cases we recover (5). In all other
cases (2 � k < ∞), the diffusion coefficients Dk(ρ) are
monotonically increasing convex functions of the density (as
illustrated in Fig. 2 for k = 2,3,4,5).

For lattice gases in higher dimensions, the density generally
satisfies a diffusion equation

∂ρ

∂t
=

d∑
a,b=1

∂

∂xa

[
Dab(ρ)

∂ρ

∂xb

]
, (9)

with a d × d diffusion matrix Dab(ρ). An ordinary diffusion
process (e.g., a symmetric random walk) is macroscopically
isotropic, so the diffusion matrix is scalar: Dab(ρ) = δabD(ρ).
Generally the diffusion matrix is symmetric, Dab(ρ) =
Dba(ρ), and for lattice gases on Zd the symmetry of the lattice
limits the number of independent matrix elements to two: all
diagonal elements are equal [we denote them by D(ρ)], and
all off diagonal are also equal [we denote them by D̂(ρ)]. In
three dimensions, for instance, the diffusion matrix is

D(ρ) =

⎡
⎢⎣

D(ρ) D̂(ρ) D̂(ρ)

D̂(ρ) D(ρ) D̂(ρ)

D̂(ρ) D̂(ρ) D(ρ)

⎤
⎥⎦ . (10)

For lattice gases on Zd in which each particle occupies a
single lattice site one expects the diffusion matrix to be scalar
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and the diffusion coefficient to be strictly positive [40]. As far
as we know these physically obvious assertions have not been
proved in full generality. In the next section, we calculate
Dk(ρ) for all k. Our derivation implies that for the GEP
the diffusion process is indeed macroscopically isotropic, and
our explicit results show that the diffusion coefficients satisfy
Dk(ρ) > 1 and they are independent of the spatial dimension.

III. DIFFUSION COEFFICIENT

In this section, we calculate the diffusion coefficient for
the GEP that appears in Eq. (9). As a warm-up, we recall
the well-known case of the SEP. Then we show the crucial
difference between the GEPs with 2 � k < ∞ and the SEP,
namely the presence of the higher-order correlators, which
makes impossible an elementary derivation of the diffusion
coefficient. Fortunately, the understanding of the equilibrium
in the GEP and a perturbative expansion around the equilib-
rium gives a method for deriving the diffusion coefficient for
the GEPs with 2 � k < ∞. We present a detailed derivation
of D2(ρ) in one and higher dimensions. The case of arbitrary
k is outlined at the end of this section.

A configuration of the SEP on a one-dimensional lattice
is fully described by binary variables nj (t): if the site j ∈
Z is empty, nj (t) = 0; if it is occupied, nj (t) = 1. In an
infinitesimal time interval dt , the particle hops from site j

to site j + 1 with probability nj (1 − nj+1)dt . This choice
assures that the hopping event happens only when the site
j is occupied and the site j + 1 is empty. Taking into account
all possible hops one finds that the average density evolves
according to

d〈nj 〉
dt

= 〈nj−1(1 − nj ) + nj+1(1 − nj )〉
− 〈nj (1 − nj−1) + nj (1 − nj+1)〉, (11)

which simplifies to the discrete diffusion equation

d〈nj 〉
dt

= 〈nj−1〉 − 2〈nj 〉 + 〈nj+1〉. (12)

The remarkable cancellation of the higher-order correlation
functions allows one to prove the validity of the hydrodynamic
limit without further assumptions—no need to use the absence
of correlations in the steady state. By definition, in the
hydrodynamic limit the average density varies on the scales
greatly exceeding the lattice spacing. Therefore, we write
〈nj (t)〉 = ρ(x,t); the notation x = j emphasizes that we are
switching to the continuum description. We then expand 〈nj±1〉
in Taylor series

〈nj±1〉 = ρ ± ρx + 1
2ρxx + · · · (13)

and recast the set of difference-differential equations (12) into
a classical diffusion equation, namely Eq. (4) with D1 = 1.
In higher dimensions, the cancellation still holds; in two
dimensions, for instance,

d〈ni,j 〉
dt

= 〈ni,j−1〉 + 〈ni,j+1〉 + 〈ni−1,j 〉 + 〈ni+1,j 〉 − 4〈ni,j 〉.
(14)

Therefore, the hydrodynamic description is again the classical
diffusion equation ρt = ρxx + ρyy .

