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The aim of this manuscript is to present for the first time the application of the finite element method for solving
reaction-diffusion systems with cross-diffusion on continuously evolving domains and surfaces. Furthermore we
present pattern formation generated by the reaction-diffusion system with cross-diffusion on evolving domains and
surfaces. A two-component reaction-diffusion system with linear cross-diffusion in both # and v is presented. The
finite element method is based on the approximation of the domain or surface by a triangulated domain or surface
consisting of a union of triangles. For surfaces, the vertices of the triangulation lie on the continuous surface. A
finite element space of functions is then defined by taking the continuous functions which are linear affine on each
simplex of the triangulated domain or surface. To demonstrate the role of cross-diffusion to the theory of pattern
formation, we compute patterns with model kinetic parameter values that belong only to the cross-diffusion
parameter space; these do not belong to the standard parameter space for classical reaction-diffusion systems.
Numerical results exhibited show the robustness, flexibility, versatility, and generality of our methodology; the
methodology can deal with complicated evolution laws of the domain and surface, and these include uniform
isotropic and anisotropic growth profiles as well as those profiles driven by chemical concentrations residing in

the domain or on the surface.
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I. INTRODUCTION

Understanding of biological processes during growth devel-
opment is an unresolved issue in developmental biology that
is only starting to be addressed recently. Introducing domain
growth into the modeling results in nonautonomous systems
of partial differential equations whose analytical tractability
is not well understood [1-5]. In the area of developmental
biology, partial differential equations for pattern formation
take the form of the reaction-diffusion type [6,7]. On stationary
domains, for example, it is well known that one major criticism
of reaction-diffusion theory for pattern formation is the tight
control of the model reaction kinetic parameter values [8].
Underpinning this theory is the concept of diffusion-driven
instability, which leads to patterns that are stationary in time
and periodic in space. For a two-component reaction-diffusion
system, a key requirement for diffusion-driven instability
is the concept of long-range inhibition and short-range
activation [9]. This implies that one of the species (the
inhibitor) must diffuse faster (typically much faster) than
the autocatalytic species (activator) thereby fulfilling one
of the necessary conditions for the formation of spatial
structure.

Several generalizations of the reaction-diffusion theory for
pattern formation have been undertaken in order to relax
some of these constraints. One of these generalizations involve
the introduction of domain growth [1,3-5]. It is well known
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that many problems in biology involve growth. In [5] we
proved that in the presence of domain growth, it is no longer
necessary to restrict reaction kinetics to an activator-inhibitor
type; a long-range activation and short-range inhibition or
activation chemical process are all capable of giving rise
to what we termed domain-growth induced diffusion-driven
instability. However, this generalization still requires that the
inhibitor must diffuse much faster than the activator species,
and therefore equal diffusion coefficients do not give rise to
the formation of spatial structure during growth development.

Another generalization is the introduction of cross-
diffusion. In many multicomponent systems, there are various
forms of diffusion depending on the biochemical problem at
hand [10]. Diffusive processes can be characterized as self-
diffusion, cross-diffusion, mutual diffusion, tracer diffusion,
intradiffusion, interdiffusion, uphill diffusion, and negative
or incongruent diffusion. A detailed review of the different
physicochemical interpretations of these forms of diffusion
is given by Vanag and Epstein [10]. Cross-diffusion is
characterized by a gradient in the concentration of one species
inducing a flux of another chemical species. In molecular
biology, cross-diffusion processes appear in multicomponent
systems containing at least two solute components [11,12].
Multicomponent systems containing nanoparticles, surfac-
tants, polymers, and other macromolecules in solution play
an important role in industrial applications and biological
functions [11]. In developmental biology, recent experimen-
tal findings demonstrate that cross-diffusion can be quite
significant in generating spatial structure [10]. The effects
of cross-diffusion on models for pattern formation (i.e.,
reaction-diffusion type) have been studied in many theoretical
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papers [13-24]. Recently, in [25] we showed that introducing
cross-diffusion to a system of reaction-diffusion equations
results in further relaxation of the conditions necessary for the
emergency of patterns. In particular, an inhibitor and activator
or two activators can diffuse at equal rates; however, the
product of the rates of the principal diffusion coefficients must
be greater than the product of the cross-diffusion rates. For
detailed theoretical analytical and computational results on the
effects of domain growth on pattern formation, the interested
reader is referred to results published in [1,2,4,5,26-29]. In
this article our focus is to showcase how cross-diffusion
induces patterning in the presence of domain and surface
evolution.

Despite all these advances, all the above studies have been
carried out on stationary domains and to the authors’ knowl-
edge no work has been carried out on surfaces. In this article
we will introduce domain and surface evolution and solve
reaction-cross-diffusion systems with uniform linear isotropic,
anisotropic, and concentration-driven evolution profiles. In the
last case, apart from solving for the unknown chemical species,
we also solve for the unknown domain and surface position.
On planar domains, a spring analogy is employed to move the
internal bulk mesh.

Recently there has been an increase in the development
of numerical methods for approximating solutions of partial
differential equations posed on evolving domains and surfaces.
Examples include (but are not limited to) the moving grid finite
element method [4], the method of lines [30], evolving surface
finite element methods on triangulated surfaces [31-33],
implicit finite element methods using level set descriptions
of the surfaces [34-37], diffuse interface methods of which
phase fields are an example [38,39], particle methods using
level set descriptions of the surface [40—42], and closest-point
methods [27,28]. In this article we choose to implement
the evolving surface finite element method. Our approach
is based on the surface finite element method, which is a
natural extension of the finite element method and is capable
of handling complex geometries and shapes [32,34,35,39].
On evolving domains, given the boundary evolution law, the
internal mesh is deformed using a spring analogy [4]. On
evolving surfaces, we triangulate the surface and approximate
the system of partial differential equations using piecewise
linear surface finite element spaces based on the triangulation.
In this paper we are interested in evolving domains and
surfaces. In this instance the vertices of the triangulation
are moved with a velocity which either is prescribed or is
governed by some evolution law. In order to do this we need
to formulate an appropriate conservation law on the surface.
The evolving surface finite element method exploits the special
features of this conservation law when written in an appropriate
variational form.

