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Quench echo and work statistics in integrable quantum field theories
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We propose a boundary thermodynamic Bethe ansatz calculation technique to obtain the Loschmidt echo and
the statistics of the work done when a global quantum quench is performed on an integrable quantum field theory.
We derive an analytic expression for the lowest edge of the probability density function and find that it exhibits
universal features, in the sense that its scaling form depends only on the statistics of excitations. We perform
numerical calculations on the sinh-Gordon model, a deformation of the free boson theory, and we obtain that by
turning on the interaction the density function develops fermionic properties. The calculations are facilitated by
a previously unnoticed property of the thermodynamic Bethe ansatz construction.
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I. INTRODUCTION

Understanding the statistical properties of quantum systems
out of equilibrium is one of the main challenges of modern
physics. Apart from numerous applications to a diversity of
physical problems (e.g., inflationary expansion of the early
universe in cosmology, large-scale quantum computation)
and experiments (e.g., heavy-ion collision, dynamics of cold
atomic gases), this branch of physics is inherently related to
a fundamental long-standing question: How and under what
conditions does a quantum system, that is initially prepared
in an out-of-equilibrium state and evolves under the quantum
mechanical law of unitary evolution, tend for long times to
equilibrium [1–3]? Is this equilibrium always thermal or of
some generalized type [4,5]? Experimental progress over the
last decade [6–9] followed by advances in the theoretical
treatment of out-of-equilibrium quantum physics has opened a
unique opportunity to tackle such questions. A special protocol
that has concentrated a great deal of attention on its relatively
simple theoretical treatment and experimental feasibility is the
quantum quench protocol [10–65]: an instantaneous change of
parameters of the Hamiltonian of a system so that it initially
lies in the ground state of the prequench Hamiltonian while it
evolves under the postquench Hamiltonian.

An important quantity in the study of quantum quench
problems is the following:

Z(z) = 〈�|e−Hz|�〉, (1)

where |�〉 is the initial state (or boundary-in-time state), i.e.,
the ground state of the prequench Hamiltonian, and H the
postquench Hamiltonian. For imaginary values z = it this
function gives the overlap between the initial and the evolved
state after time t , the Loschmidt amplitude, whose norm square
is the Loschmidt echo L(t) [66–70]. (In the more general case
when |�〉 is not an eigenstate of the prequench Hamiltonian,
the Loschmidt echo is modified by a nontrivial evolution
under the prequench Hamiltonian H0; see, e.g., Ref. [68].)
This overlap is essentially the characteristic function of the
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probability density function P (W ) of the statistics of the
work done [71–75] (differing in a constant factor and shift).
Knowledge of this distribution amounts to knowledge of all
probabilities to excite each postquench energy level, which is
all that is needed in order to calculate the long time averages
of observables [54] or their asymptotic values provided they
become stationary [44]. On the other hand, for positive real
values of z = R the above quantity is the partition function
of a system defined in a two-dimensional strip of width
R with boundary conditions |�〉 on both edges. Thus Z(z)
provides a direct manifestation of a useful mapping between
the out-of-equilibrium problem of a quantum quench and a
well-studied boundary problem [10,11,74].

Z(z) in the complex plane is also an interesting subject
of study. In lattice models in particular, since Z(z) is
an entire function [76], its zeros in the complex z plane
determine completely the nonanalytic part of the associated
free energy. It has been argued that, in the thermodynamic
limit, a concentration of zeros around particular points of
the imaginary axis (real t axis) is associated to nonanalytic
behavior in the free energy [77]. This has been demonstrated
for a quench across the critical point of the Ising model,
exploiting its mapping to free fermions [where, however, the
continuum limit tames the singularities of the free energy
corresponding to zeros of Z(z) into square root branch points].
It was proposed that such zeros (or branch points) of Z(z)
play a role analogous to that of Fisher zeros in ordinary
phase transitions [77]. This nonanalytic behavior was later
shown to be robust under the inclusion of nonintegrable
interactions, irrelevant or relevant in the RG sense, using the
tDMRG numerical method [78]. However, more recently it
was also shown that such nonanalyticities are caused more
generally by a crossing of eigenvalues in the spectrum of the
transfer matrix [79] and that they may not appear even if
a critical line is crossed, thus indicating that the presence
of zeros in Z(z) and nonanalyticities in the free energy
and L(t) are not a characteristic feature of dynamical phase
transitions [80]. Further progress in the analytical calculation
of the above quantity for integrable spin chains was made using
algebraic Bethe ansatz techniques [81,82]. If the analytical
continuation of the complex variable z = R + it from real to
imaginary values is not prevented by the presence of zeros
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(that correspond to logarithmic singularities of the associated
free energy), it is possible to calculate the work probability
distribution P (W ) from the boundary partition function Z(R).
In this way universal behavior associated with the critical
Casimir effect in the boundary formulation of the problem
can be connected to universal properties of P (W ) in the limit
of massless postquench Hamiltonian, in particular properties
of its lowest excitation threshold [73–75]. Study of the return
amplitude in a finite system described by a conformal field
theory reveals that in a certain time-to-system-size limit the
reduced density matrix of the system approaches exponentially
a thermal one, as well as the complicate structure of quantum
revivals [83]. The Loschmidt echo has been calculated in
the context of quantum quench and related problems in
several other studies relative to spin chains, conformal field
theories, and other models that are essentially equivalent to
noninteracting ones [84–98].

So far, to our knowledge, no analytical study of the
Loschmidt echo has been done in an integrable quantum field
theory (IQFT) that cannot be mapped into a noninteracting
model (apart from a proposed generalization of a calculation
based on conformal field theory for the case of a local quantum
quench problem [99]). For global quantum quenches in such a
general relativistic IQFT and under certain conditions for the
initial state, the function (1), viewed as the partition function
of the strip boundary problem for real values of z, can be
calculated using the so-called boundary thermodynamic Bethe
ansatz (BTBA) [100–102]. In the BTBA the boundaries are
represented by states that preserve the integrability of the bulk
of the system (boundary integrable states) and were shown to
be of the following form [103]:

exp

[∫ ∞

0

dθ

2π
K(θ )Z†(−θ )Z†(θ )

]
|0〉. (2)

The operators Z(θ ),Z†(θ ) are the Zamolodchikov-Faddeev
operators [104,105], strings of which acting on the vacuum
create asymptotic scattering states, that constitute an eigenstate
basis of the IQFT. K(θ ) in the boundary integrable problem
satisfies the so-called boundary cross-unitarity condition and
is related to the reflection matrix (θ is the rapidity variable,
a convenient reparametrization of the momentum of single-
particle excitations, i.e., its energy and momentum being
E = m cosh θ and p = m sinh θ , respectively). For simplicity,
in the above equation and in all that follows we restrict
ourselves to an IQFT with a single-particle species, as is
the sinh-Gordon (shG) model. The Dirichlet state, a typical
example of a boundary integrable state, defined as the state
annihilated by the physical field φ and thus having vanishing
field fluctuations, is of the above form with K(θ ) = KD(θ )
known exactly [106,107].