Consider now the simplest GEP different from the SEP,
namely the GEP with k = 2 on a one-dimensional lattice. The
occupation number nj is either 0, or 1, or 2 when k = 2. The
process (nj ,nj+1) =⇒ (nj − 1,nj+1 + 1) proceeds with rate

njF (nj+1), F (n) = 1 − n(n − 1)

2
. (15)

Therefore, the average density evolves according to

d〈nj 〉
dt

= 〈[nj−1 + nj+1]F (nj )〉 − 〈nj [F (nj−1) + F (nj+1)]〉.
(16)

In contrast with the case of the SEP, higher-order correlation
functions do not cancel as it is obvious from an explicit
representation of the right-hand side of (16):

d〈nj 〉
dt

= 〈nj−1〉 − 2〈nj 〉 + 〈nj+1〉

+ 1

2

〈
nj

[
n2

j−1 + n2
j+1

] − [nj−1 + nj+1]n2
j

〉
. (17)

It is often possible to advance for lattice gases of the
gradient type [2,6]. These are lattice gas models in which
the current Jj,j+1 of particles moving from any site j to j + 1
can be written as a discrete gradient. For instance, the SEP is
the gradient lattice gas since Jj,j+1 = nj − nj+1. For the GEP
with k = 2, the current

Jj,j+1 = nj − nj+1 + 1
2

[
nj+1n

2
j − njn

2
j+1

]
(18)

is obviously not a discrete gradient. Generally, all GEPs with
2 � k < ∞ are nongradient lattice gases.

We now outline the idea of a perturbative approach which
we shall use to establish the diffusion coefficient in nongradient
lattice gases, and then return to the GEP.

A. Perturbative approach

For nongradient lattice gases it is sometimes possible to
study the hydrodynamic regime in the realm of a perturbative
approach. The idea is to ignore correlations. This is true in
the equilibrium. In the evolving state, the presence of local
density gradients induces long-ranged correlations, but in
numerous lattice gases these correlations vanish to first order
in the density difference. This has been rigorously established
(in all spatial dimensions) for lattice gases with hard-core
exclusion [41], and it is expected to apply to a much larger
class of models. There can be appreciable correlations in the
earlier time regime, but we are interested in the hydrodynamic
limit which, by definition, describes the evolution close to
equilibrium. The vanishing of correlations in the first order in
the density gradient implies that in the hydrodynamic regime
our perturbative treatment leads to exact predictions for the
diffusion coefficient.

To appreciate the validity of a perturbative approach it is
useful to compare the situation with kinetic theory [2,7,42].
Recall that the Boltzmann equation, even though it is mean
field in nature (as it is based on the assumption of molecular
chaos), is asymptotically exact in the hydrodynamic regime,
so the emerging transport coefficients are exact. In the context
of kinetic theory the main challenge is technical—even for
dilute monoatomic gases (e.g., for hard-spheres gas), it has not
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been possible to extract transport coefficients analytically [42].
Lattice gases are much more tractable, so even for dense lattice
gases one occasionally succeeds in computing the diffusion
coefficient. The crucial ingredient is the understanding of the
equilibrium state. Additionally, we emphasize that for lattice
gases of gradient type (e.g., for the Katz-Lebowitz-Spohn
model with symmetric hopping [1,43] and for repulsion pro-
cesses [44]) when computations using a Green-Kubo formula
become feasible, the results for the diffusion coefficient agree
with predictions derived using the perturbative approach.
Further, for lattice gases of nongradient type whenever it was
possible to apply the perturbative approach (see [45,46]), the
predictions for the diffusion coefficient were again exact as it
was evidenced through rigorous analyses, mappings to more
tractable gradient type lattice gases, and comparisons with
simulations.

B. GEP with k = 2

To implement the perturbative approach for the GEP with
k = 2 on the one-dimensional lattice, we first replace (16) by

d〈nj 〉
dt

= [〈nj−1〉 + 〈nj+1〉]〈F (nj )〉
− 〈nj 〉[〈F (nj−1)〉 + 〈F (nj+1)〉]. (19)

In the hydrodynamic limit we write 〈nj (t)〉 = ρ(x,t) and we
use Eq. (13) for 〈nj±1(t)〉 to yield

〈nj−1〉 + 〈nj+1〉 = 2ρ + ρxx. (20)

Hereinafter, we keep the terms which survive in the hydrody-
namic limit, e.g., in Eq. (20) we have dropped 1

12ρxxxx and the
following terms with higher derivatives.

