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Phase transitions in the condition-number distribution of Gaussian random matrices
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We study the statistics of the condition number κ = λmax/λmin (the ratio between largest and smallest squared
singular values) of N × M Gaussian random matrices. Using a Coulomb fluid technique, we derive analytically
and for large N the cumulative P(κ < x) and tail-cumulative P(κ > x) distributions of κ . We find that these
distributions decay as P(κ < x) ≈ exp[−βN2�−(x)] and P(κ > x) ≈ exp[−βN�+(x)], where β is the Dyson
index of the ensemble. The left and right rate functions �±(x) are independent of β and calculated exactly for any
choice of the rectangularity parameter α = M/N − 1 > 0. Interestingly, they show a weak nonanalytic behavior
at their minimum 〈κ〉 (corresponding to the average condition number), a direct consequence of a phase transition
in the associated Coulomb fluid problem. Matching the behavior of the rate functions around 〈κ〉, we determine
exactly the scale of typical fluctuations ∼O(N−2/3) and the tails of the limiting distribution of κ . The analytical
results are in excellent agreement with numerical simulations.
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Introduction. A classical task in numerical analysis is to
find the solution x of a linear system Ax = y, where in the
simplest setting A is a square N × N matrix and y is a given
column vector. The solution can be formally written as x =
A−1y provided A is invertible. A very important issue for
numerical stability is how a small change in the entries of y or
of A affects the solution x?

The system of equations above is said to be well (ill)
conditioned if a small change in the coefficient matrix A or
in the right-hand side y results in a small (large) change in
the solution vector x. An ill-conditioned system produces a
solution that cannot be trusted, as numerical inaccuracies in
the inputs are amplified and propagated to the output [1].

A standard indicator of the reliability of numerical solutions
is the condition number (CN) κ = λmax/λmin � 1, where λmin

and λmax are the smallest and largest squared singular values
of A, i.e., the positive eigenvalues of AAT (the square root√

κ of the CN is alternatively used frequently). The quantity
lnb κ is essentially a worst-case estimate of how many base-b
digits are lost in solving numerically that linear system, which
is singular if κ is infinite, ill conditioned if κ is too large, and
well conditioned if κ is close to its minimum value 1.

Computing κ for a large coefficient matrix A in a fast and
efficient way, however, can be as difficult a task as solving the
original system in the first place [2]. To overcome this problem,
Goldstine and von Neumann [3,4] proposed instead to study
the generic features of κ associated with a random matrix A

with normally distributed elements [5]. What is the typical
(expected) CN for a system of size N? What is a sensible
estimate for the size of its fluctuations?

Apart from the various applications that the condition
number has in numerical analysis [6], modern applications
of a random condition number of more general (rectangular)
matrices N × M include wireless communication systems

*On leave from Laboratoire de Physique Théorique et Modèles
Statistiques, UMR No. 8626 associée au CNRS, Université Paris–
Sud, Bâtiment 100, 91405 Orsay Cedex, France.

[7–11], spectrum sensing algorithms [12–14], convergence
rate of iterative schemes [15], compressed sensing [16],
finance [17], meteorology [18], and performance assessment of
principal component analysis [19] among others. The statistics
of

√
κ was first computed by Edelman [20] for 2 × M random

Gaussian matrices, as well as the limiting distribution of
√

κ/N

for large N × N matrices. The rectangular case was recently
considered in [21]. Different bounds for the tails were given
in [22–24]. Exact formulas for the distribution of κ for finite
N and M also exist in terms of cumbersome series of zonal
polynomials [25,26] or an integral of a determinant [27], whose
evaluation becomes impractical even for moderate matrix
sizes. Approximate results for correlated noncentral Gaussian
matrices can be found, e.g., in [28]. Other definitions for the
CN also exist [5,29].

Unfortunately, almost nothing is known about the most
dreaded (or welcomed) scenarios for applications, namely,
the occurrence of atypical instances [30–33], where the CN
is much larger (or smaller) than its expected value. In this
Rapid Communication, by suitably adapting the Coulomb
fluid method of statistical mechanics, we provide an analytical
solution to this outstanding problem for large rectangular
instances. We show that the large deviation statistics of the
CN of Gaussian matrices, expressed in terms of elementary
functions, has a rich and elegant structure. As a bonus, we also
derive the scale of typical fluctuation of the CN around 〈κ〉
and the tails of its limiting distribution. Let us first summarize
our setting and main results.

