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The accuracy of lattice Monte Carlo (LMC) simulation of biased diffusion models is of great importance as
far as the simulation credibility is concerned. It is known that the fixed time step LMC algorithm can reproduce
the mean and the variance of the particle displacement exactly for all discrete time steps. Thereby, we propose
to use the skewness and other quantities to measure the accuracy. For the one-dimensional fixed time step LMC
simulation, we obtain an explicit expression for the skewness and find that the algorithm always produces a
negative skewness that converges to zero in the long-time limit when the velocity is positive. It is proved that the
skewness is inversely proportional to the square root of the number of simulation steps and the first step error only
depends on the Péclet number. We further discuss several other measures of the accuracy of the approximation
based on appropriately defined mean-square errors, leading to interesting, unexpected results. The accuracy
measures can exhibit complicated nonmonotonic behavior and the optimal step size may depend on the measure
of accuracy used.
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I. INTRODUCTION

Biased diffusion models are frequently encountered in
numerous physical, chemical, and biological problems [1]. As
an effective method, lattice Monte Carlo (LMC) simulation is
usually used to solve such kinds of problems when it is difficult
to get analytic solutions [2]. In principle, a LMC simulation
will arbitrarily approach the solution of continuous systems if
its algorithm is correctly designed and the lattice step is small
enough [3].

The key to designing a LMC algorithm is to calculate the
first passage time (FPT) distribution [4] and the transition prob-
abilities exactly for biased random walkers on discrete lattices.
However, to reproduce the diffusion and drift dynamics for a
free particle correctly, it is necessary to use a stochastic time
step to recover temporal fluctuations. For numerical techniques
that require a fixed time step, it is possible to rescale the mean
FPT and the transition probabilities to reproduce an equivalent
random-walk process. But this is only the case in one and two
dimensions. It is impossible to design such a fixed time step
LMC algorithm that would reproduce both drift and diffusion
correctly in more than two dimensions if the jumps are only
allowed along one axis at each time step [5].

More importantly, the accuracy of such LMC simulations
plays an import role in reproducing the exact dynamics of
biased diffusion processes that involve simultaneous reactions
or interactions between particles [6]. The need for accuracy
also motivates the development of stochastic microscopic
simulations which track the position and state of each
particle individually [7]. For unbiased diffusion, the theory of
optimizing the accuracy of the fixed time step LMC simulation
is extensively studied in Ref. [3]. It is shown that if the time step
or the mesh size remains fixed, the accuracy of the algorithm
is optimal for a certain finite value of the other parameter. For
biased diffusion, it is proved that the fixed time step LMC
simulation will reproduce the mean and the variance of the
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particle displacement exactly for all discrete time steps [5].
Therefore, we propose to use the skewness and other possible
quantities to measure the accuracy.

For the purpose of this paper, we will only consider
the accuracy of the one-dimensional fixed time step LMC
simulation of biased diffusion models. Our objective is to
find some quantities to measure the error convincingly and
reveal the main factors that determine the accuracy. The rest
of the paper is organized as follows. In Sec. II, we give
a brief derivation of the one-dimensional fixed time step
LMC algorithm. In Sec. III, we obtain an explicit expression
for the skewness by calculating the exact moments of the
particle distribution at discrete times directly. We show that the
behavior of the skewness is characterized by the inverse power
law relation. In addition, we discuss several other measures of
the accuracy via the root-mean-square error. In Sec. IV, we
further confirm our theoretical analysis by numerical results
and argue that different quantities may be useful in different
contexts. In this sense, the optimal lattice step may depend on
the measure of accuracy. Finally, we summarize our work and
draw some conclusions.

II. FIXED TIME STEP LMC ALGORITHM

Consider the one-dimensional Fokker-Planck equation with
constant drift q and diffusivity D,

∂

∂t
ρ(x,t) = −q

∂

∂x
ρ(x,t) + D

∂2

∂x2
ρ(x,t). (1)

With the initial condition ρ(x,t = 0) = δ(x) (where δ is the
Dirac delta function), the explicit solution is given by

ρ(x,t) = 1√
4πDt

exp

[
− (x − qt)2

4Dt

]
. (2)

The mean μ, the variance σ 2, and the skewness η are

μ = qt, σ 2 = 2Dt, η = 0. (3)

For the biased diffusion equation given by Eq. (1), the FPT
probability distribution function (PDF) with interval length �
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can be written down analytically [8],