The average 〈F (n)〉 has a neat form

〈F (n)〉 = 1 − P2(ρ), (21)

which is obvious from the definition of the process (the
hopping can occur only when the target site hosts less than two
particles). We shall use the shorthand notation 1 − P2(ρ) =
�2(ρ).

In the hydrodynamic limit 〈F (nj−1)〉 + 〈F (nj+1)〉 turns
into �2[ρ(x − 1)] + �2[ρ(x + 1)], which is expanded to yield

2�2(ρ) + �′
2(ρ)ρxx + �′′

2(ρ)ρ2
x . (22)

Inserting all these expansions into (19) we arrive at

ρt = [�2(ρ) − ρ�′
2(ρ)]ρxx − ρ�′′

2(ρ)ρ2
x . (23)

This equation can be rewritten as the diffusion equation (4)
with diffusion coefficient

D2 = �2(ρ) − ρ�′
2(ρ). (24)

Recall that, for k = 2, we have

ρ = λ + λ2

1 + λ + 1
2λ2

, �2 = 1 + λ

1 + λ + 1
2λ2

(25)

from which we find an explicit expression for �2(ρ):

�2(ρ) = 1 − ρ +
√

1 + 2ρ − ρ2

2
. (26)

Inserting this into (24) yields an explicit expression of the
diffusion coefficient

D2(ρ) = 1 + ρ +
√

1 + 2ρ − ρ2

2
√

1 + 2ρ − ρ2
. (27)

We now consider the GEP with k = 2 in arbitrary dimen-
sion. In two dimensions, for instance, the average density
satisfies

d〈ni,j 〉
dt

= 〈(ni−1,j + ni+1,j + ni,j−1 + ni,j+1)F (ni,j )〉
− 〈ni,j [F (ni−1,j ) + F (ni+1,j ) + F (ni,j−1) + F (ni,j+1)]〉,

which in the hydrodynamic limit becomes

ρt = ∂x(D2ρx) + ∂y(D2ρy), (28)

with D2 given by Eq. (24) as in one dimension. The same holds
in any spatial dimension, namely the GEP is described by the
diffusion equation

ρt = ∇ · (D2∇ρ), (29)

where the diffusion coefficient is given by a universal for-
mula (24) valid in arbitrary dimension. The symmetric GEP
is therefore isotropic on the hydrodynamic scale; namely, it is
described by the scalar diffusion coefficient.

C. GEP with arbitrary k

For the GEP with arbitrary k the analysis is similar to the one
presented above. The process (nj ,nj+1) =⇒ (nj − 1,nj+1 +
1) proceeds with rate (15), where we only need to modify F (n)
to

F (n) = 1 − n(n − 1) · · · (n − k + 1)

k!
. (30)

It suffices to consider the one-dimensional case as the
results for the diffusion coefficient are independent of the
spatial dimensionality. Equations (16) and (19), with F (n)
given by (30), remain valid. Equations (20)–(24) also hold
if we replace �2 by �k , the probability that a site is not
fully occupied; for instance, Eq. (21) becomes 〈F (n)〉 =
1 − Pk(ρ) ≡ �k(ρ). Thus the diffusion coefficient is indeed
given by the announced expression (7). For k � 5 an explicit
expression for �k(ρ) is apparently impossible to deduce,
but we can use a parametric expression (8) which follows
from (1), (3), and the definition �k(ρ) = 1 − Pk(ρ).

IV. STATIONARY DENSITY PROFILES

In the previous section we calculated the diffusion coeffi-
cient for the GEP using a perturbative approach. In this section,
we present a nondirect test of our predictions. Specifically,
we shall calculate stationary density profiles in one and two
dimensions and compare these theoretical predictions with
simulation results. We will show that the diffusion equation
with the diffusion coefficient given by Eqs. (7) and (8) provides
an accurate description of the system at a macroscopic scale.
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FIG. 3. (Color online) Stationary density profiles versus x/L for
the GEP with k = 1,2,3,4,5 on a segment with L = 103. The solid
lines are theoretical predictions in the case of extremal boundary
densities, ρ0 = k and ρ1 = 0. For the SEP (k = 1), the density profile
is linear; for k = 2, the density profile is given by (33), and generally
it is extracted from Eq. (35). Simulation results (shown by •) were
obtained by averaging over the time window 5 × 106 � t � 107.