Hence, our paper is organized as follows: in Sec. II we
present the model equations posed on evolving domains
and surfaces, and these consist of a system of reaction-
diffusion equations with linear cross-diffusion. Domain and
surface evolution terms are modeled through dilution and
convective terms. The finite element numerical methodology is
presented in Sec. III. The methodology is characterized by two
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fundamental steps: first, a spatial discretization is employed
that exploits the conservative nature of the modeling to give
rise to a system of ordinary differential equations. The second
step involves the implementation of a modified backward
Euler scheme to transform the system of ordinary differential
equations into a system of linear algebraic equations amenable
for computer simulations. Section I'V details numerical exper-
iments demonstrating the effects of the inclusion of cross-
diffusion into the models for pattern formation. Here uniform
isotropic, anisotropic, and concentration-driven evolution laws
are considered to demonstrate the generality of the modeling
and computational methodology. We select model parameter
values that give rise to the formation of spatial structure only
in the presence of cross-diffusion and compare our results
to classical parameter values also in the presence of cross-
diffusion. Such cross-diffusion-driven parameter values do not
give rise to pattern formation in the absence of cross-diffusion.
In Sec. V we conclude and discuss the implications of our
findings to the theory and computations of models for pattern
formation.

II. MODELS POSED ON EVOLVING
DOMAINS AND SURFACES

A. Notation and preliminaries

In this section we establish some notation to be used
throughout the paper.

If I' ¢ R? is a two-dimensional hypersurface with unit
normal v we denote the tangential gradient of a scalar function
u defined on I which is differentiable in an open neighborhood
of I" by

Vru :=Vu—Vu vy,

where V denotes the usual gradient in R3.

If u is twice differentiable in an open neighborhood of
I', we define the Laplace-Beltrami operator as the tangential
divergence of the tangential gradient

Aru = Vr . Vru.

If I'(¢) is a hypersurface in R? evolving in time, ¢, according
to a velocity field v, we denote the material derivative of u by

0°u :=u, +v-Vu.

B. Reaction-diffusion systems with linear cross-diffusion
posed on evolving domains and surfaces

1. Reaction-diffusion system with linear cross-diffusion
posed on evolving domains

Let Q) CcR™ (m=1,2,3) be a simply connected
bounded evolving volume for all time ¢t € I = [0,t¢], tr >
0, and 092(f) be the evolving boundary enclosing €2(f).
Also let u = (u(x,t),w(x,1))! be a vector of two chemical
concentrations at position x € Q(z) C R™. The evolution
equations for reaction-diffusion systems with cross-diffusion
can be obtained from the application of the law of mass
conservation in an elemental volume using the Reynolds
transport theorem. The growth of the volume €2(¢) generates a
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flow of velocity v to yield the nondimensional system

u, +V-(u) = Viu+d,Vw + yfu,w),

xeQ(t), t=0,
w; + V- (vw) =dViw +d,Viu + ygu,w), @)
n-Vu=n-Vw=0, xon @), >0, '
u(x,0) = up(x), and w(x,0) = wy(x), xon 2(0),

where V2 is the Laplace operator on domains and volumes, d is the ratio of the diffusion coefficients, and d,, and d,, are the ratios
of the cross-diffusion. Here n is the unit outward normal to €2(¢). Initial conditions are prescribed through non-negative bounded
functions ug(x) and wy(x). In the above, f(u,w) and g(u,w) represent nonlinear reactions.

2. Reaction-diffusion system with linear cross-diffusion posed on evolving surfaces

Supposing now the domain is an evolving hypersurface, I'(¢), with velocity v = Vv + V7, where v is the unit outward
pointing normal vector to I'(¢), V is the normal velocity, and V7 is the tangential velocity. Without loss of generality, let
u = (u(s,t),w(s,t))’ be a vector of two chemical concentrations at position s € I'(¢) C R”*(m = 1,2). Then adapting the
derivation of the reaction-diffusion equations on an evolving surface in [31], taking into account the terms corresponding to

cross-diffusion, we obtain the following nondimensionalized system of reaction-diffusion equations:

ur + Vg - (vu) = V%mu + du,Vl%(,)w + vy f(u,w),

w; + Vr - (hw) = dvrz*(,)w + duvlg(;)“ + yg(u,w),

u(s,0) = uo(s),

where we are assuming I'(¢) is a compact smooth connected
and oriented evolving hypersurface in R”*!, with m = 1,2.

As for the boundary conditions, we impose g - Vrpu =
- Vrpw =0, where p is the conormal vector to oI'(¢), if
I'(#) is nonempty. Otherwise, if the surface has no boundary,
then there is no need for boundary conditions.

Remark 2.1. Notice that for the planar case the tangential
derivative coincides with the classical derivative and there is
no normal velocity in that case, so the model equations become
exactly the same as (2.1).

Remark 2.2. In many articles in the literature, model
systems (2.1) and (2.2) can be mapped at all times from
a continuously deforming domain or surface to a reference
static domain or surface for analytical tractability as well
as for computational purposes [1,2,4,5,26]. This implies that
analytical and computational results are scale invariant. In this
work we will treat the model systems posed on a continuously
evolving domain or surface.

3. Activator-depleted reaction kinetics: An illustrative example

For illustrative purposes, we consider a specific type of
nonlinear reactions, namely, the activator-depleted model also
known as the Brusselator model [9,43,44]:

fu,w)y=a—u+ w’w, and gu,w)y=>b— ww,

with a,b € RT.