The initial state of a global quantum quench in IQFTs is
given, in certain important special cases, by this same boundary
integrable form (2). Such cases are those of free theories and
when the prequench mass tends to infinity. In the latter case the
field fluctuations vanish, and therefore the initial state is ex-
actly the Dirichlet state. This state requires careful ultraviolet
regularization, since otherwise it leads to divergent physical
observables. It has been recently argued [60] that for a quantum
quench in the shG model from a large but finite prequench mass

m0 and zero interaction to an arbitrary postquench mass m

and arbitrary interaction, one obtains as initial state a modified
Dirichlet state that is approximately given by the same form (2)
with amplitude K(θ ) = −KD(θ )KFB(θ ) where KFB(θ ) is the
amplitude that corresponds to a free bosonic quantum quench
of the mass from m0 to m. This state is free from ultraviolet
divergences and consistent with the requirements of a quantum
quench. In complete generality, the situation seems to be more
complicated [46]: the extensivity of the conserved charges in
the initial state introduces certain constraints for the amplitudes
of excitations contained in it, at least in the limit of a large
number of particles [54], but those constraints are more general
than the precise special form (2).

Considering all the above, in this work we propose a deriva-
tion of the Loschmidt amplitude and thus the work statistics
relative to a global quench in IQFTs by means of the boundary
TBA solved on the imaginary axis. Since the TBA is an integral
equation representation, we a priori expect that the analytical
continuation would give the correct Loschmidt echo. Indeed, a
similar approach has been successfully used before for the
calculation of excitation energies in IQFT [108–111]. We
perform this calculation in the sinh-Gordon model, arguably
the simplest relativistic IQFT with nontrivial S matrix. While
this serves as a demonstration of the approach, it also allows
us to see the effects of turning on the interaction on the
thermodynamics of a quench in a quantum field theory. On
the other hand, it can be considered as the first step for the
application to a quench in the sine-Gordon model, which can be
obtained by analytical continuation of the interaction coupling
parameter of the shG model from real to imaginary values.
A quantum quench in the sine-Gordon model can actually be
experimentally implemented, for example, in systems of split
one-dimensional Bose-Einstein quasicondensates that interact
through a longitudinal potential barrier that behaves like a
Josephson junction [112,113].

In what follows we expose general properties about the
statistics of the work done when performing a quantum
quench, then we introduce the thermodynamic Bethe ansatz,
followed by a discussion of its continuation to imaginary
temperatures, from both a theoretical and a numerical point
of view. Then we discuss results for the work statistics of
integrable field theories, in particular the sinh-Gordon model.
We find that the first peak in the probability density function
is not affected by the interaction, and we give it in an analytic
form. Then we discuss global mass quenches from large but
finite initial masses in the free bosonic, free fermionic, and
sinh-Gordon models. We determine that while the moments
of the distribution, in particular the mean, are only changed
slightly by turning on the interaction, the details are modified.
This can be seen on the first edge, which develops a fermionic,
positive edge singularity exponent opposed to the bosonic
negative one. The last section is reserved for conclusions.

II. FORMULATION

A. Work statistics of a quantum quench

Consider a closed quantum system in a d-dimensional box
of edge length L (d is the number of spatial dimensions) with
periodic boundary conditions, undergoing a quench from the
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Hamiltonian H0 to H . Before the quench the system lies in
the ground state |�〉 of the Hamiltonian H0. One can treat the
quench as a thermodynamic transformation and ask how much
work is done on the system. The performed work can be defined
by referring to two projective energy measurements before and
after the quench. Since the quench protocol is abrupt, the work
becomes stochastic with a probability distribution

P (W ) =
∑

all eigenstates |�〉
δ(W − E� + Egs,0)|〈�|�〉|2, (3)

where |�〉 is any eigenstate of the postquench Hamiltonian,
E� the corresponding energy eigenvalue, and Egs,0 the energy
of the prequench ground state |�〉. The characteristic function
G(t) of this probability distribution is the inverse Fourier
transform

G(t) =
∫ ∞

−∞
dW e−iWtP (W ), (4)

which, using the previous definition, can be readily shown to
be equal to

G(t) =
∑
|�〉

ei(Egs,0−E� )t |〈�|�〉|2

= eiEgs,0t 〈�|e−iH t |�〉. (5)

The last expression is the Loschmidt amplitude: the overlap
between the state e−iH t |�〉, which is the evolution of the
initial state under the postquench Hamiltonian H for time
t , and the state e−iH0t |�〉, which is its evolution under the
prequench Hamiltonian H0 for the same time t . On the other
hand, performing the Wick rotation t → −iR, the resulting
quantity is the moment generating function of the distribution
and can be identified with the partition function of the system
confined in a slab of width R with both boundary states
equal to |�〉. The latter has been extensively studied in the
context of the Casimir effect. The corresponding free energy
per volume f (R) ≡ − limL→∞ L−d log G(R) can be split into
the following three parts according to their behavior for large
R:

f (R) = fbR + 2fs + fC(R).

In the above fb and fs are the bulk and surface contributions,
while the remaining part fC(R) decays for large R. In the
original quantum quench problem, fb corresponds to the
difference in the ground state energies of the post- and
prequench Hamiltonians per volume, fb = (Egs − Egs,0)L−d ,
while fs is related to the squared norm of the so-called fidelity
|〈0|�〉| between these states, fs = −L−d log |〈0|�〉| where
|0〉 is the postquench ground state. In terms of the probability
density function P (W )fb corresponds to a shift and fs to the
normalization and the shape is determined only by fC .

The cumulants (equivalent to the moments) of the probabil-
ity distribution P (W ) are given by the logarithmic derivatives
of its characteristic function at t = 0:

κn = in
(

d

dt

)n

log G(t)

∣∣∣∣
t=0

.

Note that since log G(t) is extensive, all cumulants κn are
extensive too, which means in particular that increasing the
system size L, the relative variance of P (W ) tends to zero and

in the thermodynamic limit becomes a narrow bell-shaped
distribution characterized by its mean value and variance.
Note, however, that in finite volume a more careful analysis
predicts exponential corrections to the cumulants.