A. One-dimensional density profiles

Consider the GEP on the interval (0,L) with boundary
conditions

ρ(0) = ρ0, ρ(L) = ρ1. (31)

Solving Dk(ρ) dρ

dx
= const, subject to (31), we obtain∫ ρ

ρ0
dr Dk(r)∫ ρ1

ρ0
dr Dk(r)

= x

L
. (32)

Let us focus on a special case when the right boundary is a sink:
ρ1 = 0. To simplify formulas we write ρ0 = n. When k = 2,
the integrals on the left-hand side of (32) can be explicitly
determined to yield an implicit representation of the stationary
density profile ρ(x):

1 + π
2 + ρ −

√
1 + 2ρ − ρ2 + 2 arcsin

(
ρ−1√

2

)
1 + π

2 + n − √
1 + 2n − n2 + 2 arcsin

(
n−1√

2

) = 1 − x

L
.

In the case of the maximal density on the left boundary, ρ0 =
n = 2, we get

1

2
−

ρ −
√

1 + 2ρ − ρ2 + 2 arcsin
(

ρ−1√
2

)
π + 2

= x

L
. (33)

See Fig. 3.
In the general case of arbitrary k we use (7) and (8) and

establish the following parametric representation:∫ λ

0 dμ[�k(μ)]2∫ �

0 dμ[�k(μ)]2
= 1 − x

L
, n = ��k(�). (34)

The maximal density on the left boundary, ρ0 = n = k,
corresponds to � = ∞. The density profiles (34) in this
situation, ∫ λ

0 dμ[�k(μ)]2∫ ∞
0 dμ[�k(μ)]2

= 1 − x

L
, ρ = λ�k(λ), (35)

0 10020 40 60 80
R

0

2

a=1

a=25
1

FIG. 4. (Color online) Stationary density profiles vs R for the
GEP with k = 2 in the annulus with external radius L = 100. Dots are
simulation results which were obtained by averaging over 5 × 106 �
t � 107. Solid lines are theoretical predictions given by (37) with
α = 1/4 in the case of a = 25 and by (38) when a = 1.

are plotted in Fig. 3.

B. GEP in an annulus

For the GEP in the annulus a � R � L, we solve
RDk(ρ) dρ

dR
= const, subject to the boundary conditions

ρ(a) = ρ0 and ρ(L) = ρ1, and get∫ ρ

ρ0
dr Dk(r)∫ ρ1

ρ0
dr Dk(r)

= ln(R/a)

ln(L/a)
. (36)

Let us look more carefully at the case of k = 2 with
boundary densities ρ1 = 0,ρ0 = 2 (the density on the inner
circle is maximal). We use dimensionless variables α = a/L

and ξ = R/L, so that 0 < α � ξ � 1. With these choices,
Eq. (36) becomes

1

2
+

ρ −
√

1 + 2ρ − ρ2 + 2 arcsin
(

ρ−1√
2

)
π + 2

= ln ξ

ln α
. (37)

This density profile is compared with simulation results on
Fig. 4.

For the GEP in the annulus a � R � L, the usage of
the continuum (diffusion equation) approach is somewhat
questionable near the inner circle if a = O(1). Indeed, we
cannot even talk about a circle on a lattice if its radius is
comparable with the lattice spacing. Nevertheless, let us use
Eq. (36), again with k = 2 and (ρ0,ρ1) = (2,0), in the extreme
case of a = 1. Equation (36) becomes

1

2
−

ρ −
√

1 + 2ρ − ρ2 + 2 arcsin
(

ρ−1√
2

)
π + 2

= ln R

ln L
. (38)

Choosing the inner radius equal to lattice spacing is essen-
tially equivalent to the simplest lattice setting with reservoir
connected to the origin and postulating that whenever a particle
leaves the origin, a particle from reservoir is immediately
added, so the density at the origin remains maximal ρ0 = 2.
There is also a sink at the circle R = L; that is, whenever a
particle at a site on distance <L hops and gets outside this
circle, it leaves the system forever. On distances R � 1 the
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profile (38) should become asymptotically exact. Figure 4
shows an excellent agreement between theory and simulations
over the entire range 1 � R � L.

