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Genetic variation in a population can sometimes arise so fast as to modify ecosystem dynamics. Such
phenomena have been observed in natural predator-prey systems and characterized in the laboratory as showing
unusual phase relationships in population dynamics, including a π phase shift between predator and prey
(evolutionary cycles) and even undetectable prey oscillations compared to those of the predator (cryptic
cycles). Here we present a generic individual-level stochastic model of interacting populations that includes
a subpopulation of low nutritional value to the predator. Using a master equation formalism and by mapping to a
coherent state path integral solved by a system-size expansion, we show that evolutionary and cryptic quasicycles
can emerge generically from the combination of intrinsic demographic fluctuations and clonal mutations alone,
without additional biological mechanisms.
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Predator-prey ecosystems exhibit noisy population oscil-
lations whose origin is intuitively quite clear. The predator
population number is activated by the prey and so increases.
This in turn inhibits the growth of the prey population, but
the decline of the prey leads to a corresponding decline in the
predator number too. As a result, the prey population begins to
rise and the cycle begins again. The simplicity of this narrative
belies the difficulty of making a quantitative model of ecosys-
tems. Strong demographic fluctuations degrade the utility of
population-level modeling, rendering it problematic to assess
the appropriate scales for ecological modeling [1–6] and even
influencing community assembly on evolutionary time scales
[7]. For example, observations of noisy periodicity in time
series [8], slowly decaying correlations [9], and spatiotemporal
patterns [10] clearly reflect the stochastic nature of populations
[11,12] and their spatial organization. Moreover, even the sim-
plest predator-prey systems exhibit complex spatial structure.
This can arise through a variety of pattern formation processes
[13–17] that include recent results on deterministic [18,19] and
fluctuation-induced Turing instabilities [10,20,21], traveling
waves [17,22,23], and even analogies to the processes of
phase separation in binary alloys [24]. In short, collective and
stochastic many-body phenomena are ubiquitous in biology
and perhaps nowhere more so than in ecology.

The classical literature on predator-prey systems [25]
assumes that evolution occurs on such long time scales that it
can be neglected, but it is not obvious that this is always valid
[26]. Recent work using rotifers (predator) and algae (prey)
in a chemostat shows that dramatic changes in the population
structure of the rotifer-algae predator-prey system can arise
from rapid responses to intense selection among induced
genetically distinct strains [27–34]. In these studies, so-called
sub-populations with different traits emerge from evolution
and lead to new trophic structures, accompanied by anomalous
ecological dynamics. These anomalies include evolutionary
cycles with long oscillation periods in population dynamics
and predator-prey phase shifts near π (and definitely distinct
from the canonical value of π/2), and cryptic cycles, in which
prey populations remain almost constant while the predator
population oscillates. Such phenomena have been modeled
with deterministic differential equations containing empirical

descriptions of functional response with a variety of detailed
hypotheses on the mechanism of species interactions for
rapid evolution [28–30,33,35–39] or nonheritable phenotypic
plasticity [40]. Such models are not only very complex,
with many adjustable parameters, but also cannot capture the
stochasticity evident in the observations.

The purpose of this Rapid Communication is to propose
and analyze a minimal model for rapid evolution that includes
the effects of demographic stochasticity. Using tools from
statistical mechanics, demographic stochasticity has been
successfully captured using individual-level models (ILMs)
in a variety of situations that range from simple well-mixed
predator-prey interactions [41–43] to spatially extended sys-
tems that can exhibit quasi-Turing patterns [20,21,23,44–46].
Here we propose an ILM for rapid evolution that we solve
analytically by mapping the model into a coherent-state
path-integral representation [47–51] (for a review and history,
see Ref. [52]) followed by a volume expansion [53] to derive
the effective Langevin equation for demographic fluctuations.
Accompanied by Gillespie simulation [54] for the model,
we show that this simple stochastic model can predict rapid
evolution phenomena in well-mixed systems, yielding phase
diagrams that are similar to those of more complex determin-
istic models and in qualitative agreement with available data.
Thus key aspects of rapid evolution can be minimally modeled
by subpopulation dynamics driven simply by intrinsic de-
mographic stochasticity, without additional biological mecha-
nisms. Our model can serve as a starting point for analyzing
spatial distributions and large fluctuations such as extinction.