The qualitative behavior of P (W ) can be easily inferred by
considering the energy absorption that corresponds to any of
the possible transitions from the initial state to eigenstates of
the postquench Hamiltonian. The lowest energy absorption
corresponds to the transition from the initial state to the
postquench ground state |0〉, which therefore appears in P (W )
as a Dirac δ function peak at the value W = Egs − Egs,0 with
amplitude given by the squared norm of the fidelity |〈0|�〉|
between these states. From now on we will measure the work
from the position of this lowest Dirac δ function peak; i.e.,
we will subtract the ground state energy difference from the
work W . The next lowest energy absorption corresponds to the
transition to the lowest postquench excitation that is allowed.
For a massive postquench Hamiltonian, like the sinh-Gordon
Hamiltonian, the lowest excitations are separated from the
ground state by the energy gap m i.e., the mass of the lightest
quasiparticle excitations. However, since the initial state is
translationally invariant and due to the conservation of the
momentum, only transitions to excitations with zero total
momentum are allowed. Furthermore, assuming that both the
pre- and postquench Hamiltonians are invariant under parity
transformations of the fields (i.e., if the Hamiltonian H (φ)
is invariant under φ → −φ where φ are the fields describing
the system), as in our case, there can only be even-particle
excitations in the initial state. This means in particular that
there cannot be any single-particle excitation of momentum
zero which would correspond to a δ peak at W equal to the
particle mass. It is possible, however, to have bound-state
excitations consisting of even number of particles with zero
total momentum, if the postquench Hamiltonian contains such
excitations (like in the sine-Gordon model). Apart from such
possible δ peaks, the lowest allowed transitions correspond to
the creation of two quasiparticles with opposite momenta ±p,
p � 0. This means that P (W ) exhibits a lowest threshold at
2m above which there is a continuous absorption spectrum
corresponding to the continuous variable p. The shape of the
absorption spectrum above this lowest threshold depends on
the excitation amplitudes, the dimensionality d, and the nature
of the excitations (i.e., the statistics, bosonic or fermionic, and
the parameters of their dispersion relation). At the vicinity of
the threshold P (W ) exhibits an edge singularity, typically ap-
pearing as a sharp peak. Provided that the analytic continuation
R → it of the results for the Casimir free energy is valid, it can
be shown that the edge singularity exhibits universal behavior
controlled by the large R behavior of fC(R). In more detail,
just above the threshold the distribution exhibits a power-law
form with an exponent that depends only on the dimensionality
and the particle statistics. In one dimension the edge exponent
is −1/2 for bosons and +1/2 for fermions (for details, see
below). If the excitations are of bosonic nature, there are
additional edge-singularity peaks at positions determined by
the thresholds for multiparticle excitation transitions which
overlap with the previous continuous spectrum and with
each other. Obviously there exist peaks for all different types
of particle excitations present in the model, each with its
own mass. Furthermore, any bound-state excitations would
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T. PÁLMAI AND S. SOTIRIADIS PHYSICAL REVIEW E 90, 052102 (2014)

manifest themselves as Dirac δ function peaks at values equal
to their mass (and any integer multiple of the latter, if they
are of bosonic nature), while peaks at positions that are odd
multiples of the masses are also possible, if odd multiparticle
excitations are not excluded by parity symmetry.

In the present case of the sinh-Gordon model and for the
particular choice of initial state, the above general observa-
tions apply as follows. There are no bound-state excitations,
therefore there are no δ function peaks, other than the ground
state one at W = 0. There is only one type of excitations
with mass m, therefore we expect an edge singularity above
the lowest threshold at W = 2m. Furthermore, the initial
state consists of pairs of opposite momentum quasiparticle
excitations exclusively, so that there will be additional peaks
only at integer multiples of 2m. Due to the exponential
form, the multiparticle excitations are all controlled by the
single-pair excitation amplitude K(θ ).

B. (Boundary) thermodynamic Bethe ansatz

Having the definition of the pdf of the work (3) and the
known form of the prequench state in terms of postquench
states, i.e., a squeezed state (at least in the important special
cases considered in this paper) it seems that obtaining P (W )
is just a matter of performing a sum. However, we would like
to argue that it is in fact far from trivial to perform this sum. In
fact, in the thermodynamic limit the levels become continuous,
the sum turns into an integral, and a nontrivial density of
states needs to be taken into account in (3). Furthermore, the
squeezed state (2) is not given on a convenient, ordered basis
of states,

|θ1θ2 · · · θn〉, θ1 < θ2 < · · · < θn,

relative to the postquench Hamiltonian; therefore to use the
definition in addition to the density of states (for all number
of particles n possible) we would also need to solve a
combinatorial problem to recast the squeezed state in terms
of a postquench basis.

A convenient way to do these tasks is to perform a Fourier
transform and calculate the equivalent Loschmidt amplitude
G(t) (5) by analytically continuing the boundary partition
function in the slab geometry. This can be obtained in the
presence of bulk integrability, i.e., integrable postquench
dynamics, from the thermodynamic Bethe ansatz.

In the remainder of this section we briefly introduce the
thermodynamic Bethe ansatz in the presence of boundaries
and discuss possible issues when performing analytic contin-
uations.

1. Theoretical background

Consider a (1 + 1) dimensional quantum system on a finite
cylinder of length R and circumference L with given boundary
conditions |�〉 at the two ends. There are two equivalent
quantization schemes: in the first, time is chosen to run along
the axis of the cylinder (the so-called R channel), while in
the second the time direction is perpendicular to the axis
(L channel). The partition function in the two quantization

schemes reads

Z = 〈�|e−RH (L)|�〉 (6)

= Tre−LH��(R), (7)

in effect a projection of the bulk partition function on the state
|�〉. While in the R channel the boundary conditions can be
taken into account as initial and final states, in the L channel
one must impose instead a finite system size Hamiltonian
H��(R) that depends on the boundary conditions applied at
the edges.

Taking now the thermodynamic limit, L → ∞, we get

Z =
∑

i

|〈i|�〉|2e−REi (L) (8)

=
∑

j

e−LE��
j (R), (9)

where the first line does not simplify but the second has terms
exponentially more and more suppressed, and it is enough to
look at only the first one, i.e.,

Z ≡ e−Lf (R) ≈ e−LE��
0 (R), f (R) = fbR + 2fs + fC(R),

(10)
where E��

0 (R) is the ground state energy in finite volume
of a system with boundaries described efficiently by the
boundary states |�〉. We remark that the TBA (presented
below) yields only the contribution fC(R) (the bulk term is
absent by construction, it can, however, be extracted through
comparison with conformal perturbation theory [114], and the
surface term corresponds to the normalization of the boundary
state |�〉); however, this is enough since fC(R) is the only part
that determines the nontrivial shape of P (W ).

Now we focus on integrable models, in which the two-
body S matrix, in our case (theories with a single-particle
species) a single function S(θ ), characterizes all the dynamics;
i.e., the higher-body scattering events factorize into two-body
collisions. This can be formalized in terms of the Faddeev-
Zamolodchikov algebra,

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1), (11)

Z(θ1)Z†(θ2) = S(θ2 − θ1)Z(θ2)†Z(θ1) + 2πδ(θ1 − θ2), (12)

where the operators Z†(θ ) generate the space of asymptotic
states as

|θ1 · · · θn〉 = Z†(θ1) · · · Z†(θn)|0〉. (13)

In finite volume L, one is subject to the quantization
conditions, which can be written in a tractable form, the
Bethe-Yang equation,

eimL sinh θi

∏
j �=i

S(θi − θj ) = ±1, i = 1, . . . ,N, (14)

but only for integrable models. [Note, that in small volume
there are exponentially small corrections to these energy
levels. The sign corresponds to periodic and antiperiodic
boundary conditions, connected to the statistics of particles.
In an integrable theory the statistics is reflected in the sign
S(0) = ±1. The only known theory with the bosonic sign
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S(0) = +1 is that of free bosons.] This relation can then
be rewritten in terms of particle densities and used as a
constraint when performing a saddle point evaluation of the
partition function expressed as a functional integral over
different configurations. In the thermodynamic limit (L → ∞)
the saddle point dominates the functional integral and the
resulting expressions for thermodynamic quantities constitute
the thermodynamic Bethe ansatz (TBA). The saddle-point
solution is equivalent to a superposition state composed of
both few- and many-particle excitations, which can explicitly
be seen through a multiparticle expansion. Having in mind
that the few-particle terms will play an important role in the
followings it is important to consider these few-particle terms.
At first sight it might seem that the TBA will break down in
a limit where such terms dominate or equivalently that these
contributions should not be precise in the TBA framework
since for the TBA to work the particle density per unit volume
must be intensive in L, on the other hand to a few-particle state
a nonintensive particle density per unit volume corresponds.
However, we consider a linear combination of extensively
many two-, four-, etc., particle states instead of isolated ones,
and therefore the corresponding particle density is intensive
also in the few-particle limit.