To emphasize the difference between one and two di-
mensions let us consider the GEP with k = 2 and boundary
densities (ρ0,ρ1) = (2,0) and compare the density profiles (33)
and (38). In one dimension, the intermediate density ρ∗ =
(ρ0 + ρ1)/2, i.e., ρ∗ = 1 in our case, is reached at

x∗
L

= 1

2
+

√
2 − 1

π + 2
= 0.580 561 . . . , (39)

while in two dimensions this happens at

ln R∗
ln L

= 1

2
+

√
2 − 1

π + 2
, (40)

which is much closer to the source, R∗ ∼ L0.580 561.
Second, we compare the total (average) number of particles.

In one dimension we integrate by part to get

N =
∫ L

0
dx ρ(x) =

∫ 2

0
dρ x(ρ). (41)

Using (33) we perform the integration and find

N = 3π + 2

2π + 4
L. (42)

In two dimensions, we similarly find

N =
∫ L

0
dR 2πRρ(R) = π

∫ 2

0
dρ R2(ρ). (43)

The dominant part of the integral in (43) is gathered near
ρ = 0. Expanding the left-hand side of (38) we find

ln R

ln L
= 1 − 2

π + 2
ρ − 1

3(π + 2)
ρ3 + 1

2(π + 2)
ρ4 + · · · .

(44)
Equation (43) becomes

N

πL2
�

∫ ∞

0
dρ exp

[
− ln L

4ρ + 2
3ρ3 − ρ4

π + 2

]
, (45)

which gives

N = π (π + 2)

4

L2

ln L

[
1 + C2

(ln L)2
+ C3

(ln L)3
+ · · ·

]
, (46)

with C2 = −(π+2
4 )3, C3 = 6(π+2

4 )4, etc. Thus the convergence
to the leading asymptotic behavior is slow in two dimensions.

For arbitrary k, let us choose again ρ1 = 0 and ρ0 = k. The
density profile is implicitly given by∫ λ

0 dμ[�k(μ)]2∫ ∞
0 dμ[�k(μ)]2

= 1 − ln R

ln L
. (47)

In the small ρ limit, we get

ln R

ln L
= 1 − ρ

Ik

+ · · · , Ik =
∫ ∞

0
dμ[�k(μ)]2, (48)

and the leading asymptotic behavior of the total average
number of particles is

N � πIk

2

L2

ln L
, (49)

where the coefficients Ik can be evaluated numerically (e.g.,
I3 = 4.291 39 . . .).

V. SELF-DIFFUSION COEFFICIENT

Even an equilibrium situation (in which the density is
spatially uniform) possesses interesting nonequilibrium fea-
tures. One important example is the phenomenon of self-
diffusion. In this section we investigate the evolution of a
tagged particle in the GEP at equilibrium. We assume that the
tagged particle is identical to the host particles, so it merely
carries a tag. Asymptotically, the tagged particle exhibits a
diffusive behavior, so it suffices to compute the coefficient of
self-diffusion. This problem is easy to pose, but there has been
little progress even for simplest lattice gases. For instance, the
coefficient of self-diffusion is unknown for the SEP in two and
higher dimensions; it is only known [47] that the coefficient
of self-diffusion is a smooth function of the density.

Consider first the one-dimensional case. We tag a particle
which is initially at x(0) = 0 (without loss of generality) and
we look at its position x(t) in the long-time limit. Generically,
we expect a diffusive behavior. Thus the first two averages
are 〈x〉 = 0 and 〈x2〉 ∼ t , and it suffices to determine the self-
diffusion coefficient

lim
t→∞

〈x2〉
2t

= Dk(ρ). (50)

The self-diffusion coefficient Dk generally differs from the
diffusion coefficient Dk . We have D∞ = D∞ = 1 for nonin-
teracting random walks. For k < ∞, the inequality Dk < Dk

is physically apparent, although it may be difficult to prove.
For the SEP in one dimension, the self-diffusion coefficient

vanishes: D1 = 0. Indeed, the ordering between the particles
is conserved and this leads to anomalously slow subdiffusive
behavior [48–52]: 〈x2〉SEP, d=1 ∼ t1/2. This is an exceptional
feature; the normal diffusion is recovered for the SEP in
dimensions higher than 1. For the GEP with k � 2, the
phenomenon of self-diffusion is not pathological even in one
dimension, viz. the self-diffusion coefficient Dk(ρ) is positive.
Moreover, Dk(ρ) is a monotonically decreasing function of ρ

in the interval 0 < ρ < k with asymptotic behaviors

Dk(ρ) =
{

1, ρ → 0,

0, ρ → k.
(51)

For lattice gases in d > 1 dimensions, the spread of the
tagged particle is generically described by a matrix. For the
GEP on the hypercubic lattice, and generally for lattice gases
on Zd where each particle occupies only one site, one expects
the self-diffusion process to be isotropic on the hydrodynamic
scales. This has been proved only for the SEP, see [53], so it
remains conjectural for the GEPs with 2 � k < ∞.