The physical explanation for anomalous cycles was under-
stood early on [28]. In contrast to the π/2 phase shift of the
conventional predator-prey model, evolutionary cycles with a
π phase shift can arise because of the existence of a mutant
prey population that can defend itself from the predator but
which incurs a metabolic cost. The defended prey compete
with the wild type for nutrients and thus delay the regrowth of
the wild-type prey. The resulting additional phase lag of the
wild-type prey behind the defended prey is about π/2 because
the wild-type prey must grow back before the population of
the defended prey will return to its minimum level. When the
defended prey have very effective defense without significant
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metabolic cost, there is substantial delay of the regrowth of the
wild-type prey. If the wild-type prey lag the defended prey by
π , their fluctuations offset each other and thus the dynamics of
the total prey population appears in aggregate to be suppressed,
leading to the cryptic cycles.

An ILM for rapid evolution. To model this quantitatively,
consider a model for a system composed of nutrients for
the prey N , the vulnerable (wild-type) prey W , the so-called
defended (mutant) prey D, and the predator P . The basic
individual processes for them are regrowth of nutrients, repro-
duction of prey, predation by predator, death, and migration to
the nearest site for all individuals:

∅i
b−→ Ni, NiRi

cR
V−→ RiRi, RiPi

pR
V−→ PiPi,

Si

dS−→ ∅i , Si

νS−→
〈ij〉

Sj , (1)

where ∅i denotes the empty state at site i, R = W,D is the
prey index, Si represents species S = N,W,D,P at site i,
and V is an effective coarse-grained or correlation volume in
which there is no significant population spatial variation. In
ecology, V is called the patch size and it acts as a control
on the amplitude of demographic fluctuations. Because V

is larger than the mean volume per organism, we will make
analytical progress by using an expansion in inverse powers
of V . The defended prey experiences a smaller predation
rate than the wild-type prey, i.e., pD < pW , and also has a
smaller reproduction rate or larger degeneration rate due to the
metabolic cost for defense, i.e., cW > cD or dW < dD . For the
nutrients, νN and dN are set to zero. The corresponding master
equation that defines the time evolution of the probability
distribution of population states is
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, (2)

where {· · · } denotes the set over all sites and species, the prey
index R = W,D, and the step operators E±

Si
are defined as

E±
Si
f ({nSi

}) = f ({nSi
± 1}).

Spatial extension. To complete the specification of the
model, we need to include particle diffusion, for which the Doi
formalism [47] is especially convenient. The resulting spatially
extended model represents a nonperturbative formulation of
the model and can be used to study spatial patterns and
large demographic fluctuations that are important near the
ecosystem extinction transition, where the predator population
vanishes [23,55]. The procedure is to write Eq. (2) as a
second-quantized Hamiltonian and then express the generating
functional for probabilities and correlations as a path integral
[48,49,51,52].

Following the standard procedure, we introduce the prob-
ability state vector in the Fock space constructed by different

occupation number states

|ψ〉 =
∑
{nSi

}
P

({
nSi

})∣∣{nSi

}〉
(3)

so that the master equation becomes a Liouville equation

∂t |ψ〉 = −Ĥ |ψ〉, (4)

with the Liouvillian Ĥ = ∑
i Ĥi ,
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(5)

where â
†
Si

and âSi
are bosonic raising and lowering number

operators for species S at site i. Equations (4) and (5) are
exact and naturally allow the representation of the many-body
path-integral formalism. Using the standard mapping to the
coherent-state path-integral representation and applying the
volume expansion method, the effective Lagrangian density
for Gaussian-order fluctuations becomes