In the presence of boundaries, integrability (in the L
channel) is only preserved if the boundary states respect the
very special form of [103]

|�〉 = g exp

[∫ ∞

0
K(θ )Z†(−θ )Z†(θ )

]
|0〉, (15)

and K(θ ) is the analytic continuation of the reflection factor R

that describes scattering on the boundary [K(θ ) = R(iπ/2 −
θ )]. Such boundary integrable states can be incorporated
into the TBA construction as a rapidity dependent chemical
potential to yield, for example [102],

fC(R) = ∓ m

4π

∫ ∞

−∞
cosh θH (θ,R) dθ, (16)

with

H (θ,R) = log[1 ± |K(θ )|2e−ε(θ,R)], (17)

and the pseudoenergy ε(θ,R) solves the nonlinear integral
equation

ε(θ,R) = 2mR cosh θ +
∫ ∞

−∞

(θ − θ ′)H (θ ′,R) dθ ′, (18)

where the logarithmic derivative of the scattering matrix was
introduced as


(θ ) = − 1

2πi

d

dθ
log S(θ ). (19)

As will become clear later, in terms of the corresponding
boundary problem, i.e., in the L channel, the initial/boundary
states relative to quenches cannot preserve integrability [which
would correspond to very restrictive choices of the amplitude
K(θ ), in particular one that means an infinite energy initial
state]; therefore it is essential to note, that K(θ ) is in fact
arbitrary as long as one’s interest is in the quantity (6) and is
content to remain in the R channel rather than the boundary
problem. This is clear from the derivation of the BTBA, which

proceeds in the R channel, and then integrability plays a role
only in the bulk [102].

2. Existence, uniqueness, and analytical properties
of the solutions

The BTBA equation is a nonlinear integral equation. On a
purely mathematical basis, it can be shown that for any R > 0
it possesses a unique real solution ε(θ,R) that is an analytic
function of θ in the neighborhood of the real θ axis [114].
For R > 0 the unique solution can be found using the iterative
method, which converges uniformly as a function of R, thus
ensuring that the solution is analytic also in R in sufficiently
small neighborhoods of any real positive value of R.

Here we want to analytically continue the BTBA into the
complex R plane to obtain the Loschmidt amplitude

G(t) = e−LfC (it) (20)

instead of the partition function. For complex values of R

nonanalyticities may occur. Using the fact that IQFT can
be derived from perturbations of CFTs and in addition the
truncation of the Hilbert space of these CFTs, it can be argued
that the possible nonanalyticities of ε(θ,R) as a function
of R are in general square-root branch points that appear
whenever two eigenvalues of the perturbing operator become
degenerate [114]. In the thermodynamic limit such square-root
branch points accumulate around the critical point of the theory
as explained in the Yang-Lee theory of phase transitions. It is
interesting to note, that in the corresponding lattice model the
branch points become singularities, giving rise to the Fisher
zeros of the partition function [114].

We point out that in the presence of boundaries the analytic
structure can and does change. In fact, for the sinh-Gordon
model there are branch points on the imaginary axis for the
TBA without boundaries, while when we used the boundary
state relative to a quench, we no longer found any branch
points. One can begin to understand this in terms of the
corresponding Fisher zeros of the lattice partition function:
if one does a quench originating from one phase and arriving
in a different phase, one may expect (not always) a dynamical
phase transition in the time evolution, which is governed by the
Fisher zeros [77]. With a reversed logic, when quenching inside
the same phase, as in our case, a dynamical phase transition is
not expected (although in some cases they were observed also
without crossing a phase transition line; see Refs. [79,80]);
thus neither are Fisher zeros, i.e., branch points.

Moving on now to the solution of the BTBA for complex
R, it is a priori obvious that in the left half-plane the BTBA
equations cannot be solved by means of the usual iterative
scheme with the free solution as initial step, since in this case
the integral equation would diverge. Therefore existence and
uniqueness of the solution is not guaranteed, at least not based
on the standard iterative approach. Luckily, this is not needed
for our purposes, since the analytical continuation is all done
inside the right half-plane. In the latter the iterative method is
valid and one only needs to track possible singularities that may
block the analytical continuation. Viewing these singularities
in the complex rapidity plane, where they appear as zeros of the
logarithm in (18), we see that when we vary the value of R, one
such singularity may approach the contour of integration from
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one side. Even when it crosses the real rapidity axis though, we
can deform the integration contour off the axis on the opposite
side, where the integrand is analytic, therefore keeping the
solution of the TBA equation analytic in R. If we insist writing
the TBA equation with the integration contour along the real
axis, we have to modify it by including the contribution of the
logarithmic singularity, in order to stay analytically connected
to the real-R TBA equation. If however, while varying R, a pair
of such singularities approach the integration contour at the
same point from both sides, such a contour deformation is not
possible and the TBA equation exhibits nonanalytic behavior
for that value of R. These are called pinching singularities.
This is a problem familiar from the study of the excited state
energies [108–110].

In the simple case of the sinh-Gordon with the quench
boundary state, such subtleties do not arise. Approaching
the imaginary axis is still nontrivial: even if the boundaries
regularize an iteration approach, one is still left with oscillating
integrals instead of exponentially decaying ones. This feature
poses a serious numerical bottleneck, especially for R with
larger absolute values. We are also interested in the work
statistics, therefore knowledge of the Loschmidt amplitude
on a large domain is necessary. In Sec. 3.2 we propose an
evaluation technique that we applied successfully to solve the
BTBA for R = it , with t being effectively arbitrarily large.

C. The initial state

In this section we discuss the role of the initial state in the
calculation of the work statistics in quantum quenches. We first
summarize results for free models, bosonic and fermionic, that
will help us better understand the results for integrable models
in general and the shG model in particular.