There is one important feature which distinguishes the
self-diffusion coefficient from the diffusion coefficient, viz.
the self-diffusion coefficient certainly depends on the di-
mensionality: Dk(ρ,d). The extreme density behaviors of the
self-diffusion coefficientDk(ρ,d) with k � 2 are universal and
given by (51) in all dimensions.

We performed simulations to probe the self-diffusion
coefficient on lattices with Ld sites, in d = 1,2,3 dimensions,
with periodic boundaries. The sizes of the simulated systems
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k=4
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FIG. 5. (Color online) Mean-square displacement of the tagged
particle vs time for the GEP in one dimension. The maximal
occupancy varies between k = 2 and k = 5. Simulations were
performed on the ring of length 103.

are L = 103,32,10 for d = 1,2,3, respectively. The number
of simulation runs for each set of parameters (k,d,ρ) is
2 × 105/(Ldρ), and we tagged all the Ldρ particles in each
run. Thus 〈·〉 is the average over effectively 2 × 105 tagged
particles. We checked the validity of the diffusive scaling
up to t = 5 × 104, as shown in Fig. 5 for ρ = 3k/5 and
d = 1. (As long as t � L2 = 106, finite-size effects can be
safely ignored.) We calculated 〈r2〉

2d·t by using data in the
0 � t � 5 × 104 time window. The results are shown in Figs. 6
and 7.

As a reference point, it is useful to have a mean-field
prediction. To derive the mean-field prediction for the self-
diffusion coefficient of the GEP with an arbitrary maximal
occupancy k we recall that a site is occupied by k particles with
probability Pk , so it can be a destination site with probability
1 − Pk . Therefore, for a tagged particle, the hopping rate to
each neighboring site appears to be 1 − Pk(ρ) ≡ �k(ρ), which
tells us that the self-diffusion coefficient is

DMF
k = �k = Zk−1(λ)

Zk(λ)
= ρ

λ
. (52)

0

0.2

0.4

0.6

0.8

1

0

Dk

k=2
k=3
k=4
k=5

MF

51 2 3 4

FIG. 6. (Color online) Coefficient of self-diffusion vs density for
the GEP in one dimension; the maximal occupancy varies between
k = 2 and k = 5. Dots represent simulation results for the GEP in
one dimension. Solid lines are the mean-field predictions, Eq. (52).

0 1 2

0.2

0.4

0.6

0.8

1

0

Dk

d=1, k=2
d=2, k=2
d=3, k=2

d=2, k=1MF
d=3, k=1

FIG. 7. (Color online) Coefficient of self-diffusion vs density for
the SEP in two and three dimensions, and for the GEP with k = 2 in
dimensions d = 1,2,3. Dots represent simulation results. Solid lines
are the mean-field predictions: DMF

1 = 1 − ρ for the SEP, while for
the GEP with k = 2 the mean-field prediction DMF

2 = �2(ρ) acquires
the explicit form (26).

In particular, DMF
1 = 1 − ρ for the SEP, while for k = 2 the

mean-field prediction DMF
2 = �2(ρ) is given by the explicit

formula (26). For noninteracting random walks Eq. (52) yields
DMF

∞ = 1, and this is the only case when the prediction is exact.
In all other cases (1 � k < ∞), the prediction of Eq. (52) is
not exact.

To appreciate the mean-field nature of the prediction (52)
we first note that, for every site, the probability that any
neighboring site contains less than k particles is indeed 1 − Pk ,
and these probabilities are uncorrelated. So if we pick a particle
and mark it with a tag, it appears that this particle is indeed
diffusing with the coefficient equal to 1 − Pk . But we must
keep the identity of the tagged particle. This already causes the
problem—immediately after the tagged particle has undergone
the first jump, the site from which it jumped will be surely
occupied by less than k particles. In the d → ∞ limit this is ir-
relevant, but for any finite dimension the derivation of Eq. (52)
involves an uncontrolled approximation. We thus realize that
Eq. (52) only provides a mean-field approximation. To sum-
marize, the prediction (52) satisfies the following properties.

