
PHYSICAL REVIEW E 90, 052105 (2014)

Testing whether all eigenstates obey the eigenstate thermalization hypothesis
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We ask whether the eigenstate thermalization hypothesis (ETH) is valid in a strong sense: in the limit of an
infinite system, every eigenstate is thermal. We examine expectation values of few-body operators in highly
excited many-body eigenstates and search for “outliers,” the eigenstates that deviate the most from ETH. We
use exact diagonalization of two one-dimensional nonintegrable models: a quantum Ising chain with transverse
and longitudinal fields, and hard-core bosons at half-filling with nearest- and next-nearest-neighbor hopping and
interaction. We show that even the most extreme outliers appear to obey ETH as the system size increases and
thus provide numerical evidences that support ETH in this strong sense. Finally, periodically driving the Ising
Hamiltonian, we show that the eigenstates of the corresponding Floquet operator obey ETH even more closely.
We attribute this better thermalization to removing the constraint of conservation of the total energy.
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I. INTRODUCTION

A cup of hot coffee and a glass of cold beer empirically
thermalize to room temperature if they are left out. This con-
ventional description of thermalization assumes an infinitely
large “reservoir” with which an initially out-of-equilibrium
system can exchange energy (and particles if allowed) to
achieve thermal equilibrium. However, this does not describe
thermalization of an isolated system. When a large isolated
system thermalizes, what happens is that small subsystems
thermalize, with the remainder of the full system serving as
the reservoir. The question of how this works for a quantum
many-body system undergoing linear unitary time evolution
has a long history (see, e.g., Refs. [1–3]) and has attracted
renewed attention due to experimental realizations of such
systems [4,5].

Even though unitary quantum time-evolution is reversible
and retains all information about the initial state, thermal-
ization can occur if one restricts observations to only few-
body operators and cannot access the full many-body density
operator. This occurs because all the information in the initial
state spreads over the entire system in the long-time limit, and
its reconstruction requires access to the full many-body density
operator.

The eigenstate thermalization hypothesis (ETH) has been
proposed as the underlying mechanism for thermalization
in isolated quantum systems based on random matrix [6]
and semiclassical [7] arguments. ETH states that within the
eigenstates of a nonintegrable (quantum chaotic) Hamiltonian,
few-body operators have thermal distributions in the thermo-
dynamic limit, i.e., the same probability distributions as the
Boltzmann-Gibbs ensemble at the corresponding temperature.

Numerical tests of the ETH have recently been performed
for a wide variety of nonintegrable models [8–17]. In every
case, good numerical evidence is provided that the deviation
of a typical eigenstate from thermal value decreases towards
zero as the size of the system is increased, as expected from
the ETH. However, most of these studies only test that almost
all energy eigenstates obey the ETH, while ETH is actually
expected to make the stronger claim that all eigenstates away
from the edges of the many-body spectrum are thermal in the

thermodynamic limit [18]. This difference is of fundamental
importance, because it is also the difference between almost all
initial states approaching thermal equilibrium, and all initial
states doing so. Some previous works have tested whether
all eigenstates obey ETH by analyzing the mismatch between
eigenstate expectation values and microcanonical ensemble
averages [10,12].

In this paper, we provide more numerical evidence that all
eigenstates obey ETH for two one-dimensional nonintegrable
models: an Ising chain with transverse and longitudinal fields
and hard-core bosons at half-filling with nearest- and next-
nearest-neighbor hopping and interaction. We also show that
driving the Ising chain periodically in time, which removes the
conservation of total energy, makes its eigenstates obey ETH
more closely for a given finite-size system.