1. Free theories

For mass quenches the boundary state in both the bosonic
and fermionic theories can be written as

|�〉 = N exp

[∫ ∞

0

dp

2π
K(p)A†

−pA†
p

]
|0〉, (21)

where A
†
p is the free boson or fermion creation operator

in momentum representation. For free bosons the amplitude
KFB(p) is [46,75]

KFB(p) = −E0p − Ep

E0p + Ep

, (22)

where E0p =
√

p2 + m2
0 and Ep =

√
p2 + m2. Substituting

p = m sinh θ , the above equation can be written in terms of
rapidities as

KFB(θ ) = −
√

sinh2 θ + (m0/m)2 − cosh θ√
sinh2 θ + (m0/m)2 + cosh θ

(23)

= − sinh[θ − ϕ(θ )]

sinh[θ + ϕ(θ )]
, (24)

where

sinh ϕ(θ ) ≡ m

m0
sinh θ. (25)

For free (Majorana) fermions instead the boundary state
amplitude is [36,46]

KFF (p) = i

√
(E0p − p)(Ep + p) − √

(E0p + p)(Ep − p)√
(E0p + p)(Ep + p) + √

(E0p − p)(Ep − p)
,

(26)
or in terms of rapidities

KFF (θ ) = i
sinh

[
θ−ϕ(θ)

2

]
cosh

[
θ+ϕ(θ)

2

] . (27)

2. Initial state after a quantum quench in the shG model

The sinh-Gordon model is a simple model from the TBA
point of view; however, it contains genuine, strong interaction
and is an interesting testing ground for our ideas. The
Lagrangian reads

L = 1

4π
(∂νφ)2 + 2μ cosh(2bφ) (28)

and describes an integrable field theory with a single-particle
species with physical mass

m = 4

√
μ sin Bπ

1 − B
, B = b2

b2 + 1
(29)

and scattering amplitude and phase shift

S(θ ) = sinh θ − i sin πB

sinh θ + i sin πB
, (30)


(θ ) = − 1

π

sin(Bπ ) cosh θ

sin2(Bπ ) + sinh2 θ
. (31)

The Fourier transform of the phase shift reads


̃(t) = −cosh aπt
2

cosh πt
2

, a = 1 − 2B. (32)

Notice the weak-strong coupling duality B ↔ 1 − B.
In general, determining the initial state |�〉 after a quantum

quench in an IQFT, i.e., calculating the amplitudes of excita-
tions (in the postquench basis) contained in the initial state, is a
difficult problem. One has to extract this information from the
defining property of the initial state that it is annihilated by the
annihilation operators of the prequench Hamiltonian, whose
expression in terms of the postquench creation and annihilation
operators is generally unknown [46]. However, in the case
where the prequench Hamiltonian is noninteracting (g0 = 0)
the above requirement reduces to the simpler condition⎧⎨

⎩φ(p) + 1√
p2 + m2

0

[φ(p),H ]

⎫⎬
⎭ |�〉 = 0 (33)

valid for all momenta p = m sinh θ . In the latter, m0 is the
prequench mass and φ(p) the Fourier transform of the physical
field φ(x). If we formally expand |�〉 as

|�〉 = |vac〉 + K1(0)|0〉 +
∫ ∞

0
dθK2(θ )|−θ,θ〉

+
∞∑

n=3

∫
dθ1 · · · dθn Kn(θ1, . . . ,θn)|θ1, . . . ,θn〉 (34)
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(up to an overall normalization factor), then, applying suitable
test states on the left of the former equation, we can derive
equations that must be satisfied by the amplitudes Kn of the
excitations in |�〉 [60]. These equations are integral equations
consisting of an infinite series that involves amplitudes Kn

of all orders, as well as the form factors of the field φ.
Obviously it is impossible to solve these equations, unless
we have some good ansatz for the solution. Based on general
properties of the prequench ground state (translational and
parity invariance) it can be shown that all odd amplitudes K2n+1

vanish. Furthermore, as mentioned in the introduction, we
know that the solution in the limit of infinite m0 is the Dirichlet
state defined by φ|D〉 = 0 whose exact form is already known
by other means [103,106,107]: it is of the exponential form (2)
with amplitude KD(θ ) given by

KD(θ ) = i tanh(θ/2)

[
1 + cot(πB/4 − iθ/2)

1 − tan(πB/4 + iθ/2)

]
. (35)

It can be verified that the amplitudes of |D〉 satisfy the integral
equations as expected. However, this state exhibits ultraviolet
divergences in the calculation of observables, due to the
nondecaying behavior of KD(θ ) for large θ or, equivalently,
due to the fact that the natural ultraviolet bound of excitations
is of the order of m0, which is considered to be infinite.
In particular, in the calculation of the Loschmidt echo and
work statistics using the BTBA, a sufficiently fast ultraviolet
decay of the amplitude K is necessary in order to ensure the
convergence of the integrals in (16) and (18). Indeed, while
for real r the integrand decays exponentially even for K that
does not decay for large θ , for imaginary r instead it exhibits
oscillatory behavior unless K decays itself. Assuming a large
but not infinite m0 modifies the form of the state, and, from
the integral equations, it can be shown [60] that to a good
approximation the modified state can be described by the same
exponential form (2) with a new amplitude

K(θ ) = −KD(θ )KFB(θ ). (36)

Note that the large θ behavior of this amplitude is the same
as that of KFB i.e., it decays as e−2θ . This solves the problem
of ultraviolet divergences of the Dirichlet state. In our BTBA
calculations we will use exactly this choice of initial state. The
above arguments can be generalized to other relativistic IQFTs.

III. RESULTS

A. The edge singularity of the work statistics in IQFT

Before we proceed to the numerical analysis of the shG
model, we report a general exact result for the shape of the
lowest peak of the work probability distribution P (W ) in any
IQFT in large L: the part 2m < W < 4m (for a single-particle
theory) is entirely determined by K(θ ) since in this region
there can only be two particles in the system with opposite
momenta, which never scatter off each other thus the form of
the scattering matrix is irrelevant.

1. BTBA analysis

In this section using the BTBA we obtain P (W ) analytically
in the region 2m < W < 4m and provide a systematic method
to calculate it in terms of multiple integrals for W > 4m. This

calculation relies on that ultimately we only need the Fourier
transform of the solution of the BTBA with respect to t , and
that each step of an iterative solution provides exactly the
Fourier components in sequential frequency windows. This
property is true because of the gap in the excitation spectrum.
Solving the BTBA equation exactly in energy space, i.e.,
obtaining the Fourier transform of the solution with respect
to t , is also interesting on its own right, since incidentally
we can provide a systematic method to obtain the solution
of a nonlinear integral equation exactly, although in terms of
multiple integrals.

First of all it is useful to introduce the difference between
the pseudoenergy ε(θ,it) for the interacting and noninteracting
scenarios; i.e., we define

y(θ,t) = ε(θ,it) − 2imt cosh θ.

This function satisfies the nonlinear integral equation

y(θ,t) =
∫

dθ ′
(θ − θ ′)

× log[1 + |K(θ ′)|2e−2imt cosh θ ′
e−y(θ ′,t)] (37)

equivalent to (18). Now we expand the logarithm and the
exponential e−y to obtain

y(θ,t) =
∞∑

n=1

∞∑
�=0

(−n)�

n�!

∫
dθ ′
(θ − θ ′)|K(θ ′)|2n

× e−2inmt cosh θy(θ ′,t)�, (38)

and we begin an iteration y(n+1) = y(n+1)[y(n)] with initial
approximation y(0) ≡ 0.