L(2) = ρ̃T ∂tξ − ρ̃T A[{φS}]ξ − 1
2 ρ̃T B[{φS}]ξ , (6)

where ξ = (ξN,ξW ,ξD,ξP ) and ρ̃ = (ρ̃N ,ρ̃W ,ρ̃D,ρ̃P ) are the
fluctuation field vectors and A and B are functions of the
mean-field densities {φS} given in Ref. [56]. Equation (6) is
equivalent to the Langevin equations as a function of wave
number k and time:

dξ

dt
= Aξ + γ ,

〈γS(k,t)γS ′(k′,t ′)〉 = BSS ′ (2π )dδ(k − k′)δ(t − t ′). (7)

In contrast to deterministic models [27–38,40], the dynamics
depends not only on the Jacobian A[{φS}] from the mean-field
equation but also on the covariance matrix B[{φS}]. Since
BRR′ [{φS}] in Eq. (7) is governed by the macroscopic densities,
the white noise γ that determines the dynamics of fluctuations
is effectively multiplicative. Without the white noise γ , the
solutions for ξ in the Langevin equations in Eq. (7) contributed
by the linear terms are expected to decay exponentially
and converge to mean-field densities {φS}. However, the
multiplicative white noise plays an important role: Whenever
it can cancel out the contribution of the eigenvalues of A, ξ

will be persistently driven away from convergent mean-field
densities, i.e., white noise can select the frequency in the
deterministic equations, resulting in periodic and strongly
fluctuating population dynamics and spatial patterns. This
is a resonant effect induced by demographic stochasticity
through shot noise [41] with the resonant frequency near
the slowest decaying mode in the mean-field solutions.
Since the systems in the rotifer-algae experiments are well
mixed, the diffusion terms are neglected in the following
calculation and simulation.
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Power spectrum, phase relationship, and phase diagram.
The power spectrum of demographic noise has a resonant
frequency corresponding to the deterministic eigenvalue. The
power spectrum of species S, PSS(ω), can be calculated by
taking the Fourier transform of the Langevin equations (7),

PSS ′ (ω) = 〈ξ̃S(ω) ˜ξS ′(−ω)〉, (8)

and setting S ′ = S. The Fourier transform gives the autocor-
relation function, which has the form of a polynomial of
degree 6 divided by a polynomial of degree 8, yielding a
power-law tail proportional to ω−2 at large ω, as expected
for quasicycles in other systems [20,42]. The power spectrum
PSS(ω) peaks at a resonant frequency that is smaller than the
oscillation frequency of the deterministic solution because of
the renormalization by the white noise in Eq. (7) [46]. The
longer period reflects the presence of the defended prey that
causes the delay of the regrowth of the wild-type prey and the
predator. The phase difference between the fluctuation fields
is defined as

θSS ′ (ω) = tan−1 Im[PSS ′ (ω)]

Re[PSS ′ (ω)]
. (9)

The phase difference between total prey and the predator
θ(W+D)P can be calculated from P(W+D)P (ω) = 〈( ˜ξW (ω) +
˜ξD(ω))ξ̃P (−ω)〉 = PWP (ω) + PDP (ω).

The results of analytic calculations and simulations based
on Eq. (1) are shown in Fig. 1. We use the Gillespie algorithm
[54] for stochastic simulations and introduce random mutation
from the wild-type prey to the defended prey. The mutation is
added purely to seed a new subpopulation to see the dramatic
impact of the fixed subpopulation after mutations, but plays no
significant role in the subsequent dynamics; thus mutations are
neglected in our analytical calculations below. The subsequent
anomalous dynamics due to the presence of this subpopulation
is conventionally called evolution in the ecological literature,
because the presence of the additional strain emerges from
mutation, and we are interested in following the frequency in
the population of the mutant strain. We tried to simulate the
experimental results of the rotifer-algae chemostat, where the
control parameters are the nutrient concentration in flow media
φmax