One remark is in order. There are two notable exceptions
to ETH: integrable systems and many-body localized (MBL)
systems. An integrable system has an extensive number of local
conservation laws. Therefore, the conventional Gibbs ensem-
ble is not enough to fix the probability distributions of few-
body operators. It is conjectured that distributions of few-body
operators in integrable systems are given by the generalized
Gibbs ensemble (GGE) [19–22]; however, some recent papers
report insufficiencies of the GGE in certain cases [23–28].
Many-body localization happens when quenched disorder is
strong enough in an interacting system (see Refs. [29–31]
and references therein). In a MBL phase, individual many-
body eigenstates are localized and violate ETH [12], due to
localized conserved observables. Although integrable systems
and MBL systems are exciting and currently very active topics
of research, we restrict ourselves to disorder-free, robustly
nonintegrable systems throughout this paper.

The rest of this paper is organized as follows. In Sec. II, we
develop an ETH indicator to investigate the strong ETH and
describe the two models investigated in our study. In Sec. III,
using exact diagonalization, we conduct an “outlier” analysis.
The outlier states are the energy eigenstates that deviate the
most from the predictions of ETH. We show that even these
outlier states converge towards ETH behavior as we increase
the system size. We also investigate some properties such
as the momenta and the participation ratios of the “outlier”
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states. In Sec. IV, we periodically drive the Ising chain by two
sets of noncommuting operators in the Hamiltonian and study
the eigenstates of the corresponding Floquet operator, which
are thermal at infinite temperature [32–34]. Again doing an
outlier analysis, we show that the eigenstates of the Floquet
operator of a finite chain deviate from ETH significantly less
than do the eigenstates of the corresponding time-independent
Hamiltonian (and, of course, these deviations vanish in the
thermodynamic limit).

II. ETH INDICATOR AND MODELS

A. ETH indicator

Given a time-independent Hamiltonian H and an out-of-
equilibrium initial state ρ, we write the expectation value of a
few-body operator Ô at time t (the Planck constant � is set to
unity throughout this paper):

〈Ô(t)〉 = tr(e−iH tρeiHt Ô) =
∑

n,m

ρnmOmne
−i(En−Em)t , (1)

where ρnm and Omn are the matrix elements of the initial state
ρ and the operator Ô in the energy eigenbasis, and En is
the eigenenergy for eigenstate n. Assuming no degeneracies,
off-diagonal terms dephase in the long time limit, and Eq. (1)
approaches a stationary value in the thermodynamic limit for
a broad class of out-of-equilibrium initial states [35]. The
stationary value 〈Ô〉eq is the sum of diagonal elements and
thus time-independent:

〈Ô〉eq =
∑

n

ρnnOnn. (2)

Thus, at long time the system “equilibrates” but does not nec-
essarily thermalize. Examples of systems that can “equilibrate”
but not thermalize include many-body localized systems [31].

Being thermalized is a stronger statement, which means that
in the thermodynamic limit the equilibrium value is equal to
the average in the corresponding thermal ensemble. Assuming
that the energy is the only extensive conserved quantity, which
fixes the temperature (and its inverse β), thermalization means
the equilibrated value is equal to the thermal [canonical (C)
and microcanonical (MC)] value:

〈Ô〉eq = 〈Ô〉C = 〈Ô〉MC, (3)

〈Ô〉C = 1

Zβ

tr(e−βH Ô), (4)

〈Ô〉MC = 1

N
∑

|En−E|��

Onn, (5)

where total energy E and the inverse temperature β are related
by E = tr(Hρ) = (1/Zβ)tr(e−βH H ) and Zβ = tr(e−βH ). A
macroscopically small energy � sets the microcanonical
energy window, and N ≡ ∑

|En−E|�� 1 is the number of
eigenstates in the window. Equation (3), when true, implies that
any initial state with the same energy density should thermalize
the operator Ô to the same thermal equilibrium value.

Assuming that the above statement is true for all initial
states, we may consider an extreme situation: the initial
state is an energy eigenstate (ρ = |n〉〈n|), which is time-

independent, so it must be thermalized. Thus it follows that
in the thermodynamic limit the expectation value of every
few-body operator in every energy eigenstate is the thermal
value. This highly nontrivial statement is the essence of
ETH [6–8]. Sometimes this is called “strong ETH” (every
eigenstate), in contrast to “weak ETH” where some small
number of eigenstates are not thermal [36].