Since cosh θ � 1 for all θ , if we look at the frequency com-
ponents of the solution, we see that they become successively
exact in the windows ω ∈ [2m,4m], [4m,6m], . . . after the
first, second, etc., iterations. Also, we see that the frequencies
ω < 2m do not contribute at all. We can formalize this by
considering a partition of the solution

y(θ,t) =
∞∑

n=1

yn(θ,t), (39)

so that the Fourier transform ȳn(θ,ω) of the term yn(θ,t) with
respect to t disappears in the window ω < 2nm and is nonzero
for ω > 2nm, i.e.,

ȳn(θ,ω) ∼ θ (ω − 2nm).

In Fig. 1 we show how the successive terms in the partition-
ing (39) become successively exact.

We write here the exact solution in the first two windows of
W , but in principle they can be generated in terms of multiple
integrals for arbitrary windows,

y1(θ,t) =
∫

dθ ′
(θ,θ ′)|K(θ ′)|2e−2imt cosh θ ′
(40)

y2(θ,t) = 1

2

∫
dθ ′
(θ,θ ′)|K(θ ′)|4e−4imt cosh θ ′

−
∫

dθ ′
(θ,θ ′)|K(θ ′)|2e−2imt cosh θ ′

×
∫

dθ ′′
(θ ′,θ ′′)|K(θ ′′)|2e−2imt cosh θ ′′
. (41)
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T. PÁLMAI AND S. SOTIRIADIS PHYSICAL REVIEW E 90, 052102 (2014)

1st y(1),1 y(1),2 y(1),3 y(1),4

2nd y(2),1 y(2),2 y(2),3 y(2),4

3rd y(3),1 y(3),2 y(3),3 y(3),4

4th y(4),1 y(4),2 y(4),3 y(4),4

FIG. 1. First four iterations of the solution of the BTBA equation
showing the terms in the partitioning (39) becoming successively
exact (highlighted). y(i),n(θ,t) is the nth term in the partitioning
after the ith iteration. The arrows show which terms in the iteration
influence which. The first term is already exact after the first step,
and the others become exact if all the terms influencing them have
already become exact by the previous step in the iteration.

With the solution of the BTBA at hand we calculate the
work pdf as

P (W ) = e−2fs

∫
dt

2π
eiWt−LfC (it) (42)

= e−2fs

[
δ(W ) − Lf̄C(W ) + L2

2
(f̄C ∗ f̄C)(W ) + · · ·

]
(43)

by expanding the exponential. Since the solution of the
BTBA admits the partitioning (39) both f̄C and P (W ) have a
corresponding form, i.e.,

f̄C(W ) =
∞∑

n=1

f̄C,n(W )θ (W − 2nm), (44)

P (W ) = e−2fs

[
δ(W ) +

∞∑
n=1

pn(W )θ (W − 2nm)

]
. (45)

In the latter we can identify that each term pn corresponds to
the production of 2n particles. In particular, the two-particle
production contribution reads

p1(W ) = mL

4π

∫
dθ cosh(θ )|K(θ )|2δ(W − 2m cosh θ ) (46)

and the four-particle

p2(W ) = (mL)2

2(4π )2

∫
dθ

∫
dθ ′ cosh(θ ) cosh(θ ′)

× |K(θ )|2|K(θ ′)|2

×
[

1 + 4πδ(θ − θ ′)
mL cosh θ ′ − 8π
(θ − θ ′)

mL cosh θ ′

]
× δ(W − 2m cosh θ − 2m cosh θ ′), (47)

where the first term comes from the self-convolution of the
lowest term in fC , while the second two originate from higher
corrections to fC , the final in particular coming from y1(θ,t).

2.0 2.5 3.0 3.5 4.0
W0.00

0.02
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0.08
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0.12

0.14
P W

B 0.50
B 0.20
B 0.10
B 0.02
B 0.00

4 2 0 2 4
θ0.0

0.2
0.4
0.6
0.8
1.0
K θ 2

FIG. 2. (Color online) Edge singularity and low energy behavior
of the probability distribution function calculated analytically for the
sinh-Gordon model with different interaction strengths at L = 5m−1

and corresponding to the initial/final mass ratio m0 = 10m. (Energy
is measured in units of the elementary mass m.) (Inset) Particular
forms of the function |K(θ )|2 describing the initial state.

We can see now, that although we obtained P (W ) analytically,
or at least we know how to obtain it for arbitrary W , a numerical
approach is still useful, since the actual evaluation of higher
terms becomes increasingly cumbersome.

Nevertheless, the interesting low-energy part of P (W ) can
be obtained extremely simply and analytically, the result reads

P (W < 4m) = e−2fs LW

8π
√

W 2 − 4m2
|K(arcosh W

2m
)|2. (48)

This means in particular, that the first edge is explicitly
independent of the S-matrix and the interaction plays a role
only through the expansion of the initial state in terms of
postquench degrees of freedom.

In Fig. 2 we show the resulting analytic plots of the first edge
in the sinh-Gordon model using various interaction strengths.
One can check, that the edge exponent becomes exactly +1/2
contrary to the free boson case, where it is −1/2. This is a
direct consequence of the behavior of |K(θ )|2 (also depicted)
near the origin: while in the free case it is a Gaussian and finite
at θ = 0, when the interaction is turned on it becomes zero for
θ = 0 forbidding the creation of identical particles.

2. Direct analysis via the Bethe-Yang equation

Before proceeding to the numerical calculation that is
capable to access the work pdf for arbitrary energy, we
demonstrate that the result (48) for the low-energy part
of P (W ) can be reproduced using its definition and the
Bethe-Yang equation. In fact, since the amplitudes |〈�|�〉|
are accessible by the form factor approach of Ref. [60] all
we need is the distribution of the postquench states, which
can be inferred from the Bethe-Yang equation. Moreover, the
form factor approach is capable to provide the amplitudes
Kn(θ1, . . . ,θn) also in the more general case of arbitrary initial
model parameters.
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We begin with the definition, which takes the form

P (W < 4m) = e−2fs

∑
θi

δ(W − Eθi
) |〈θi, − θi |�〉|2︸ ︷︷ ︸

|K2(θi )|2
. (49)

We used that states with energy smaller than 4m are all two-
particle states and that the initial state |�〉 is translationally
invariant. In finite volume the admissible set of θi is given by
solutions of the Bethe-Yang equation (14), in this case of the
form

m sinh θn − i

L
log S(2θn) = 2πn

L
, n ∈ Z. (50)

Since log S(2θ ) is bounded, in large volume the expression
simplifies to

m sinh θn = 2πn

L
, n ∈ Z, (51)

and the levels can be substituted with a continuous distribution
of states with density

ρ(θ ) = mL

2π
cosh θ, (52)

and the sum can be rewritten as an integral,

P (W < 4m) = e−2fs

∫ ∞

0
dθρ(θ )|K2(θ )|2δ(W − 2m cosh θ ),

(53)
giving rise to the same expression (48) with the two-particle
amplitude K2(θ ).