Summary of results. We consider rectangular N × M

(M > N ) matrices A with Gaussian distributed entries (real,
complex, or quaternions, labeled by the Dyson index β =
1,2,4, respectively, or actually for general β > 0 as discussed
in [34]). Forming the corresponding N × N covariance matrix
W = AAT ,1 which defines the Wishart ensemble [35], we
define its rectangularity parameter α = M/N − 1 > 0 and the

1Here T stands for the transpose (β = 1), the Hermitian conjugate
(β = 2), and the symplectic conjugate (β = 4).
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FIG. 1. (Color online) Plot of − lnP(κ < x) [dashed green line,
Eq. (1)] and − lnP(κ > x) [solid red line, Eq. (2)], together with
numerical simulations for the left and right branches [47]. The two
rate functions βN2�−(x) and βN�+(x) freeze to the zero value
upon crossing 〈κ〉. The insets describe the corresponding phases of
the Coulomb fluid [active vs inactive barriers for �−(x) and the
pulling of individual extreme charges for �+(x)]. The Monte Carlo
simulations have been performed with N = 150 for the left branch
and N = 70 for the right one (for which we have used the method
introduced in [46]). The value of M has been chosen in each case
so that α = 3. After the branches had been obtained numerically, an
arbitrary value of N was chosen to produce a reasonable looking plot
in which the two branches are visible.

CN κ = λmax/λmin > 1. Here λmax and λmin are the largest
and smallest eigenvalues of W . We consider the cumulative
P(κ < x) and tail-cumulative (also known as exceedance or
survival function) P(κ > x) distributions of κ , when N and M

are large and α is kept finite. Using a Coulomb fluid technique,
we find that for large N both distributions obey large deviation
laws, namely, they decay for large N as2

P(κ < x) ≈ exp[−βN2�−(x)], (1)

P(κ > x) ≈ exp[−βN�+(x)]. (2)

The left and right rate functions �±(x) (depending paramet-
rically on α, but not on β) are given in (11) and (13) and
plotted in Fig. 1. Both functions are supported on x ∈ (1,∞)
and have a minimum (zero) at 〈κ〉 = [(1 + √

1 + α)/(1 −√
1 + α)]2 > 1. Therefore, the corresponding density of κ

is peaked around 〈κ〉, which is precisely its mean value for
large N .3 Crossing 〈κ〉, both functions freeze to the zero value
and around 〈κ〉 they have an interesting nonanalytic behavior,
characterized by a third-order [for �−(x)] (see [36] for a
recent review) and second-order [for �+(x)] discontinuity.
Both these nonanalytic behaviors and the different scaling
with N between (1) and (2) are direct consequences of phase
transitions in an associated Coulomb fluid problem. The
physics of the two branches, however, is entirely different,

2Here ≈ stands for the logarithmic equivalence limN→∞ − lnP(κ <

x)/βN2 = �−(x) and similarly for the tail-cumulative branch.
3The typical value 〈κ〉 for large N is just the ratio of the average

〈λmax〉 = (1 + √
1 + α)2 and the average 〈λmin〉 = (1 − √

1 + α)2.

as it is customary in this type of problems [36] (see below for
details). Matching the behavior of the rate functions around
〈κ〉, we also determine exactly the size [∼O(N−2/3)] of typical
fluctuations of κ and the tails of its limiting distribution. We
now begin by recalling some well-known facts about Wishart
matrices.

Generalities. The probability density of the Wishart ensem-
ble is given by

Pβ (W ) ∝ e−trW/2(det W )(β/2)(αN+1)−1 , (3)

where β = 1,2,4 is the Dyson index of the ensemble. A
remarkable classical result is that the joint probability density
(JPD) of the N (real and positive) eigenvalues can be written
explicitly [by a formal diagonalization of Eq. (3)] and is given
by [37,38]

Pβ(λ) = 1

Z0
exp

(
−1

2

N∑
i=1

λi

) N∏
i=1

λ
(β/2)(αN+1)−1
i

×
∏
i<j

|λi − λj |β, (4)

where Z0 is a normalization constant. Note that this JPD is
for the ordered eigenvalues and so it is normalized in the
Weyl chamber 0 < λ1 < λ2 < · · · < ∞. Balancing the first
and third terms in (4), it is quite easy to estimate that the
typical scale of an eigenvalue is ∼O(N ). Thus, after rescaling
λi → βNλi , the JPD (4) can be rewritten in the form Pβ(λ) ∝
exp(−βN2E[{λ}]), where the O(1) energy is