One necessary condition of ETH is that the diagonal ele-
ments, Onn, depend only on the eigenenergy [37]. Therefore,
after sorting the eigenstates by energy (En−1 < En < En+1),
we consider the following quantity:

rn = 〈n + 1|Ô|n + 1〉 − 〈n|Ô|n〉. (6)

If ETH is true, this quantity should be exponentially small
in the system size, because the energy difference between
adjacent eigenenergies is exponentially small. Since the typical
magnitude of rn depends on the density of states at energy En,
we consider only a “central” half of the eigenstates in the
spectrum of H , where the variation in the density of states
is small (see Appendix A). In Sec. III, we examine various
aspects of the parameter rn, its distribution, its largest absolute
values, and features of the corresponding “outlier” eigenstates.

B. Models

We consider two nonintegrable one-dimensional Hamilto-
nians:

Model 1. Ising chain with transverse (g) and longitudinal
(h) fields:

H =
L∑

i=1

(
gσx

i + hσ z
i + Jσ z

i σ z
i+1

)
, (7)

where σx
i and σ z

i are the Pauli matrices of the spin at site
i. We use periodic boundary conditions, so site L + 1 = 1.
For nonzero values of all the parameters (g, h, and J ), this
model is known to be nonintegrable; specifically we use the
parameters (g,h,J ) = (0.9045, 0.8090, 1), where this model
is robustly nonintegrable for the system sizes we can exactly
diagonalize [39].

As few-body operators, we look at the single-site operators
σx

i and σ z
i (the expectation value of σ

y

i is zero due to time-
reversal symmetry) and two two-site operators, σx

i σ x
i+1 and

σ
y

i σ
y

i+1 (the expectation value of σ z
i σ z

i+1 is fixed by those of the
single-site operators and the energy). We look at momentum
eigenstates, so the results do not depend on the site i and we
fix i = 1.

Model 2. One-dimensional hard-core bosons with nearest-
and next-nearest-neighbor hopping and interaction:

H =
L∑

i=1

[−t(b†i+1bi + b
†
i bi+1) + V nini+1]

+
L∑

i=1

[−t ′(b†i+2bi + b
†
i bi+2) + V ′nini+2], (8)

where bi (b†i ) is the annihilation (creation) operator of a
hard-core boson on site i with [bi,bj ] = [b†i ,b

†
j ] = [bi,b

†
j ] =

0 for i �= j and {bi,bi} = {b†i ,b†i } = 0 and {bi,b
†
i } = 1, and
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ni ≡ b
†
i bi the number of bosons at site i. The total number

of bosons N is conserved, and we focus on half-filling,
N/L = 1/2 (thus only even L). We impose periodic boundary
conditions: L + 1 = 1. We choose t = V = t ′ = V ′ = 1, for
which this model is known to be nonintegrable for the system
sizes accessible by exact diagonalization [40].

As few-body operators, we look at the three two-
site operators njnj+1, (b†j bj+1 + b

†
j+1bj )/2, and (b†j bj+1 −

b
†
j+1bj )/(2i), which form a basis of the observables acting

on two neighboring sites whose expectation values in si-
multaneous eigenstates of H and momentum are not simply
dictated by this system’s symmetries and conservation laws.
We only consider j = 1, since we look only at eigenstates of
momentum. For this model, the expectation values of all of the
one-site operators do not vary between these eigenstates and
thus are not of interest for this study of ETH.

We first write each Hamiltonian in block-diagonal form
in the momentum basis and diagonalize each momentum
sector. Then we collect results from all momenta and sort
the exact many-body eigenstates in ascending order of energy.
Although level statistics should be carried out within each
momentum sector, ETH should be valid regardless of discrete
symmetries [10]. Since the eigenstates with positive and
negative momenta map on to one another under time reversal,
we only diagonalize non-negative momenta 0 � k � L/2. A
state with momentum k has eigenvalue exp (i2πk/L) under
the operator that translates the system by one lattice spacing.
The lengths of the systems we diagonalize are L = 12 to 19
(18 for the Floquet operator) for Model 1, and even L from 14
to 22 for Model 2.