III. NUMERICAL SOLUTION OF REACTION-DIFFUSION
SYSTEMS WITH CROSS-DIFFUSION ON EVOLVING
DOMAINS AND SURFACES

In this section, we present the finite element method
applied to reaction-diffusion systems on evolving domains
and surfaces. The method becomes the moving grid finite

and  w(s,0) = wy(s),

sel@), t=>=0,

2.2)
s on I'(0)

(

element method on evolving planar domains [4,45] and the
evolving surface finite element method on evolving surfaces
[31]. The numerical methodology is equivalent for both cases,
the only difference being in the spatial operators between
planar domains and surfaces as well as the use of boundary
conditions. To this end, we will simply derive a numerical
method for solving (2.2) on a hypersurface and then treat a
planar domain as a hypersurface with appropriate boundary
conditions.

A. The surface finite element method applied
to reaction-cross-diffusion systems

The model equations in (2.2) can be rewritten as

0'u+uVrpy-v = V%mu + du,Vl%(t)w +yfu,w),
dVE W + dy Vi + ygu,w).

3.1

8’w + U)V[‘(l) -V —

The evolving surface finite element introduced in [32] has been
already extended in [31] in order to solve the model equations
for the reaction-diffusion systems, and the new cross-diffusion
terms can be treated in a similar fashion and added to the
existing numerical scheme. For the sake of completeness, we
will present the derivation of the finite element method for the
reaction-diffusion systems with cross-diffusion.

1. Variational formulation

The variational formulation for the first equation corre-
sponding to the chemical specie u in (3.1) will be presented
as the other equation for w can be treated in exactly the
same fashion since both have similar structures. For ease of
reading, we will omit the dependence of ¢ in the notation for
the tangential gradient, so we will use Vr instead of V).
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Let ¢(-,t) € H'(I'(¢)) be a test function. Multiplying the equation by ¢ and integrating over I'(¢) leads to

y f¢>=f 8’u¢+/ qur-v—/ wV%u—dw/ oViw
NG NG NG NG NG

=f 8'ugo+/ ugoVr-v+f pr-Vru—/ oVru - p
T() () () AT ()

—{—dw/ Virg-V5iw — dw/ oVru-u. (3.2)
I'() ar ()
If o' (t) = P orif Viu - p = 0, the two integrals over dI'(¢) vanish. Assuming any of these conditions hold we have
v [ te=[ duprupveovs [ Ve Vegwds [ Vew-vig
() INO) () r()
=/ 0*(up) —ud*p +upVr - v+/ oVru - Vr<p+dw/ Vrw - Vre
() I'(1) r@)
d L]
= — up — ud®p + Vru-Vrp +d, Vrw - Vre. (3.3)
dr Jra I NO) @)
The variational form seeks to find u € H'(I'(¢)) satisfying
d
- ug —/ u3'¢)+/ Vru-Vre +dw/ Vriw-Vrp =y fu,wp, (3.4)
dt Jrq ) N0 I I

for all ¢ € H'(I'(¢)). Similarly, using the same reasoning for the second equation of (2.2), the variational form seeks to find

w € H'(I'(1)) satisfying

d
— ww—/ w8'<p+/ er'Vrfﬂ-i-du/ Vru'VW:V/
dt Jra () N0 N0 ()

forall g € H'(I'(1)).

B. Evolving surface finite element method (ESFEM)

We approximate I'(¢#) by I';(#), a triangulated surface
whose vertices lie on I'(7), i.e., I'(t) = 7, (1) = U, Tx (1),
where each Ti(¢) is a triangle. The diameter of the largest
triangle in the initial surface is denoted by 4. We choose the
vertices of the triangulation to evolve with the material velocity
such that

X)) =v(X;@),1). 3.6)
Itis easy to note that X ;() lies on I'(¢) if v is the exact material
velocity. We assume ', (¢) is smooth in time. For each ¢ we
define a finite element space

Su(t) = (¢ € COTH()) : $Tx,
is linear affine for each Ty € 7,(¢)}.
Foreacht € [0,7r] we denote by {)(j(-,t)}j.\’:1 the moving nodal

basis functions and by X;(¢), j = 1,...,N the nodes. These
functions will satisfy that

x50 € COUTLD), X, (Xi(0),1) = &),

Xx;j(-,)Tx, is linear affine,
and on Ty € 7,(¢)

xje =X, foreache e 7;(1),

gu,w)g, (3.5

(

where k = k(Ty,j) and (A,X,,A3) are the barycentric coordi-
nates. On I',(¢) we define the discrete material velocity

N
v =) X;(0)x; (3.7)
j=1
and the discrete material derivative
o =¢:+v,-Vo. (3.8)

Proposition 3.1 (Transport property). On I',(¢), for each
j=1,...,N,

3]:)(1' = O,

and for each ¢ = Z;V:lyj(t)xj € Sp(r) then 95¢ =
S vix;.

Proof. See [32]. U

We seek approximations of U(-,¢) € S;(¢t)tou and W(-,¢) €
Su(¢) to w. Since {)(j(-,t)}?’:1 is the basis of S,(r) we know
that for each U(-,7) € S;,(t), each W(-,7) € S;,(¢t) and each t €
[0,77] there exist unique &, = {a}(?),...,a) ()} and «, =
{al @), ... ,a(t)} satisfying

N N
UG =Y alx0, and W)=Y al@x;.0).