We stress here, that the formula (48) remains valid for
arbitrary initial mass and interaction strength, in which case
K2(θ ) does not follow the regularized Dirichlet form, but it
needs to be calculated by solving the integral equations of
Ref. [60]. We also note, that in general, (48) should remain
valid as long as the particle picture is valid, i.e., even in the
presence of a small integrability breaking perturbation as long
as the energy spectrum has the same structure, e.g., production
of new particles is not induced at these energies.

To proceed further in the pdf, to higher values of W > 4m,
such a simple analysis is no longer possible. Already for the
four-particle states there is a much more prominent influence
of the scattering matrix on the values of allowed rapidities in
the Bethe-Yang approach and inferring the density of states is
not trivial anymore. Therefore, it is indeed necessary to find an
alternative approach (here the BTBA) for the work pdf other
than direct evaluation of the definition.

B. Numerical results

1. Free theories

For free bosonic theories the statistics of the work done was
already studied earlier [75]. It is, however, useful to present the
results in terms of the TBA. The free (i.e., 
(θ ) = 0) BTBA
prescribes ε(θ,Rm) = 2mR cosh θ and

fC(R) = ± m

4π

∫ ∞

−∞
cosh θ

× log[1 ∓ |K(θ )|2e−2mR cosh θ ]dθ, (54)

where the upper and lower sign corresponds to bosons and
fermions, respectively, and account for S(0) = ±1. The only
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P W

0 2 4 6 8 10
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P W

FIG. 3. Probability density functions P (W ) at L = 5m−1 for the
free boson (dashed line) and free fermion (full line) theories for a mass
quench with m0 = 10m. The latter density function was multiplied
by a factor of 2 for better visibility. (Energy is measured in units of
the elementary mass m.) (Inset) Blow-up of the initial part of P (W ).

difference, apart from the signs, is in the form of the boundary
state describing the particular physical process, i.e., the
quench.

In Fig. 3 we show the work statistics for a mass quench
in the free theories. The two distributions are very different:
the tails of the distributions are decaying differently, and for
low energies the bosonic function contains a characteristic
sequence of edge singularities, which are absent from the
fermionic distribution. The differences can be understood by
studying the initial states. The corresponding K functions
are markedly different from each other: the fermionic is
zero at θ = 0, which signals the fermionic nature of the
scattering (multiple particle excitations of equal rapidities are
suppressed). It also has a different tail, namely, while K decays
as e−2θ for bosons, it only goes as e−θ for fermions. This causes
the distribution function to be more extended, having a more
slowly decaying tail. It is also easy to check that the edge
exponent is −1/2 for bosons and +1/2 for fermions. These
differences can all be seen in Fig. 3.

We note, that the evaluation of fC(R) for imaginary R is
not completely trivial as the integral is highly oscillatory. We
noticed, however, that the integration contour can be Wick
rotated. The most useful form is

fC(it) = ±2im

∫ 0

−∞

1 + iy√
2iy − y2

× log{1 ∓ |K[arcosh(1 + iy)]|2e−2imt(1+iy)}dy (55)

valid for t > 0. For t < 0 on can use the reflection principle
fC(−it) = fC(it)∗.

2. Numerical solution of BTBA

In our numerical calculations we use the important fact,
that the BTBA integral equation is a convolution equation in
the variable θ , therefore it is simpler and practically easier to
solve it in Fourier space. In Fourier space with respect to the
first variable θ the BTBA equation reads

ỹ(τ,t) = 
̃(τ )H̃ (τ,it). (56)
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We solve this by simply iterating the equation [as ỹ(n+1) =

̃H̃(n) with y(0) ≡ 0] until we arrive sufficiently near to a fixed
point in the function space (the target was to reach 1% change
in L1 norm). The iterative step is performed in Fourier space,
whereas for the determination of H̃(n) from ỹ(n) we have to go
back to the θ variable. Therefore we discretized the problem
and performed the Fourier transforms by FFT. The precision
of the solution can be checked by substituting the resulting
y(θ,R) function to the original integral equation. Precision is
controlled by the cutoffs in θ and τ spaces beyond all the
functions are supposed to be zero, the discretization steps, and
the tolerance target.

From the analysis of Sec. 3.1.1 we expect that for increasing
t less and less iterations are neccessary to obtain a precise
solution of the BTBA equation, which property we in fact
observed when doing the actual numerics. This is because the
large t behavior of y(θ,t) is controlled by the small ω behavior
of the Fourier transform with respect to t , ȳ(θ,ω), which we
shown to become exact after already one iteration [or for larger
ω (relevant for smaller t) a few, but finite iterations].

There is a problematic point that was already mentioned:
while for real temperatures the BTBA and the integral for the
ground state energy involve exponentially suppressed kernels,
for imaginary temperatures these turn into oscillating ones,
which, however, still get suppressed for large θ . When iterating
the BTBA in Fourier space this does not pose a serious
problem; however, when calculating the ground state energy
from the pseudoenergy it does. This probably stems from that
in the former case we have to Fourier transform a highly
oscillatory function, while in the latter we rather have to
Laplace transform it. To overcome this difficulty we analyzed
the BTBA and determined the following, previously seemingly
unnoticed property.

Consider a function f (θ ) and its Fourier transform f̃ (τ ),
so that

f̃ (τ ) =
∫ ∞

−∞
eiτθf (θ ) dθ, f (θ ) = 1

2π

∫ ∞

−∞
e−iτθ f̃ (τ ) dτ.

(57)
It is well known, but also easy to see from the definition
that exponential decay, i.e., f (θ ) = f1e

−b1θ + · · · as θ → ∞
corresponds to a pole of f̃ (τ ) located at τ = −ib1 with residue
2πf1, which is also the closest one to the real line. (Corrections
to the first term of the asymptotic formula correspond to
other poles, further away from the real line.) In our cases,
in particular,


(θ ) = 
1e
−θ + · · · , θ → ∞, (58)

H (θ,R) = H1(R)e−2θ + · · · , θ → ∞, (59)

where the latter comes from the asymptotics of the specific
form of K relative to quenches. Since ỹ = 
̃H̃ , the closest
pole of ỹ to the real line lies at τ = −i (determined by 
) and
thus

y(θ,t) = 
1e
−θ H̃ (−i,it) + · · · , θ → ∞, (60)

conversely

H̃ (−i,it) = lim
θ→∞

y(θ,t)


(θ )
. (61)

Now, using the definition of H̃ ,

H̃ (−i,it) =
∫ ∞

−∞
e−θH (θ,it) dθ =

∫ ∞

−∞
cosh θH (θ,it) dθ,

(62)
where the second equality if due to H (θ,it) being even in θ ,
we find that

fC(R) = − m

4π
lim

θ→∞
y(θ, − iR)


(θ )
. (63)

That is, we have now an evaluation protocol for fC(R)
by obtaining it directly from the asymptotics of y(θ, − iR)
without the need for a further integral transformation.