III. RESULTS

For the Ising model [Eq. (7)], we present results for the
operator σx

1 , unless otherwise specified. For the hard-core
boson model [Eq. (8)], we present results for the operator
n1n2, unless otherwise specified. The results of the other three
operators are qualitatively the same and given in Appendix B.

A. Distribution of |r|
Figure 1 shows the expectation values in each energy

eigenstate versus its energy density. It is clear that as we
increase the system size (approaching the thermodynamic
limit), these fluctuations reduce, and the expectation value
becomes a smooth function of energy density. This is in a
good agreement with ETH predictions. Note that Refs. [8,9]
show the fluctuations are not small in an integrable system.

Next, we compute the distribution of |r| (state index n is
omitted when the meaning is straightforward) and see how it
behaves as we increase the system size. Figure 2 is the plot of
the distributions of |r|. We see that the distribution becomes
sharply peaked at |r| = 0 for a larger system size, which is
consistent with ETH.

To quantify the fluctuations, we consider the average of
|rn| (the average of rn is basically zero). Note that rn is an
indicator of ETH without microcanonical averaging; thus it
can be considered as an extreme version of the indicator
introduced in Refs. [10,12,14] that is averaged over a small

FIG. 1. (Color online) Diagonal elements of a few-body operator
in energy eigenbasis vs energy density. The darker, the larger the
system size. (a) Ising Hamiltonian [Eq. (7)]. The operator is σ x

1 .
(b) Hard-core boson Hamiltonian [Eq. (8)]. The operator is n1n2 =
b
†
1b1b

†
2b2. For both cases, the fluctuations become smaller as the

system size increases.

energy window. As we can see in Fig. 3, the mean value of |r|
decreases exponentially with the system size (thus a power-law
decay with the Hilbert space dimension), in accordance with
ETH [41].

As long as the thermodynamic limit of the distribution P (r)
is the Dirac delta function δ(r), the conventional microcanon-
ical formulation of equilibrium statistical mechanics is valid,
since averaging a few-body operator over a microcanonical
ensemble, which still includes exponentially many states even
in a narrow energy window, should be equal to the canonical
ensemble average. Therefore, Fig. 2 provides numerical
evidence of the validity of equilibrium statistical mechanics for
these isolated quantum systems. This feature is also confirmed
by several previous works [8,10,14]. This implies that almost
all out-of-equilibrium initial states will eventually equilibrate
and thermalize in terms of the expectation values of few-body
operators. This is enough for all practical purposes, since it is
impossible to precisely manipulate highly excited many-body
states. Sometimes this is called “weak ETH.”

Here we ask whether there could be some small num-
ber of eigenstates with nonzero finite values of rn in the
thermodynamic limit. Such “outlier” states if sufficiently rare
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FIG. 2. (Color online) Distribution of |r|. (a) Ising Hamiltonian
[Eq. (7)] and (b) hard-core boson Hamiltonian [Eq. (8)]. As we
increase the system size, the distribution becomes sharply peaked near
|r| = 0. The distribution can be well fitted by a Gaussian distribution
(only positive argument) with a standard deviation σ decreasing
exponentially with the system size L.

would not contribute to the microcanonical ensemble average
and thus not compromise standard equilibrium statistical me-
chanics. However, ETH is stricter: every eigenstate is thermal.
This is sometimes referred as “strong ETH.” Strong ETH
requires that every rn approaches zero in the thermodynamic
limit.

B. Outliers of |r|
We introduce one way to numerically test the strong ETH:

the outliers. We define the outliers as the eigenstates that
deviate the most from ETH and thus give large values of |rn|.
Since each rn comes from two states, a large |rn| means either
one state is an outlier and the other one is “normal” or both
states are outliers of opposite signs. This also implies that the
indicator |rn| does not detect the special case where two outliers
of the same sign are consecutive in the energy spectrum,
resulting in a small |rn|. In such a case, however, both |rn−1| and
|rn+1| should be large so we can easily identify the outliers [42].
Usually, we find one outlier state next to many normal states.
Therefore, there are no difficulties in spotting these outlier
states. If the strong ETH is correct, even the largest value of
|rn| should decrease to zero in the thermodynamic limit.