J=1 Jj=1
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Substituting U (-,t), W(-,1), [y (¢),and ¢ € S (¢) foru, w, ['(z¢),
and ¢ in (3.4) we obtain

d N
J °
E/rh Zawxm—fm;awxﬁm

(51

/ Za Xi®Vr, v+ / Za/(r)vrhx, Vi,
l“/,(t) r,,(t)

/ Zaj(t)VFhX] Vrh(t)¢—3// fo.
Fh(t)

for all ¢ € Sy (¢). Taking ¢ = xx, k =1, ...,N and using the
transport property of the basis functions we obtain

3.9)

% M, + SMe, +dy Sy, = yF(1),
%(M(t)aw) +dSWa, +d,SMe, = yG(),
(3.10)

where M(z) is the evolving mass matrix defined by

M(l)jk=/ Xj Xk
Tiu(t)

T
1 n+l1_ n+1

— Wiy +d

T FZH FZH
forallj =1,...

PHYSICAL REVIEW E 90, 043307 (2014)

S(1) is the evolving stiffness matrix defined by
SOk = / Vi XV xe
Ty(2)

and F and G are the right-hand side defined by F; =
Jro FU W)X and G; = [, 8(U, W)y, respectively.

C. Time discretization

We illustrate the time discretization of the reaction-
diffusion system with activator-depleted reaction kinetics
as follows. Other reaction kinetics can be treated in a
similar fashion. For the time discretization, let 7,, denote
the maximum time of interest, T denote the time step, and
nr be a fixed nonnegative integer, then t = == and ¢, = nr,
n=0,1,2,...,nr. Wedenote the approx1mate solutlon attime
t, by U" = U( ,t,), and W' = W(-,t,), thus (U",W") € §,,
represents the solution at time nt and I'j = I'y(nt). Let U 0
WO e S,(0) be given. For n =0, ... ,nr solve the nonlinear
system

1 1
_/ lUn+1 n+l+f IVF;"Un+1 VFZX;Z+1+dw/ IVI‘ZWrH—l 'VF;;X;’H — ;/ UnX”—f—V/ f(UlH-l WI’H-I)XVH-I,
" ry* " ;

T

1
VFI: WVH—I . VFZX;l+1 +du/ Vl_';l' Ui’l+1 . VF/'X'X;:[+1 — WnX7 + y/ g(Un+17W,1+1)X;l+l,
! I s

,N.Tolinearize (U™, W"+!)and g(U"*!, W"*!) we assume slow deformation of the evolving surface, which

allows us to write (U"*1)? &~ U"U"*! [46]. Using this linearization, we can derive the following fully discrete algorithm:

Let U°, WO € S,(0) be given. Forn =0, ...

,nr solve the linear system

1
Ty ! T

1
Z—f U"Xf+dw/ Vr;W"'Vr,",X}"*‘)’a/ X5
T n rlrx’ 1"”

h

1
_/ Wn+1X;l+l +d/ VFZ Wn+1 A VFZX;H—I + V/ (Un+1)2Wn+1X;H—1
T l—vx+l Flrxerl r;:+l

1
=- W”x}‘+du/ Vr;U”~Vrgx}‘+Vb/ Xj
r ! o

T
forall j =1, ...,N. Using matrix representation we can write
((% + y>Mn+l +Sn+l _ yMrllJrl)UnJrl %MnUn +dean + F",
(3.11D)
(%M"“ +dS™! + yM§+‘>W"+‘ = M'W'+d,S"U" +G",
with
My = [ arxg Miy = [ omtwetg, g = [0,
Ty i Ty
S :/ Vexi' - Veexj, F'i= yg/ x!', and G"; = yb/ X!, (3.12)
rr ry r

h

h
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FIG. 1. (Color online) Numerical simulations corresponding to the chemical specie u of the model equations (2.1) at t = 5 (left column)
and ¢ = 180 (right column). The w simulations are omitted since these are out of phase to those of u. The initial square domain reaches
approximately the final size [6,0] after growing according to the growth function defined by (4.4). In all these simulations we take the parameter
values d = 10, a = 0.1, b = 0.9, y = 29 and vary the cross-diffusion coefficients as (a) d, = 1,d,, = 1, (b)d, =0,d,, = 1,and (c) d, =0,
d,, = 0. We observe the formation of a stripe pattern as the domain evolves along the x axis. The solution profiles with cross-diffusion in
the u equation only have the highest amplitude while those without cross diffusion have the lowest. This confirms our theoretical predictions
published earlier in [25], which proved that cross-diffusion in the u equation variable only induces the largest parameter space than either

without cross-diffusion or with cross-diffusion in both equations.

where x/' € §; = {x € Co((T,(n1))) : x| is linear affine for
each e € 7,(nt). The resulting systems of linear algebraic
equations are solved efficiently using the conjugate gradient
method [47].

IV. NUMERICAL SIMULATIONS

In all the simulations, initial conditions are taken as
small random perturbations of the uniform steady state
(a + b, ﬁ), which is obtained by setting the kinetic func-
tions to zero, i.e.,

fw,w)=a —u+ulw =0,
glu,w)=>b—u’w=0.

As for boundary conditions, either they are not necessary
if the domain is a surface of empty boundary or otherwise
homogeneous Neumann boundary conditions are imposed.
The implementation of the numerical schemes has been carried
out using the finite element toolbox ALBERTA [48]. In all our
simulations, threshold shading is applied as follows: we shade

with blue (gray shading in black and white) if the values of the
chemical species, say, u > (a + b); otherwise, we shade with
red (dark black shading in black and white). Since the solution
profiles of u are 180 degrees out of phase with those of w,
we only plot contours corresponding to the chemical specie u;
those of w can be deduced from the u patterns. A plausible
biological justification is that chemical species above a certain
threshold will express themselves differently (in the presence
of chemical substances) from those under the threshold thereby
generating spatial structure.