N and the dilution rate b. The natural degradation rates of
the wild-type prey and predator are assumed to be much slower
than the dilution rate and therefore b ≈ dP ≈ dW < dD (the
defended prey is less healthy). In Fig. 1(a), at first there are
only the wild-type prey and the predator in the system and
the dynamics exhibits normal cycles where the predator lags
behind the prey by π/2. When predation pressure is high,
around t ∼ 400, a mutation has given rise to a defended
prey population that subsequently adapts to dominate the
population and causes additional delay in growth of the
wild-type prey and the predator, leading to evolutionary cycles
with a π phase shift between the total prey and the predator.
Figure 1(b) shows an example of cryptic cycles, where the
defended prey has a similar reproduction rate as that of the
wild-type prey, i.e., cD ∼ cW , and the defended prey can
advance the wild-type prey by nearly π and thus the total
prey population is suppressed. The quasicycle calculations in
Figs. 1(f)–1(h) for the power spectrum and the phase spectrum
well predict the simulation results in Figs. 1(c)–1(e). Besides
the expected randomness in the dynamics from the stochastic
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FIG. 1. (Color online) Stochastic simulations for (a) evolutionary
cycles emerging from normal cycles due to random mutation and
(b) cryptic cycles. Phase portraits of the steady states of (c) normal
cycles and (d) evolutionary cycles from the stochastic simulations
show that the phase differences between predator and the total prey
population are roughly π/2 and π , respectively, while for (e) cryptic
cycles there is no obvious phase relationship. (f)–(h) Power spectrum
of the wild-type prey (thick curve) and phase difference spectrum
(thin curve) from analytic calculations based on ILMs. The estimated
phase differences are −0.55π and 0.905π for (f) normal cycles
and (g) evolutionary cycles and for (h) cryptic cycles the predicted
phase difference between the wild-type prey and the defended prey
is approximately 0.874π . The parameter values are (a) V = 1000,
cW = 0.3, pW = 0.6, cD/cW = 0.8, pD/pW = 0.01, dD/dW = 1,
φN,max = 1, and b = 0.1 and (b) V = 380, cW = 60, pW = 0.92,
cD/cW = 0.95, pD/pW = 0.001, dD/dW = 7.5, φN,max = 16, and
b = 0.1.

simulation, Figs. 1(a) and 1(b) also show similar asymmetric
profiles and the longer period after the subpopulation emerges,
as in the experimental data in [27–32,34].

The phase diagram is usually studied by linear stability
analysis of the mean-field equations [see, for example,
Eqs. (7)–(9) in Ref. [56]]. To reduce the dimension of
parameter space, variables are rescaled to be dimensionless:
t̄ ≡ bt , d̄S ≡ dS/b, φ̄S ≡ /φmax

N , c̄S ≡ cSφ
max
N /b, and p̄S ≡

pSφ
max
N /b. However, this rescaling is rather subtle in stochastic

calculations. For example, matrices A and B from Eq. (7) scale
with 1/φmax

N as mean fields φS , but γ in Eq. (7) rescales with
1/

√
φmax

N , resulting in

ξS

φS

∼ 1√
φmax

N

ξ̄S

φ̄S

, (10)

where ξ̄S are the rescaled demographic noise fields. Therefore,
for two stochastic individual-level models with the same
mean-field limit after rescaling, demographic fluctuations are
more important in the model with smaller nutrient carry-
ing capacity V φmax

N . Thus neglecting fluctuations as in the
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FIG. 2. (Color online) Phase diagrams for evolutionary cycles
(EC) and cryptic cycles (CC) calculated from ILMs with respect
to the ratio of the prey reproduction rate cD/cW , the ratio of the
predation rate pD/pW , the maximum nutrient concentration φmax