Figure 3 shows the first, second, fourth, and eighth largest
values of |rn| and the mean value of |rn|. It is clear that the

FIG. 3. (Color online) From top to bottom in each figure: first,
second, fourth, and eighth largest value of |r| and the mean value 〈|r|〉.
(a) Ising Hamiltonian [Eq. (7)] and (b) hard-core boson [Eq. (8)]. The
mean value 〈|r|〉 decreases exponentially in L as ETH suggests [14].
The largest “outliers” also decrease, although slower than 〈|r|〉, with
the system size.

mean value 〈|r|〉 (averaged over half of the spectrum) decreases
exponentially with the system size. This shows that our
(isolated) quantum models agree well with the microcanonical
formulation of equilibrium statistical mechanics, as explained
earlier. The central feature of Fig. 3 is that even the largest
value of |r| decreases with the system size. Extrapolating this
tendency, we provide supporting evidence for the strong ETH,
that every eigenstate far away from the edge of the spectrum is
thermal as far as the expectation values of few-body operators
are concerned.

Now let us examine these outlier states. Table I is the
list of the first, second, fourth, and eighth outlier states and
their properties of four few-body operators for the Ising
Hamiltonian [Eq. (7)] with L = 18. We consider three features;
(1) the location of the outlier state in the list of the states
considered sorted by energy in ascending order (state no.),
(2) participation ratio (PR), (3) and momentum k.

The state number tells us where the outliers are located in
the spectrum. It shows that the outlier states may come from
any place in the spectrum, which implies that their presence
is not strongly sensitive to the small changes in the density of
states over the energy range we are studying. Another feature
is that different operators do share outlier states: States no.
70164 and 8033 are the two most extreme outlier states for all
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TABLE I. Ising Hamiltonian [Eq. (7)]. List of first, second,
fourth, and eighth outliers for four few-body operators and their state
number, participation ratio (PR), and the momentum of the state (k).
The state number is the location of the state in the list of the
analyzed states sorted by ascending order in energy. For L = 18,
total 72 821 states are considered.

k : 0–9
L = 18 State no. PR (×104) k

Ô = σ x
1

1st 70 164 0.907 9
2nd 8033 1.17 0
4th 48 351 1.37 9
8th 69 512 7.33 6
Ô = σ z

1

1st 8033 1.17 0
2nd 70 164 0.907 9
4th 52 061 1.72 9
8th 64 591 4.44 0
Ô = σ x

1 σ x
2

1st 8033 1.17 0
2nd 70 164 0.907 9
4th 48 351 1.37 9
8th 8014 2.89 4
Ô = σ

y

1 σ
y

2

1st 64 675 4.82 0
2nd 70 607 4.86 0
4th 72 440 4.73 0
8th 20 383 5.66 9

of σx
1 , σ z

1 and σx
1 σx

2 , but are not outlier states for σ
y

1 σ
y

2 . We
have checked the 30 most extreme outlier states for L = 18,
and it turns out that σx

1 , σ z
1 , σx

1 σx
2 share many outlier states,

while σ
y

1 σ
y

2 seldom has common outlier states with the other
operators.

The participation ratio (PR) quantifies how delocalized a
state is in a certain basis [43]. Here we write each eigenstate
in the σ z

i basis for the Ising model, and in the ni basis for the
boson model. Then, for a given eigenstate |n〉 = ∑D

s=1 c(n)
s |s〉

(D is the Hilbert space dimension, |s〉 are the basis states), PR is

PR = 1
∑D

s=1

∣∣c(n)
s

∣∣4 . (9)

When the state is completely delocalized, each |c(n)
s |2 = 1/D

and thus PR = D. If the state is totally localized on only one
basis state, then PR = 1. Thus the PR is a measure of how
many basis states the state is delocalized over.