A. Diffusion-induced pattern formation
on evolving planar domains

In this section we illustrate a computational framework in
two dimensions that allows us to move the internal mesh given
an evolution law of the boundary surface. The same approach
could be used in three dimensions. To start the numerical
simulation we must provide a conformal triangulation on
the initial domain. The nodes on the boundary will evolve
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1 62“|
1
0.267

FIG. 2. (Color online) Numerical simulations corresponding to the chemical specie u of the model equations (2.1) with model parameters
d=10,a=0.1,b=09,d,=1,d, =1, and y = 29. The initial unit square domain grows exponentially to approximately 4.5 times its
original size, growth is positive along the diagonal. Snapshots are shown at times ¢ = 26, 50, 65, 80, 130, 140, 154, 165, 210, 290, and 350,
respectively. The reaction-diffusion system with cross-diffusion in both the # and w equations exhibit a variety of transient patterns: stripes,
spots, and circular patterns as the domain evolves. The bifurcation selection process seem to occur slightly faster than when cross-diffusion is

present in only the u equation (compare with Fig. 3).

according to a prescribed velocity, but the positions of the
internal nodes must be calculated. We have used a common
technique known as the (segment) spring analogy [49], which
consists of replacing the mesh by fictitious springs. The
equilibrium lengths of the springs are equal to the lengths
of the edges in the initial triangulation. The force at each node
i is determined by

Fi=) kij(si — ), @.1)
i=l

where §; is the displacement of node i, n; is the number of

nodes surrounding node i, and k;; is the spring stiffness, which

according to [50] for a given edge i — j, is of the form

1
e )P+ i — )P

At static equilibrium, F; is zero for all nodes and prescribing
the displacements on the boundary and using nodal coordinates
of the previous time step, we obtain a system of linear equations
whose unknowns are the displacements §;. After solving this
system, the nodal coordinates are updated in the following
manner:

4.2)

XV = x4+ 5,

(4.3)

Remark 4.1. If the domain or surface evolution is known
a priori, for example, in the form of

x(1) = p(1)x(0),

where x(0) is the initial domain or surface and p(f) is the
evolution law, then it is not necessary to use the spring analogy

described above; instead the whole triangulation is simply
evolved according to the evolution law prescribed.

1. Evolving a unit square domain along one of the axis

In this example I'(0) is the unit square in R? which is
evolving along the x axis according to the following evolution
law:

(x(1),y(1)) = (x(0)e”",0),

where we assume the growth is slow, so that o is considered a
small parameter.

Our first example is inspired by the simulation results shown
in Figs. 2(a)-2(b) of [4]. To proceed, we will take the same
kinetic parameter values, which are givenby a = 0.1 and b =
0.9. These have been shown to belong to the classical Turing
space in the absence of cross-diffusion [7]. We will take y =
29 and d = 10 as outlined in [4]. We will assume that a unit
square domain is evolving until it reaches approximately the
final size [6,0] along the x axis only. Furthermore, we take the
growth rate to be given by ¢ = 0.01.

In Fig. 1 we present numerical solutions corresponding to
the u chemical species only; those of w are out of phase. In
Fig. 1(a) we compute solutions for the model system with
cross-diffusion in both the # and w equations; in Fig. 1(b)
cross-diffusion is only in the u equation, and in Fig. 1(c)
no cross-diffusion in either equation. We observe the formation
of a single stripe described analytically by the (1,0) mode. It
can be shown analytically, in the absence of cross-diffusion,
that the (1,0) mode is always excitable when the unit square is
evolving in a one-dimensional fashion along the x axis. This
theoretical result holds true when cross-diffusion is introduced.

4.4)
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FIG. 3. (Color online) Numerical simulations corresponding to the chemical specie u of the model equations (2.1) with parameters d = 10,
a=0.1,5b=09,d,=0,d, =1, and y = 29. Snapshots are shown at times r = 26, 50, 65, 80, 130, 140, 154, 165, 210, 290, and 350,
respectively. The reaction-diffusion system with cross-diffusion in the # equations only exhibit a variety of transient patterns: stripes, spots, and
circular patterns as the domain evolves. The bifurcation selection process of the transient patterns occurs slightly later than when cross-diffusion

is present in both species (compare with Fig. 2).

The only difference between solutions with or without cross-
diffusion is in their amplitude. Solution profiles with cross-
diffusion in the u equation have the highest amplitude. This
confirms our most recent theoretical results, which proved that

143 o
1
. 0‘56 ]7

introducing cross-diffusion in the # equation only induces (and
much earlier) larger parameter spaces than those either with
cross-diffusion in both equations or without cross-diffusion at
all [25].

FIG. 4. (Color online) Numerical simulations corresponding to the chemical specie u# of the model equations (2.1) with parameters
d=10,a=0.1,6=09,d,=0, d, =0, and y = 29. Snapshots are shown at times ¢ = 26, 50, 65, 80, 130, 140, 154, 165, 210, 290,
and 350, respectively. In the absence of cross-diffusion we observe patterns identical to those obtained in previous studies for the classical
reaction-diffusion system posed on an evolving square domain [4]. We observe rapid transitions between patterns: stripes turning into spots,
oblique and circular patterns. The regions of instability are small compared to those when cross-diffusion is present either in both species or in

the u equation only.
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1625 1795 143
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0.267 0.225- 0561
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FIG. 5. (Color online) Transient patterns exhibited for the u species corresponding to the model equations (2.1) at time ¢t = 350 for (a)
d, = 1 and d,, = 1: the reaction-diffusion system with cross-diffusion in both equations, (b) d, = 0 and d,, = 1: the reaction-diffusion system
with cross-diffusion in the u equation only, and (c¢) d, = 0 and d,, = 0O: the reaction-diffusion system without cross-diffusion in both equations.
These patterns demonstrate that, for appropriate model parameter values, reaction-diffusion systems with or without cross-diffusion can select
identical transient patterns during the bifurcation process, even though the transient process throughout the evolution process is different.