ϕ(t) = πD(1 + e�q/D)

2�2

∞∑
n=1

n sin

(
nπ

2

)

× exp

(
−n2π2Dt

4�2
− q2t + 2�q

4D

)
. (4)

The Laplace transform of the above FPT PDF is [9]

L [ϕ(t),s] = cosh

(
�q

2D

)
sech

(
�
√

q2 + 4Ds

2D

)
. (5)

Expanding this expression around s = 0, we have

L [ϕ(t),s] = 1 − 〈τ 〉s + 〈τ 2〉
2

s2 + O(s3). (6)

The first two moments of the FPT and the total probability
of being absorbed at each end are

〈τ 〉 = �

q
tanh

(
�q

2D

)
, (7)

〈τ 2〉 = �

q2

[
2� tanh2

(
�q

2D

)
+ 2D

q
tanh

(
�q

2D

)
− �

]
, (8)

p± =
[

1 + exp

(
∓�q

D

)]−1

. (9)

For a random walk with a fixed time step T and a probability
p0 to stay put for each jump, the FPT PDF is given by

φ(t) =
∞∑

n=1

(1 − p0)pn−1
0 δ(t − nT ). (10)

Correspondingly, the Laplace transform is

L [φ(t),s] = 1 − p0

esT − p0
. (11)

Similarly, the expansion around s = 0 is given by

L [φ(t),s] = 1 − T

1 − p0
s + (1 + p0)T 2

2(1 − p0)2 s2 + O(s3). (12)

A comparison of the coefficients between Eq. (6) and
Eq. (12) reveals the choice

T = (1 − p0)〈τ 〉 = �q coth(�q/2D) − 2D

q2
(13)

and

p0 = 〈τ 2〉
〈τ 〉2 − 1 = 2D

�q
coth

(
�q

2D

)
− csch2

(
�q

2D

)
. (14)

This is identical to the results given in Ref. [5]. Note that
once the parameters �,q,D are given, both the fixed time step
and the probability to stay put are determined. Consequently,
the transition probabilities must be rescaled,

p′
± = (1 − p0)p± = (1 − p0)

[
1 + exp

(
∓�q

D

)]−1

. (15)

It is advisable to notice that one can get the following
parameters in the limit q → 0:

T = �2

6D
, p0 = 2

3
, p′

− = 1

6
, p′

+ = 1

6
. (16)

These are exactly the same optimal parameters as derived
in Ref. [3] for the fixed time step LMC simulation of unbiased
diffusion models.

When there is no diffusion, i.e., in the deterministic limit
D → 0, we have

T = �

q
, p0 = 0, p′

− = 0, p′
+ = 1. (17)

In this case, the fixed time step LMC simulation will also
reproduce the pure drift process exactly for all discrete time
steps.

III. ACCURACY ANALYSIS

We will first calculate the moments of the particle distri-
bution to analyze the accuracy of the one-dimensional fixed
time step LMC simulation. This can be done by calculating
the exact moments of the particle distribution at discrete times
directly as in Ref. [3].

For a random walk on lattices starting at site 0, the position
after N steps is

lN = �

N∑
i=1

νi, (18)

where νi is +1 (–1) for a move to the right (left) with
probability p′

+ (p′
−) and 0 when the particle does not move

with probability p0.
Since different steps are uncorrelated, the first three

moments can be determined by

lN = �

N∑
i=1

(νi) = N�(p′
+ − p′

−), (19)

l2
N = �2

N∑
i,j=1

(νiνj ) = �2

⎡
⎣ N∑

i=1

(
ν2

i

) +
N∑

i,j=1,i 	=j

(νiνj )

⎤
⎦

= N�2[(p′
+ + p′

−) + (N − 1)(p′
+ − p′

−)2], (20)

l3
N = �3

N∑
i,j,k=1

(νiνj νk)

= �3

⎡
⎣ N∑

i=1

(
ν3

i

) + 3
N∑

i,k=1,i 	=k

(
ν2

i νk

)

+
N∑

i,j,k=1,i 	=j,j 	=k,i 	=k

(νiνj νk)

⎤
⎦

= N�3[(p′
+ − p′

−) + 3(N − 1)(p′
+ + p′

−)(p′
+ − p′

−)

+ (N − 1)(N − 2)(p′
+ − p′

−)3]. (21)
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Therefore, the variance is given by

(lN − lN )
2 = l2

N − lN
2 = N�2[(p′

+ + p′
−) − (p′

+ − p′
−)2].