There are two special momenta, k = 0 and k = L/2,
which preserve the system’s time-reversal symmetry (for odd
L, only k = 0 exists). These two momentum sectors have
an additional discrete symmetry, spatial inversion, and thus
each eigenstate in these sectors is either even or odd under
this symmetry. Consequently, this extra discrete symmetry
prevents these special momentum eigenstates from exploring
all basis states and results in a smaller PR than the states with
the other momenta. For L = 18, the average PR of the central
half spectrum with momenta k = 1–8 is 8.53 × 104 with
standard deviation 0.59 × 104, while the average PR of states

TABLE II. Boson Hamiltonian [Eq. (8)]. List of first, second,
fourth, and eighth outliers for three few-body operators and their state
number, participation ratio (PR), and the momentum of the state (k).
The state number is the location of the state in the list of the analyzed
states sorted by ascending order in energy. For L = 20, a total of
50 814 states are considered. The operator (b†

1b2 − b
†
2b1)/(2i) is odd

under time reversal thus has zero expectation value for k = 0 and 10
states, which are even under time reversal.

k : 0–10
L = 20 State no. PR (×104) k

Ô = b
†
1b1b

†
2b2

1st 48 359 5.29 0
2nd 50 735 5.49 0
4th 49 503 8.55 9
8th 48 585 7.90 3
Ô = (b†

1b2 + b
†
2b1)/2

1st 48 993 5.17 0
2nd 45 849 5.77 0
4th 47 993 5.60 0
8th 48 766 5.03 0
Ô = (b†

1b2 − b
†
2b1)/(2i)

1st 35 990 8.70 5
2nd 42 699 8.65 9
4th 34 191 8.39 3
8th 31 557 8.55 7

with momenta k = 0 and k = 9 is 5.55 × 104 with standard
deviation 0.45 × 104 [44]. Therefore, these special momentum
states are less ergodic and are good candidates for outliers. As
we can see in Table I, many (but not all) outliers do have small
PR compared to the average value of PR for their momenta,
which implies these states are less uniformly delocalized than
typical states. Also, outlier states tend to come from the special
time-reversal-symmetric momenta, as expected. Nevertheless,
Fig. 3 indicates that even these extreme outlier states seem
to obey ETH in the thermodynamic limit. The tendencies of
outlier states are similar for other L.

Table II is the list of outlier states and their PR and
momenta for the boson Hamiltonian [Eq. (8)] with L = 20.
The average PR for k = 0 and L/2 = 10 is 5.50 × 104 with
standard deviation 0.30 × 104, and the average for the other k

is 8.61 × 104 with standard deviation 0.27 × 104. Again, many
of the outlier states are from the special momenta (k = 0 and
L/2). But in contrast to the Ising model, the PR of extreme
outliers are not much lower than the averages. This indicates
that the PR need not be extreme in outlier states [45]. It
turns out that the lowest PR state for the boson Hamiltonian
(PR = 1.19 × 104 for L= 20) is not extreme in the |r| measure
for these few-body operators, while the lowest PR state in
the Ising Hamiltonian (state no. = 70 164 in Table I) is an
outlier in |r| for most of the few-body operators we examined.
Note that the local current operator (b†1b2 − b

†
2b1)/(2i) is odd

under time-reversal symmetry and thus has zero expectation
value for all states that are symmetric under time reversal.
Therefore, k = 0 and L/2 states cannot have outliers of
(b†1b2 − b

†
2b1)/(2i). Since these special momentum states are

not outliers for this operator, it has smaller value of extreme
|r| (see Appendix B for extreme values).
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In Fig. 3(a), there is an alternation between even and odd
L in outlier values of |r|. We attribute this to the number
of special momenta. Even chains have two special momenta
(k = 0 and L/2), while odd chains have only k = 0. As we see
from Table I, these special momentum states tend to have more
extreme outliers. Since even chains have more such states, it
is natural that they tend to have higher extreme values of |r|.
Nevertheless, once we decompose the data by the parity of L,
we see that the largest value of |r| decreases monotonically
with L for both even and odd L.