It must be observed that the transient pattern is independent
of the initial random fluctuations around the uniform state.
Transient patterns emerging soon after growth show two types
of horizontal and vertical stripes (left column of Fig. 1). If
the model equations are solved on a stationary domain (in
this case the unit square) in the absence of domain growth,
then pattern selection is critically dependent on the initial
conditions. To this end, random initial fluctuations around the
uniform state will act as a basin of attraction; the pattern to be
converged to depends on how close it is to the initial conditions.
Pattern sensitivity to initial conditions on static domains
and surfaces has been a major criticism of Turing’s theory
for pattern formation [7,8]. By introduction domain growth,
pattern transition during growth development is independent
of the initial random fluctuations around the uniform state. The
horizontal stripe pattern that persists during domain growth is
unstable when domain growth is switched off; instead vertical
stripes representing excitable modes of the form (m,0), with
m > 1 are obtained (see [4] for examples in the absence of
cross-diffusion).

2. Evolving a unit square domain along the diagonal

In our second example, all model parameter and diffusion
coefficients remain fixed as those in the example above.
The only change is the evolution of the square domain
under the exponential growth. Here we want to explore
if cross-diffusion does induce different transient patterns
during domain evolution when the unit square domain evolves
uniformly isotropically, along the diagonal of the first positive
quadrant. Again, we compare our results to those shown in

Fig. 4 of [4], which are reproduced exactly using our numerical
method (compare Fig. 4 with Fig. 4 in [4]). Figures 2—4 exhibit
patterns obtained with

(1) Cross-diffusion in both the # and w equations (Fig. 2)

(2) Cross-diffusion in the u equation only (Fig. 3)

(3) Without cross-diffusion (Fig. 4).
In all our figures, at time r = 26 we observe the formation
of stripe patterns exhibiting the (1,0) mode as described in
Fig. 1. As the domain continues to evolve, different transient
patterns are observed for the three different cases. For example,
at time ¢t = 50, the bifurcation process for reaction-diffusion
system with cross-diffusion in both components and without
cross-diffusion occurs much faster than that of the system with
cross-diffusion in the u equation only. At time ¢ = 80, we
observe a stripe pattern for the reaction-diffusion system with
cross-diffusion in both equations, while spot patterns form
for the system with cross-diffusion in the u# equation only.
The system without cross-diffusion exhibits the formation of a
single spot. The bifurcation sequence for all models also selects
the same excitable wave numbers (and therefore exhibits
identical transient patterns) during growth development. In
Fig. 5 we observe, for all model systems, identical patterns
(except for symmetry) at the final time # = 350. These
results clearly demonstrate the effects of cross-diffusion to
the formation of pattern formation.

B. Cross-diffusion induced pattern formation
on evolving domains

In this section, we start to depart from classical Turing
parameter values and consider parameter values a and b that

FIG. 6. (Color online) Numerical simulations corresponding to the chemical specie u of the model equations (2.1) with cross-diffusion in
the u equation only. We take parametersd = 1,a = 0.1, b =0.1,d, = 0, d,, = 0.5, and y = 200. Snapshots are shown at times t = 5, 40, 71,
and 112, respectively. We observe a continuous evolution of spot transient patterns as the domain continues to grow.
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FIG. 7. (Color online) Numerical simulations corresponding to the chemical specie u of the model equations (2.1) with cross-diffusion in
the u equation only. We take parametersd = 1,a = 0.17,b =0.25,d, = 0, d,, = 0.8, and y = 200. Snapshots are shown at times ¢t = 2, 25,
35,70, 99, and 112, respectively. We observe stripes evolving into spots, which further transient into stripes and spots with continuous growth.
The spot patterns evolve into oblique patterns and these form stripes as the square reaches approximately twice its original size.

are selected from cross-diffusion induced parameter spaces.
The parameter values are picked from parameter spaces
published in Madzvamuse et al. [25]. For these parameter
values, the reaction-diffusion system (2.1) gives rise to patterns
only in the presence of cross-diffusion, without cross-diffusion
no patterns form. To demonstrate the effects of cross-diffusion,
we will contrast patterns formed in the presence of cross-
diffusion to those obtained in the absence of cross-diffusion.
In all our simulations in this section, I'(0) is the unit square
and is evolving exponentially, uniformly, and isotropically,
along the diagonal with growth rate o = 0.01. In all our
simulations from here onwards, we plot snap shots of the
domain and surface evolution without axis labels, and we plot
these according to their relative physical scales.

1. Cross-diffusion induced patterns on planar domains

Unlike the case of standard reaction-diffusion systems, we
assume that the activator u# and the inhibitor w diffuse at equal
rates (i.e., d = 1). Furthermore, we will select the model
parameter values a = 0.1 and b = 0.1 outside the classical
Turing parameters; these belong to the cross-diffusion induced
parameter space as shown in [25], Fig. 9(a). In order to
induce patterning, we take d, = 0, d,, = 0.5; i.e., we consider
the reaction-diffusion system with cross-diffusion in the u
equation only. Figure 6 illustrates the formation of spot patterns
as the unit square domain grows to approximately twice its
original size. The observed patterns are formed only in the
presence of cross-diffusion.

A second example involves two results as shown in
Figs. 7 and 8 where we have selected the following parameter
values:d = 1,a =0.17,b =0.25,d, =0, d,, = 0.8 (Fig. 7)
and d=1, a=0.18, »=0.2, d, =1, d, =0.7 (Fig. 8).
The model kinetic parameter values are chosen from the
cross-diffusion-induced parameter space shown in [25],

Fig. 11(c). In Fig. 7 we observe the formation of spots
and stripe patterns as the unit square domain evolves to
approximately twice its original size. Oblique and spot
patterns are exhibited at time ¢+ = 99. Here cross-diffusion has
been introduced only in the u equation.