N , and
the dilution rate b. The gradient-colorful region corresponds to the
coexistence of all species and in the other regions the rapid evolution
is not stable, with corresponding letters indicating the coexistence of
only certain species. The coexistence states are decided by the mean-
field densities and their ratio to the fluctuations; when fluctuations
are larger than mean-field solutions, the dynamics is under high
risk of extinction. The color legend represents the predicted phase
difference between the wild-type prey and the defended prey θWD

for rapid evolution, in units of π . The contours are the estimated
amplitude ratios of wild-type prey to predator, indicating the tendency
to be cryptic cycles. In the gray region near transition, the two
types of prey start to decouple, leading to degenerate peaks in power
spectra, and thus the phase is not well defined. Except for the axis
specified in each diagram, the parameters in the calculations are V =
300, cW = 1, pW = 1, cD/cW = 0.8, pD/pW = 0.01, dD/dW = 3.5,
φmax

N = 16, and b = 0.6. The predicted phase diagram is consistent
with stochastic simulation.

conventional rescaling for mean-field equations can potentially
cause unphysical predictions for the phase diagram. To
avoid this situation, we examine the stability of solutions
by comparing the amplitude of the lowest-order population
fluctuations with their mean fields.

Figure 2 shows the calculated phase diagrams of ILMs
in Eq. (1). In Fig. 2(a), due to the cost for defense, the
defended prey have an inferior reproduction rate (cD < cW )
or are unhealthier than the wild-type prey (dD > dW ), leading
to evolutionary cycles. When the cost of reproduction is low,
cryptic cycles can occur, where θWD ≈ π . If cD is moderate,
it is possible to have a correspondingly high death rate and

thus the fluctuations of prey are suppressed relative to the
wild-type prey, causing the dynamics to be cryptic. In Fig. 2(b),
under high φmax

N , the defended prey are more likely to grow
and dominate the system, which causes the wild-type prey to
experience a greater phase lag than the defended prey, and
the dynamics tends towards a completely cryptic cycle. In
Fig. 2(c), if pD is low, then higher cD can lead to more phase
delay and thus gives cryptic cycles. When pD increases, the
predator has greater food resources available from the de-
fended prey, yielding a larger population, which then consumes
more of the wild-type prey; this in turn reduces the wild-type
prey population and leads to the dominance of the defended
prey. In such a situation, the wild-type prey experiences a
greater phase delay (nearly π ) behind the defended prey,
but the wild-type prey population is too small to cancel out
the fluctuations of the defended prey population and thus
the dynamics cannot be characterized as cryptic. Our result
in Fig. 2(c) predicts a phase diagram that is similar to but
slightly different from that of Fig. 3 in [29]; the region where
all species coexist as predicted by the stochastic model is
smaller than the deterministic solutions because of extinction
fluctuations near phase boundaries. In Fig. 2(d), under small
b, i.e., slow supplement of the nutrient and low reduction rate
from dilution, although both subpopulations of the prey have
low reproduction, the wild-type prey population decreases
more due to predation while the defended prey has a greater
chance to compete for nutrients; thus the system is more likely
to show cryptic cycles.

Our results show that rapid evolution strongly renormalizes
the ecosystem time scale and the prediction of the coexistence
region can help estimate the risk of extinction and the impact
of the rate of environmental changes (for example, the dilution
rate and nutrient concentration in the rotifer-algae system). Our
model can also be used to study spatial-extended situations in
natural ecosystems or laboratory experiments that are not in a
well-mixed chemostat.

In summary, we have shown clearly that a generic stochastic
individual-level model can yield rapid evolution phenomena
and that anomalous dynamics can arise without special
assumptions or fine-tuning, in sharp contrast to existing
results in the ecology literature based on deterministic models.
We expect this description to be especially useful to study
the transition to rapid evolution from normal cycles since
before the transition the mutant prey population has low
relative abundance and is thus likely to exhibit strong effects
of demographic stochasticity and spatiotemporal fluctuations.

We thank S.P. Ellner and U. Täuber for helpful dis-
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