IV. ROLE OF ENERGY CONSERVATION IN ETH:
FLOQUET SYSTEM

Few-body conservation laws put constraints on a system’s
dynamics that can slow down or impede thermalization.
One example is integrable systems that have many such
conservation laws and thus do not fully thermalize [19,20]. Our
Ising model has only one few-body conservation law, which
is the energy (its Hamiltonian is a sum of one- and two-body
operators). Thus, we can ask what happens to thermalization
when we remove energy conservation, so that the system has
no few-body conserved quantity. (Note that these systems
always have all the many-body conserved operators that are
the projections on to the system’s eigenstates.)

One way to remove energy conservation but still have
eigenstates of the dynamics is to have a time-dependent
Hamiltonian H (t) that is periodic in time, so H (t) = H (t + τ ).
We can divide the Ising Hamiltonian [Eq. (7)] into two parts,
one with only σx operators (Hx = ∑

i gσ x
i ) and one with only

σ z operators (Hz = ∑
i hσ z

i + σ z
i σ z

i+1). During one period τ ,
we have H (t) = Hz for the first τ/2 and then H (t) = Hx for
the remaining τ/2. Then, the unitary Floquet operator that
takes the system through one period is

Û = exp(−iHxτ/2) exp(−iHzτ/2). (10)

The eigenvalues of Û are complex numbers of magni-
tude one. On the complex unit circle, the level spacing
statistics of the eigenvalues follow the “circular orthogonal
ensemble” [32]. References [33,34] report that when this sort
of many-body Floquet system thermalizes, it thermalizes a
generic initial state to the “infinite temperature” ensemble (all
states of each small subsystem equally probable). Therefore,
if the strong ETH is applicable to this Floquet system, every
eigenstate of Û should be thermal at infinite temperature.

Here we perform the same outlier analysis for eigenstates
of Û with the few-body operator σx

1 . Since the expectation
value of σx

1 at infinite temperature is zero, we need not
compare expectation values of adjacent states and instead
just evaluate the absolute value of the expectation value in
each eigenstate. Furthermore, since the eigenvalues are well
spread over the unit circle, we can use all eigenstates and need
not search for a region where the density of states is roughly
constant. We choose the period τ = 1.6 and use the same
parameters g,h,J as above.

Figure 4 shows the outliers and average value of the
magnitude of the eigenstate expectation value |〈σx

1 〉|. In
comparison with Fig. 3(a), we can clearly see that the value
of outliers and average value are smaller and approach ETH
predictions faster. Therefore, we conclude that the Floquet

FIG. 4. (Color online) From top to bottom: first, second, fourth,
and eighth outliers and the average of absolute value of eigenstate
expectation value for the Floquet operator Û . The few-body operator
is σ x

1 . The average value and the outlier values are substantially
smaller than those of the corresponding Hamiltonian. Therefore, the
Floquet system satisfies ETH more precisely for each system size L.

system, which has no local conservation law, thermalizes
“better” (by this measure) than the nonintegrable Hamiltonian
system with energy conservation.

V. CONCLUSION AND OUTLOOK

In this paper, we have done a stringent test of the
eigenstate thermalization hypothesis. We chose two popular
nonintegrable model Hamiltonians, well away from integrable
points in their parameter spaces, and thoroughly investigated
properties of eigenstate expectation values of several few-body
operators. First, we introduced an indicator that measures
deviation from ETH behavior, and showed that these deviations
decrease as we increase the system size. Therefore, we recover
some known results about ETH [8,14]. Then, we examined
the “outlier” eigenstates, which deviate the most from ETH
behavior. Even these extreme states (outliers) approach ETH
behavior as the system size is increased. Thus we provide
numerical evidence in support of ETH in its strong version:
ETH is true for all eigenstates. We analyzed the outlier states
and showed outliers have relatively small participation ratio,
which implies they are less delocalized in the many-body
Fock space than typical states. Finally, we deliberately broke
the energy conservation by making the Hamiltonian time-
dependent (Floquet system). We showed that the eigenstates
of the Floquet operator deviate from ETH behavior by less
than those of the corresponding time-independent Hamilto-
nian. Therefore, the Floquet system, which has no conserved
energy to transport, thermalizes better.