E[{λ}] = 1

2N

N∑
j=1

λj − α

2N

N∑
j=1

ln λj

− 1

2N2

∑
j �=k

ln |λj − λk|. (5)

Written in this form, the JPD (4) is the Gibbs-Boltzmann
canonical weight of a two-dimensional fluid of charged
particles, confined on the semi-infinite (positive) line and
in equilibrium at inverse temperature β under competing
interactions: the external linear-logarithmic potential in (5)
drives the charges towards its minimum, while the third term
(representing an all-to-all repulsive interaction of the Coulomb
type in two dimensions) spreads them apart. This thermody-
namical analogy, originally pioneered by Dyson [39], has been
employed in several different contexts [36,40–46].

The average spectral density of the Wishart model ρ(λ) =
N−1 ∑N

i=1〈δ(λ − λi)〉 [where 〈· · · 〉 denotes averaging with
respect to the JPD (4)] is expected for large N to have
the scaling form ρ(λ) = N−1ρMP(λ/N ), where the function
ρMP(x) = 1

2πx

√
(x − z−)(z+ − x) is the celebrated Marčenko-

Pastur (MP) law on the compact support (for α > 0) x ∈
[z−,z+] with z± = (1 ± √

α + 1)2. This MP law is a particular
case of the general solution (10) of the integral equation (9)
below (see Fig. 2, top) when the two barriers L and U are
ineffective (L � z− and U � z+). We start now by considering
the cumulative distribution of the CN first and get to the
tail-cumulative afterward.

Cumulative distribution. The cumulative distribution
P(κ < x) of the CN κ (depending parametrically on β and
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FIG. 2. (Color online) Shown on the top are the four phases of the
fluid: region I, the two barriers compress effectively the fluid; region
II, MP law, where the barriers do not affect the fluid; and regions III
and IV, only the lower or the upper barrier is active, respectively (this
scenario is not realized in our CN setting). The analytical expressions
in regions III and IV were first derived in [42,44], respectively. Shown
on the bottom are the regions in the (L,U ) plane where the density
equation (10) has different shapes, according to the top panels, for
α = 3. We plot level curves of the action (8) S[ρ
,C; L,U ] (I) and
energy difference �e(L,U ) (see in [47]) (IV). On the dashed green
and solid red extremal lines, the action and the energy difference are
minimal, respectively. The abscissas ξ
 (solution of the saddle-point
equations in the two cases) are given by the intersection of the straight
line U = xL (solid black, with the left arrow pointing in the direction
of increasing slope x) with such extremal lines. In addition, the solid
orange line corresponds to the condition x−(L,U ) = L along which
the lower barrier is ineffective (and the upper is effective), while
the solid blue line corresponds to the condition x+(L,U ) = U along
which the upper barrier is ineffective (and the lower is effective).

α = M/N − 1 > 0) can be written as [27,47]

P(κ<x)= 1

(N − 1)!

∫ ∞

0
dλ1

⎡
⎣∫

· · ·
∫ xλ1

λ1

N∏
j=2

dλjPβ(λ)

⎤
⎦ .

(6)

The goal is to evaluate this multiple integral for large N by the
Coulomb fluid method. The first step is to rewrite the JPD (4) in
the Gibbs-Boltzmann form described above. Here N − 1 fluid
particles are, however, not free to spread on the whole positive

line, but instead constrained to exist within the box [λ1,xλ1],
where λ1 is the (free) position of the leftmost particle.

The second step consists of a coarse-graining procedure,
where one introduces a normalized density of particles
ρ(λ) = (N − 1)−1 ∑N

i=2 δ(λ − λi) for the N − 1 particles
λi (i �= 1) existing inside the box. Using the replacement
rule

∑
i>1 g(λi) = (N − 1)

∫
dλ ρ(λ)g(λ), we can convert the

energy function E[{λ}] into a continuous action S (depending
on ρ and parametrically on the location of the leftmost particle
λ1 and x). The multiple integration (6) is therefore interpreted
as the canonical partition function of the associated Coulomb
fluid, where the sum over all microscopic configurations of
{λ} compatible with the normalized density ρ amounts to a
functional integration over ρ and a standard integration over
λ1. Eventually, these resulting integrals are evaluated using the
saddle-point method. Performing these steps, we get