(1) It agrees with the limiting behaviors (51).
(2) It appears to be an upper bound for all d � 1.
(3) It becomes exact in the d → ∞ limit. This justifies

calling (52) a mean-field prediction.
(4) It is also exact for noninteracting random walks

(k = ∞).
The validity of the first property easily follows from

Eq. (52), and it is also seen (in the one-dimensional case)
from Fig. 6. The second property seems very plausible, but
has not been proved; it is supported by simulation results; see
Figs. 6 and 7. The validity of the third and fourth properties is
obvious.

Figures 6 and 7 indicate that the disagreement between
the actual behaviors and the mean-field predictions is most
pronounced in one dimension, so the mean-field estimate (52)
provides a good approximation in two and three dimensions.

Assuming that the mean-field estimate (52) provides qual-
itatively correct small and large ρ behaviors also in finite
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dimensions, we anticipate that

lim
ρ↓0

1 − Dk(ρ,d)

ρk
= Ak(d), lim

ρ↑k

Dk(ρ,d)

k − ρ
= Bk(d). (53)

Little is known about these amplitudes. For d = ∞,

Ak(∞) = 1

k!
, Bk(∞) = 1, (54)

because the mean-field prediction becomes exact when
d = ∞. Since the mean-field estimate (52) apparently
provides an upper bound, we expect that Ak(d) > 1

k!
and Bk(d) < 1.

VI. SUMMARY

We investigated generalized exclusion processes with sym-
metric nearest-neighbor hopping parametrized by an integer
k, the maximal occupancy. Specifically, we studied a class of
such processes interpolating between the symmetric exclusion
process (k = 1) and noninteracting random walkers (k = ∞).
For these lattice gases the hydrodynamic behavior is governed
by a diffusion equation. We computed the diffusion coefficient
Dk and showed that, for every k, it does not depend on the
spatial dimension, but it does depend on k. We showed that,
apart from the extreme cases of k = 1 and k = ∞, the diffusion
coefficient depends on the density.

We studied numerically the self-diffusion phenomenon for
the GEPs in one, two, and three dimensions. An interesting
challenge is to compute the self-diffusion coefficient for
the GEPs with k � 2 in one dimension. In two and higher
dimensions this problem seems intractable, even for the SEP
in two dimensions the coefficient of self-diffusion is unknown;
it has only been established that D1(ρ,d) is a smooth function
of the density [47]. In the one-dimensional setting, the tagged
particle in the case of the SEP undergoes an anomalously
slow subdiffusive behavior which is well understood, and even
large deviations of the displacement of the tagged particle

have been probed (see, e.g. [54,55] and references therein).
Therefore there is a hope that the self-diffusion phenomenon
in the one-dimensional GEP is also analytically tractable.

In addition to the diffusion coefficient, a second transport
coefficient, the mobility (or conductance) σ (ρ), plays an
important role in the macroscopic fluctuation theory [17]. The
knowledge of σ (ρ) is required if one wants to understand
fluctuations around the (deterministic) hydrodynamic behav-
iors, including large deviations. We leave the determination of
the mobility σ (ρ) for future studies of fluctuations and large
deviations in the GEPs.

In this article we considered only the GEP with symmetric
hopping. One would like to understand the asymmetric version
of the GEP. The problem is that in the driven case the
structure of the steady states is unknown: it is not a product
measure anymore, even on a ring [22]. One possibility is to
modify the rules of the GEP to make the structure of the
steady states more accessible. An interesting variant is to
employ a drop-push dynamics when a hopping attempt to a
fully occupied neighboring site is not rejected, but instead
the particle proceeds in the same direction and lands at the
closest site which is not fully occupied [24,25]; a similar
process was suggested, and studied for k = 1, in the context of
self-organized criticality [45]. For these GEPs with drop-push
dynamics the structure of the steady states is known in the
general case of asymmetric hopping [24,25]. The symmetric
version of the GEPs with drop-push dynamics also deserves
further analysis, e.g., one would like to compute the diffusion
coefficient for this class of lattice gases.
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