Many open questions still remain. First, we have only
considered certain one-site and two-site operators. One could
in principle search systematically over some complete set of
few-body operators to find the operators that produce the most
extreme outliers. We have not done this, so the possibility
remains that ETH might fail for the combination of special
eigenstates and special few-body operators, although we see
no reason to expect such a failure. Second, we only looked
at two models, and there might be some other nonintegrable
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models that would violate the strong ETH. We know that
strong ETH is false for integrable models, while it appears
to be true for the two strongly nonintegrable models we have
studied [47]. Naively, we would expect that ETH is restored
in the thermodynamic limit as soon as the integrability is
broken by some nonzero amount, but this remains an open
question [9,48]. We leave these interesting questions for future
investigation.
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APPENDIX A: DENSITY OF STATES AND
ETH INDICATOR

In Ref. [14], the authors report that the typical deviations of
eigenstate expectation values from their thermal values scale

FIG. 5. The many-body density of states over the energy ranges
we examine. (a) Ising chain [Eq. (7)] with L = 19. (b) Hard-core
bosons [Eq. (8)] with L = 22. For both Hamiltonians the ratio of
maximum to minimum density of states over our energy range is
∼1.20.

as D−1/2, where D is the dimension of the Hilbert space. For
the Hamiltonian systems with thermal eigenstates that are in
a certain sense microcanonical, D is proportional to eS(E) and
thus to the many-body density of states, where S(E) is the
thermodynamic entropy at energy E. Therefore, we expect
that typical values of our ETH indicator, |rn|, are inversely
proportional to the square root of the density of states. The
density of states does vary over the energy range we study,
and thus direct comparison of “bare” values of |rn| could be
dangerous, especially near the edge of the spectrum where the
variation in the density of states is the largest. This is why
we choose to only look at one half of the eigenstates, and
only those that are near the middle of the spectrum where the
density of states is nearly constant. The states we left out are
the lowest and highest 25% of the eigenstates for the Ising
model, while for the boson model, which has the maximum
in its density of states more substantially off center, we left
out the lowest 30% and the highest 20%. Figure 5 shows the
densities of states over the energy range we kept. It shows
that the variations in densities of states are small in this range;
the fractional difference between the largest and the smallest
is less than 20%. There is a small resulting tendency for the
outliers to be more likely where the density of states is lower,

FIG. 6. (Color online) The largest outlier values (black solid
lines) and the mean of |r| (red dotted lines) for other few-body
operators. (a) Ising chain [Eq. (7)]. Circles, squares, and diamonds
are results for σ z

1 , σ x
1 σ x

2 , and σ
y

1 σ
y

2 , respectively. (b) Hard-core bosons
[Eq. (8)]. Circles and squares are results for the real and imaginary
parts of b

†
1b2, respectively. For all cases, the largest outliers decrease

with the system size, thus again supporting the strong ETH.
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but because the density of states is nearly constant over the
range we examine, this is a small effect.

APPENDIX B: RESULTS OF OTHER OBSERVABLES

In the main text, we reported results for the local operators
σx

1 for the Ising model and b
†
1b1b

†
2b2 for the hard-core

boson model. Here we give outlier results for other few

body operators: σ z
1 , σx

1 σx
2 , and σ

y

1 σ
y

2 for the Ising model
and (b†1b2 + b

†
2b1)/2 = Re(b†1b2) and (b†1b2 − b

†
2b1)/(2i) =

Im(b†1b2) for the hard-core boson model. Figure 6 shows
the largest value of |r| (the extreme outlier) and the mean
value of |r| for each operator. It is clear that they have
the same qualitative feature, the decrease with increasing
system size of the value for the outliers. Therefore, all results
support the strong ETH.
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