FIG. 8. (Color online) Numerical simulations corresponding to
the chemical specie u of the model equations (2.1) with cross-
diffusion in both the # and w equations. We take parameters d = 1,
a=0.18,b=02,d,=1,d, =0.7, and y = 200. Snapshots are
shown at times ¢t = 5, 34, 44, 85, and 112, respectively. Again, we
observe the formation of spots, stripes and zigzag patterns. The
formation of these patterns seem to occur slightly later than those
shown in Fig. 7. This could be a result of different parameter values or
simply that the system with cross-diffusion in the u equation induces
patterning faster than the system when cross-diffusion is in both
species.
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Introducing cross-diffusion in both species we observe the
emergence of different transient patterns, stripes evolving into
spots which in turn evolve into stripes. This could be a result
of different parameter values or simply that the system with
cross-diffusion in the u equation induces patterning faster than
the system when cross-diffusion is in both species. The most
likely scenario is that the reaction-diffusion system with cross-
diffusion in both components exhibits patterning much faster
than when cross-diffusion is introduced in one component
or without cross diffusion. For theoretical and computational
evidence see [25]. It must be noted that the results presented in
Figs. 7 and 8 are two different systems, with different model
parameters. These will also influence the patterning process.

C. Pattern formation on evolving surfaces

For the first time, we present new results on pattern
formation of the reaction-diffusion system with cross-diffusion
on evolving surfaces. We will compare and contrast where
possible patterns exhibited in the presence of cross-diffusion
and those obtained in the absence of cross-diffusion. Further-
more, we will showcase cross-induced diffusion patterns on
surfaces; parameter values are selected such that in the absence
of cross-diffusion no patterns form.

1. Evolving a unit sphere surface according
to the logistic growth function

Next, we consider the evolution of a unit sphere for which
each material point X (¢) on I'(¢) is evolving according to the
logistic law

X(1) = p(t)v, 4.5
where p(?) is a logistic growth function given by
ert
pt)y=—————, r>0, and K > 1. (4.6)
L+ g —=1)

In the above K is the limiting final size of the evolving spher-
ical surface. For illustrative purposes we take K = 1.5 and
r = 0.01 in our experiment.

Figure 9 illustrates the evolution of the spherical surface
driven by the logistic growth function. We observe the
formation of spot patterns which are ellipsoidal in shape.
Here, cross-diffusion is present only in the u equation. We
have taken the following parameter values d = 10, a = 0.2,
b=05,d,=0,d, =1, and y = 200. Again, a and b are
selected outside the classical Turing parameter space; these
belong to the cross-diffusion parameter space.

PHYSICAL REVIEW E 90, 043307 (2014)

2. Evolving a cylindrical surface according
to an exponential growth

Let us consider the evolution of a cylinder of radius 1. For
illustrative purposes we assume that the surface is evolving in
the normal direction according to the following evolution law:

X(1) = p(1)vX(0), 4.7

where p(r) = "', with r = 0.01 and v is the unit normal to
the surface. X(0) is the initial surface at time ¢t = 0. Here we
are simply expanding the surface uniformly isotropically in
the normal direction.

We present two sets of results as shown in Fig. 10. In
both cases, we plot numerical solutions corresponding to the
u-chemical specie of the model equations with cross-diffusion
in both the u and w equations with diffusion parameter
values d =10, d, =1, d, = 1, and we take y = 200. In
the left column we fix a = 0.1 and b = 0.9; these belong
to the classical Turing parameter space in the absence of
cross-diffusion. In the right column, we fix a =0.2 and
b = 0.5; these belong outside the classical Turing parameter
space, they belong to the cross-diffusion induced parameter
space (see Fig. 3 in [25]).

The reaction-diffusion system without cross-diffusion in-
duces mainly oblique stripe patterns around the cylindrical
surface as the surface evolves. Large spot patterns are observed
to form at later stages of the growth development. In the
presence of cross-diffusion, we observe the formation of spot
patterns with much smaller radii compared to those in the
absence of cross-diffusion. In some cases, the spot patterns
are of variable sizes.

3. Anisotropic surface evolution: The effects of cross-diffusion

In most biological systems involving growth develop-
ment, surface evolution is anisotropic in many cases. To
illustrate how cross-diffusion induces different patterns to
those obtained from classical Turing patterns, we consider for
illustrative purposes an anisotropic surface evolution where
we define the initial surface by I'(0) and is given by

252 +yH—62=1, —2<z<2. 4.8)

We introduce anisotropic surface evolution by prescribing the
surface evolution of the form

x(1) = x(0)(1 4 re{l — 0.2[z(0)* + 11},
y() = y(0)(1 +rt{l — 0.2[z(0)* + 11},
z(t) = z(0),

where we take r = 0.01.

(4.9)

‘ ‘ ‘ .1 5]I
1
0.365

FIG. 9. (Color online) Cross-diffusion induced spot patterning on an evolving spherical surface whose evolution is defined by the logistic
law (4.5). Snapshots of patterns corresponding to the chemical specie u solving the model equation (2.1) with cross-diffusion in the u equation
only are shown at times ¢t = 50, 150, 250, and 350, respectively. Parameter values are taken as d = 10, a = 0.2, b=0.5,d, =0, d, =1,

and y = 200.
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FIG. 10. (Color online) Numerical simulations corresponding to
the chemical specie u of the model equations (2.1) on an evolving
cylindrical surface whose evolution is defined by the exponential
growth (4.7). Parameter values ared = 10,d, = 1,d,, = 1, y =200
with @ = 0.1, b = 0.9 (left column), and @ = 0.2, b = 0.5 (right

column). Snapshots are shown at times ¢ =0, 10, 20, and 30,
respectively.