P(κ < x) ∝
∫ ∞

0
dξ

∫
D[ρ,C]e−βN2S[ρ,C;ξ,xξ ], (7)

where we renamed λ1 → ξ for later convenience and the action
of this fluid (confined between the lower L and upper U

barriers of the box) is

S[ρ,C; L,U ] =
∫ U

L

dλ ρ(λ)V (λ) + C

− 1

2

∫∫ U

L

dλ dλ′ρ(λ)ρ(λ′) ln |λ − λ′|. (8)

Here V (λ) = (λ − α ln λ)/2 − C and C is a Lagrange mul-
tiplier enforcing normalization of ρ. Equation (8) is easily
identified as the continuous version of the energy equation (5),
where we have neglected subleading O(N ) contributions [47].
The action for a Coulomb fluid constrained between two
barriers in the presence of a quadratic confining potential
instead was first derived in [40].

Evaluating the functional integral in (7) by the saddle-point
method δS

δρ
|ρ=ρ
 = 0, we get the saddle-point equation

V (λ) =
∫ U

L

dλ′ρ
(λ′) ln |λ − λ′|, (9)

where the solution ρ
(λ) is just the equilibrium density of
the Coulomb fluid constrained to exist within the box [L,U ].
Clearly, if we release the barriers L and U we expect to recover
the unconstrained MP law ρ
(λ) → ρMP(λ).

Solving this integral equation for a normalized ρ
 between
two barriers at L and U is one of the main technical challenges
that we managed to overcome. Skipping details [47], we find
that the general solution of (9) is [48]

ρ
(λ) = [x+(L,U ) − λ][λ − x−(L,U )]

2πλ
√

(U − λ)(λ − L)
1[L,U ](λ), (10)

where x+(L,U ) � U > L � x−(L,U ), x±(L,U ) are the roots
of x2 − x(L+U

2 + α + 2) + α
√

LU = 0, and 1[a,b](x) is the
indicator function, that is, 1[a,b](x) = 1 if x ∈ [a,b] and 0
otherwise.

What does this density look like for given values of L and
U? Four different shapes (phases of the fluid) are possible [47]
for α > 0, which are plotted in Fig. 2 (top). For example,
setting (L,U ) = (z−,z+), the corresponding density (10) is
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the MP law ρ
(x) = ρMP(x) (phase II). This critical MP point,
which is marked in Fig. 2 (bottom), separates region II, where
the barriers are ineffective (L < z− and U > z+) and the
equilibrium density is again just ρMP(x), from region I (where
the barriers are instead effective in compressing the MP sea).

Once we have evaluated the functional integral by
the saddle-point method [which implies inserting the den-
sity (10) in the action (8)] we set L = ξ and U = xξ

and evaluate the remaining ξ integral again by the saddle-
point method. This yields an optimal value ξ
 as the
solution of d

dξ
S[ρ
,C; ξ,xξ ]|ξ=ξ
 = 0. This value ξ
(x) is

marked in Fig. 2 (bottom) as the intersection between
the straight line U = xL of varying slope x > 1 and the
dashed green line on which the action S[ρ
,C; L,U ] is
minimal.

The final result reads P(κ < x) ≈ e−βN2�−(x), where the
O(N2) decay is traced back to the high-energy cost in com-
pressing the whole sea of strongly correlated particles. Here
�−(x) = S[ρ
,C; ξ
,xξ
] − S[ρMP,C; z−,z+], where the sec-
ond term comes from the normalization factor and needs to be
subtracted. We eventually obtain

�−(x) = 1
8

[
f

(α)
1 (1 + √

x) + ln f
(α)
2 (1 + √

x)
]
1(1,〈κ〉)(x),

(11)

where f
(α)
1,2 (ω) are elementary functions listed in [47]. The

rate function �−(x) thus freezes to the value 0 as x increases
up to the critical value 〈κ〉 [implying ξ
(〈κ〉) → z−]. Beyond
this limit, the barriers are no longer effective and new physical
insights are needed to tackle the tail-cumulative regime
(see the next section). The limits are �−(x → 〈κ〉−) ∼
K(α)(〈κ〉 − x)3 and �−(x → 1+) ∼ (−1/2) ln(x − 1), where
K(α) = −(−1 + √

1 + α)8/[96
√

1 + α(1 + √
1 + α)4]. This

implies a third-order discontinuity across 〈κ〉 as anticipated.
Also, close to 1, the density of κ has the power-law tail
P(κ = 1 + ε) ∼ εβN2/2 to leading order in N for ε → 0+.
Although formally valid only for α > 0, it turns out that in the
limit α → 0 (square Gaussian matrices, where the scaling with
N is different) the rate function (11) is still well behaved and
we recover Edelman’s result [20] to leading order in N [47]. We
now turn to the tail-cumulative distribution (the right branch
in Fig. 1).