3. Loschmidt echo and work statistics in the shG model

We now focus on the specific case of a quantum quench
in the shG from zero initial coupling and large initial mass
to any coupling and mass, as introduced before. We perform
numerical calculations of the Loschmidt echo as a function of
time, the partition function Z(z) given by (1) in the complex
z plane, the pdf of the work done, and the dependence of the
mean work on the postquench coupling and mass.

To get the Loschmidt echo

L(t) = |G(t)|2 = e−L(f (it)+f (−it)) = e−2LRe f (it)

we continue analytically the partition function Z(z) from the
positive real line z ∈ R+, where the TBA equation is known
to yield a unique result, to the imaginary line z ∈ iR. As
we discussed before it is possible that for some lines in
the z-plane Z(z) develops a branch cut corresponding to
logarithmic divergences in the function H (θ,z). For some
values of t ∈ R we performed a numerical continuation of
fC(t) to fC(it) following lines z = teiφ along φ ∈ [0,π/2]
and looked at every step for the zeros of the argument of the
logarithmic term H (θ,z). We did not find any zeros crossing
the integration contour. Therefore we elected to simply solve
the original BTBA equation iteratively with initial condition
y(0)(θ, − iz) ≡ 0 for a dense grid in the upper right quarter of
the complex plane. Since the resulting function (depicted in
Fig. 4) is smooth and satisfies the Cauchy-Riemann equations
we concluded that it is in fact the analytic continuation of
fC(z ∈ R). By this argument we can be sure that in our case
the solution on the imaginary line obtained from the original
BTBA equation with initial condition y(0)(θ,t) ≡ 0 is the true
Loschmidt amplitude.

FIG. 4. (Color online) Real (a) and imaginary (b) parts of fC(z) in
the upper right quarter of the complex plane at the particular choices
of the parameters m0 = 10m, B = 0.5. The lower right quarter is
obtained by the reflection principle fC(z∗) = fC(z)∗.
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FIG. 5. (Color online) Loschmidt echo per unit volume l(t) =
L(t)1/L in the sinh-Gordon model after a quench from m0 = 10m to
m and B = 0, 0.2, 0.5. (Time is measured in units of the elementary
mass 1/m.)

The Loschmidt echo L(t) is depicted in Fig. 5 for different
postquench model parameters.

With an accurate Loschmidt amplitude calculated on a
domain of t ∈ [0,100] we are now in a position to proceed
to the calculation of the work pdf. Results for different
postquench parameters are shown in Fig. 6. We see, that
while the statistics as a whole departs only slightly from
the free boson result (see also Fig. 7, where the departure
of the mean work is depicted relative to the free result),
the details change qualitatively. The sequence of sharp edge
singularities with negative exponents at the openings of new
channels, characteristic to the free bosons, become edges with
positive exponents, and also less and less pronounced as the
interaction strength is increased. Near the first edge K(θ → 0)
matters the most, and we find a behavior more similar to
that of free fermions. The edge exponent becomes exactly
the fermionic value +1/2 instead of −1/2, characteristic of
free bosons. On the other hand, while for the free fermions
there is just one pronounced edge at 2m, consistent with the
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FIG. 6. (Color online) Probability density functions at L = 5m−1

and different interaction strengths with the same initial:final mass
ratio m0 = 10m. (Inset) Particular forms of the function −
(θ )
for these parameter settings. (Energy is measured in units of the
elementary mass m.)
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FIG. 7. Mean work as a function of the coupling constant
compared to the free boson result at different initial/final mass ratios.
Note that the volume cancels out from the ratio because of extensivity.

Pauli principle [115], for the sinh-Gordon bosons there are
still multiple peaks. In the low interaction strength limit, the
results tend to the free boson case, and in fact one can easily
see using limB→0 
(θ ) = −2πδ(θ ) in Eqs. (16), (17), and (18),
that fC(r) goes to the free boson result.

IV. CONCLUSIONS

In this paper we studied the statistics of the work done when
a quantum quench is performed on an integrable field theory
and the Loschmidt echo after the quench. Until now the work
statistics was obtained only for noninteracting models or those
that can be mapped to such. In the present paper one of our
main objectives was to see the effect of turning on a genuine
interaction.

Using the equivalence of the work probability density
function (pdf) and its characteristic function, the Loschmidt
amplitude, we proposed to find the pdf from the analytic
continuation of the partition function provided by the boundary
thermodynamic Bethe ansatz (BTBA). Our motivation was
given partially by recent advances on the expansion of the
initial quench state on the postquench basis, in particular that
for certain kinds of quenches the initial state is similar to
boundary integrable states, for which the BTBA can be used.

We proposed that because of integrability in these models
the initial part of the pdf is universal, in the sense that it
only depends on the initial state and not the particulars of the
scattering. That is, if two different systems are prepared in the
same initial state (in terms of asymptotic particles), the initial
part of the pdf of the required work is the same. For the case
of one particle species we gave a formula that gives the first
peak of the pdf analytically.

Then we proceeded to calculate the Loschmidt echo and
the whole pdf for a particular model. The difficulty of
such a calculation stems form the fact that an accurate
Loschmidt amplitude is needed on a large domain to obtain
the work pdf by a Fourier transform. We studied here the
sinh-Gordon model, differing from the free boson theory
in a nontrivial scattering phase only, arguably the simplest
case. So much so, that the continuation of the BTBA from
the real positive half-axis (where it provides the partition
function in finite volume and temperature) to the imaginary
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axis (providing the Loschmidt amplitude) is nontrivial only
because of numerical obstacles. Namely, the evaluation of
highly oscillatory integrals would be necessary. We proved
a property of the BTBA equation by which it is possible to
avoid such oscillatory integrals.

We obtained that by turning on the interaction the global
properties of the pdf depart only slightly from the free result;
however, the details change. In particular the sequence of sharp
edge singularities characteristic to free bosons turns into one
with less pronounced peaks positioned near the energies of

channels openings. The initial edge at the creation energy of
two particles develops a fermionic singularity exponent.
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Schollwöck, J. Eisert, and I. Bloch, Nature Phys. 8, 325 (2012).
[9] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[10] P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006).
[11] P. Calabrese and J. Cardy, J. Stat. Mech. (2007) P06008.
[12] M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
[13] A. Iucci and M. A. Cazalilla, Phys. Rev. A 80, 063619 (2009).
[14] A. Iucci and M. A. Cazalilla, New J. Phys. 12, 055019 (2010).
[15] M. A. Cazalilla, A. Iucci, and M.-C. Chung, Phys. Rev. E 85,

011133 (2012).
[16] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).
[17] M. Rigol, Phys. Rev. A 80, 053607 (2009).
[18] S. Sotiriadis, P. Calabrese, and J. Cardy, Europhys. Lett. 87,

20002 (2009).
[19] T. Barthel and U. Schollwock, Phys. Rev. Lett. 100, 100601

(2008).
[20] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys.

Rev. Lett. 100, 030602 (2008).
[21] M. Cramer and J. Eisert, New J. Phys. 12, 055020 (2010).
[22] G. Biroli, C. Kollath, and A. M. Läuchli, Phys. Rev. Lett. 105,
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