Figure 11 exhibits both the anisotropic surface evolution as
well as the pattern formation process during growth develop-
ment. The left column shows the formation of stripe-circular
patterns corresponding to the chemical specie u solving the
model equations (2.1) in the absence of cross-diffusion. The
right column shows the formation of spot patterns when
cross-diffusion is present in both the # and w equations.
Cross-diffusion induces substantially different, predominantly
spot patterns as the surface continues to evolve. The spot
patterns have a much smaller wavelength than those obtained
when cross-diffusion is absent in the reaction-diffusion system.
We observe that the model parameter values selected in the
absence of cross-diffusion seem to induce the formation of
stripe patterns as opposed to spot patterns.

PHYSICAL REVIEW E 90, 043307 (2014)

0.382-

FIG. 11. (Color online) Patterns exhibited during an anisotropic
surface evolution as defined by (4.9) at times ¢ = 0, 100, 200, 300, and
400. Parameters are taken as d = 10,d, = 1,d,, = 1, y = 200, and
a = 0.1, b = 0.9 (left column) and a = 0.2, b = 0.5 (right column).

4. Concentration-driven surface evolution

Our final example is again inspired by biological obser-
vations which support that in many processes where surface
growth is involved, growth is driven partly by chemical species
resident on the cell-membrane surface An example is that of
cell polarization in cell biology due to responses to external
signals through the outer cell membrane [51,52]. To model
such concentration-driven surface evolution, we assume that
a spherical surface is evolving according to the following
evolution law:

V =6u—e€H, (4.10)

where V is the normal velocity, § is a growth rate, H is the
mean curvature of the surface, and € is a small parameter meant
to regularize the evolution law. We are using the definition of
mean curvature to be the sum of the two principle curvatures.
The details on how this velocity is implemented can be found
in [31].
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FIG. 12. (Color online) Pattern formation during the
concentration-driven surface evolution according to the evolution
law (4.10). Parameter values are taken as d = 10, d, =1, d,, = 1,
y =200 with a = 0.1, b = 0.9 (left column), and @ = 0.2, b = 0.5
(right column). Snapshots are shown at times t = 0, 6, 15, and 25,
respectively. Spots and stripe-circular patterns form when standard
model parameter values are used (left column) while spot patterns
are observed to form when model parameter values are selected from
the cross-diffusion parameter space only. Note that the spheroidal
surfaces in the left column are substantially larger than those in the
right column due to the fact that large concentrations values of u are
obtained and these contribute to large surface evolution since the
evolution is driven by the u concentrations.

For illustrative purposes let us take parameter values d =
10,d, = 1,d,, = 1.0, y = 200 and consider two sets of model
values for @ and b, namely, a = 0.1, » = 0.9 and a = 0.2,
b = 0.5. The latter set belongs to the cross-diffusion parameter
space only. These will not give rise to patterning in the absence
of cross-diffusion.

Figure 12 displays snapshots exhibiting patterns forming
during surface evolution. The surface is evolving arbitrarily,
driven by chemical species resident on the surface. Similarly
to previous results, classical parameter values seem to favor
the formation of stripe-circular patterns during growth devel-
opment, while those induced by cross-diffusion exhibit the
formation of spot patterns.

V. CONCLUSION AND DISCUSSION

This study has unraveled the effects of cross-diffusion
to the theory of pattern formation on evolving domains and
surfaces. These results present detailed comparisons between
patterns formed with model parameter values selected such
that they belong to the classical Turing parameter space and
model parameter values selected such that they belong only
to the parameter space induced by cross-diffusion. Our most
revealing findings are the following:

PHYSICAL REVIEW E 90, 043307 (2014)

(1) For the parameter values selected from the cross-
diffusion-induced parameter spaces, spot patterns with smaller
wave lengths form during domain and surface evolution.

(2) Classical model parameter valuesa = 0.1 and b = 0.9
as used currently in the literature seem to favor the formation
of stripe or circular patterns (for the model parameter values
we have considered).

(3) The reaction-diffusion system with cross-diffusion in
the u equation or in both the u# and w equations induce pattern
formation earlier than the case without cross-diffusion. This
result supports our previous theoretical results proving that
cross-diffusion induces instability faster than the classical
reaction-diffusion system in the absence of cross-diffusion
[25].

(4) As a result, pattern bifurcation transitions during
growth development occur substantially different for the three
model systems. A theoretical analytical framework on the
bifurcation analysis of reaction-diffusion systems with or
without cross-diffusion on evolving domains and surfaces is
still largely missing in the current literature. Such a framework
could help us understand the role of curvature, for example, on
pattern formation during growth development. It is through the
use of novel numerical methods such as the finite elements and
its extensions that we are able to compute pattern evolution on
realistic biological surfaces. These results reveal interesting
bifurcation transitions that are yet to be proved rigorously.

Our findings have been made possible by the use and
application of the evolving surface finite element method
for solving highly nonlinear reaction-diffusion systems with
cross-diffusion on complex evolving domains and surfaces
[31-33]. The generality and applicability of our numerical
method allows to study not only uniform isotropic and
anisotropic surface evolution laws, but more complex geo-
metric and concentration-driven evolution laws. In particular,
the methodology handles quite easily such laws which are
defined as geometric partial differential equations. In particular
we have presented results for the cases when the domains
and surfaces are evolving according to prescribed uniform
isotropic and anisotropic evolution laws as well as the case
when the surface description is an unknown quantity which
must be determined as part of the problem.

Understanding the effects of cross-diffusion to the theory of
pattern formation is crucial in many areas of research such as
nanoparticles, surfactants, and polymers. Numerical methods
such as those proposed in this article are critical to revealing
pattern formation during growth development of biological
systems. Our framework offers modelers, computational bi-
ologists, and numerical analysts with robust, efficient, and
stable computational algorithms for studying such complex
partial differential equations of reaction-cross-diffusion type
on evolving domains and surfaces. In future work, we will
focus on the stability and analysis of such models as well
as developing bulk-surface methodologies that will allow
us to couple surface dynamics to internal biochemical and
biomechanical properties inside the surface.
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