Tail-cumulative distribution. Contrary to the previous case,
the tail-cumulative distribution P(κ > x) does not admit a
multiple-integral representation of the type (6), which could
be mapped to the physics of a fluid trapped between two
hard barriers. The starting point of the calculation is again
the energy function (5) though. The Coulomb fluid physics
suggests that atypically large values of the CN κ = λmax/λmin

are obtained when the rightmost and leftmost particles are
pulled away from the MP sea in opposite directions [λmax −
λmin ∼ O(N )], a procedure that is energetically not able to
generate macroscopic rearrangements within the MP sea.
This elegant energetic argument was first introduced in [43].
Following this physical picture, the right rate function �+(x)
is determined by the O(N ) energy cost �E(L,U ) in pinning
the leftmost and rightmost charges at L and U , well outside the
unperturbed MP sea in between (see the red inset in Fig. 1).
The level curves of the O(1), �e(L,U ) := �E(L,U )/βN , are
depicted in region II of Fig. 2, together with the extremal line

(solid red line) where it attains its minimum value. Setting now
L = ξ and U = ξx, the energetically most favored position
ξ
 for the leftmost outlier will be determined again by the
intersection point of that extremal line and the straight line
U = xL.

Skipping details [47], this change in energy can be written
for large N as

�e(ξ,ξx) = (ξ − z−) + (ξx − z+)

2
− α

2
ln

ξ 2x

z−z+

−
∫ z+

z−
dη ρMP(η) ln

∣∣∣∣ (ξ − η)(η − ξx)

(z− − η)(η − z+)

∣∣∣∣ . (12)

The probability of this pinned configuration of eigenvalues
(yielding a CN κ exactly equal to x) is proportional to
exp[−βN�e(ξ,ξx)]. Finding the optimal position ξ
 for
the leftmost particle by minimizing (12) with respect to ξ ,
we eventually obtain P(κ > x) ≈ exp[−βN�+(x)], where
�+(x) = �e[ξ
(x),ξ 
(x)x] is given by4

�+(x) = ln{[g(α)(x)]α/2[h(α)(x)]2(2+α)}1(〈κ〉,∞)(x). (13)

The functions g(α)(x) and h(α)(x) have lengthy but explicit
expressions in terms of elementary functions [47]. The
rate function �+(x) again freezes to the value 0 as
x decreases down to the critical value 〈κ〉 [implying
ξ
(〈κ〉) → z−], where the pinned outliers reconnect with the
MP sea. The limits are �+(x → 〈κ〉+) ∼ J (α)(x − 〈κ〉)3/2

and �+(x → ∞) ∼ (α/2) ln x, where J (α) =√
2 4
√

α + 1(
√

α + 1 − 1)4/[3
√

α + 2(
√

α + 1 + 1)2]. This
implies a discontinuity in the second derivative across 〈κ〉 as
anticipated. Also, at infinity the density of κ therefore decays
as a power law P(κ = x) ∼ x−αβN/2 to leading order in N for
x → ∞.

Conclusion. In summary, we have computed analytically
for large N the cumulative and tail-cumulative distributions
of the CN of rectangular N × M Gaussian random matrices.
The rate functions (11) and (13), describing the probability of
sampling a random Gaussian matrix with an atypically large
(or small) CN, display a nonanalytic behavior that is a direct
consequence of a very rich thermodynamics of the associated
Coulomb fluid.

Matching the behavior of the rate functions close to
their minimum 〈κ〉, we deduce that typical fluctuations
of κ around 〈κ〉 should occur on a scale of O(N−2/3)
and setting χ = f (α)N2/3(κ − 〈κ〉), with f (α) = 21/3(1 +
α)1/6(−1 + √

1 + α)8/3/(1 + √
1 + α)4/3, the scaled random

variable χ has an N - and α-independent distribution P(χ <

x) = Fβ(x) with tails ∼ exp(−β|x|3) for x → −∞ and
∼ exp(−βx3/2) for x → ∞. The scaling is in agreement with
a recent result [21], valid only for M 
 N3. Our analyt-
ical results have been numerically checked with excellent
agreement [47].
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