(22)

The third moment of the displacement is

(lN − lN )
3 = l3

N + 2lN
3 − 3lN l2

N

= N�3(p′
+ − p′

−)[1 − 3(p′
+ + p′

−) + 2(p′
+ − p′

−)2].

(23)

Now it is not difficult to verify that both the drift and
the diffusivity are reproduced exactly for all discrete time

steps,

lN

NT
= �(p′

+ − p′
−)

T
= q, (24)

(lN − lN )
2

2NT
= �2

2T
[(p′

+ + p′
−) − (p′

+ − p′
−)2] = D. (25)

This means that it is not appropriate to use the mean or the
variance to evaluate the accuracy of the fixed time step LMC
simulation. Hence we propose to use the skewness to measure
the accuracy.

According to Eqs. (22) and (23), the skewness of the fixed time step LMC simulation at discrete times can be calculated by

ηN = (lN − lN )
3

[(lN − lN )
2
]

3
2

= (p′
+ − p′

−) + 2(p′
+ − p′

−)3−3(p′
+ − p′

−)(p′
++p′

−)

N
1
2 [(p′+ + p′−)−(p′+ − p′−)2]

3
2

. (26)

This proves that the skewness converges to zero in the
limit N → +∞ and the rate of convergence is inversely
proportional to

√
N .

To proceed further, let us suppose q > 0 for simplicity.
With the dimensionless Péclet number

ξ = �q

2D
, (27)

Eq. (26) reduces to

ηN = N− 1
2 ξ

3
2

[
coth(ξ ) − 1

ξ

]− 1
2

×
[

1 − coth(ξ )

ξ
+ 2

ξ 2
− coth2(ξ )

]

= N− 1
2 ξ

3
2

[
coth(ξ ) − 1

ξ

]− 1
2

×
[

4sinh2(ξ ) − ξ sinh(2ξ ) − 2ξ 2

2ξ 2sinh2(ξ )

]
. (28)

Now let us only consider the numerator in the last
parentheses. One can show that

�ξ = 4sinh2(ξ ) − ξ sinh(2ξ ) − 2ξ 2, �ξ=0 = 0,

�̇ξ = 3 sinh(2ξ ) − 2ξ cosh(2ξ ) − 4ξ, �̇ξ=0 = 0,
(29)

�̈ξ = 4[cosh(2ξ ) − ξ sinh(2ξ ) − 1], �̈ξ=0 = 0,

˙�̈ξ = 4[sinh(2ξ ) − 2ξ cosh(2ξ )], ˙�̈ξ=0 = 0,

˙�̈̇ξ = −16ξ sinh(2ξ ) � 0.

Consequently, it is proved that

˙�̈ξ � 0, �̈ξ � 0, �̇ξ � 0, �ξ � 0. (30)

Finally, it leads to the fact that ηN � 0 from which we
conclude that the fixed time step LMC simulation always
produces a negative skewness for biased diffusion when the

velocity q > 0. Since the skewness of the Gaussian solution
of the diffusion problem is identically zero, we can use the
nonzero skewness of the fixed time step LMC simulation as a
measure of its accuracy.

It also shows that the maximum error introduced in the
skewness of the fixed time step LMC simulation is only
determined by the Péclet number. The larger the Péclet number
is, the larger the maximum error is. This systematic error
does not vanish nor decrease as the number of simulation runs
increases. However, it converges to zero in the long-time limit.
Therefore, to achieve a given tolerance ε 
 1 in the magnitude
of the skewness, we suggest choosing the lattice step � so that
−ε < ηN=1 < 0 according to Eq. (28). Theoretically, it will be
sufficient to guarantee that the error introduced in the skewness
is always within the tolerance if the numerical round-off errors
are not considered.

As far as the accuracy of the one-dimensional fixed time step
LMC simulation is concerned, another straightforward way to
obtain a quantitative estimate of the accuracy is defined by

�I (t) =
( +∞∑

i=−∞

{∫ i�+ �
2

i�− �
2

[
ρ(x,t) − P (i,t)

�

]2

dx

}) 1
2

. (31)

In this definition, the difference between the continuous dis-
tribution [cf. Eq. (2)] and the piecewise-constant discontinuous
distribution produced by the fixed time step LMC simulation
is measured by the summation of integrals on lattices. Clearly,
it does not depend on the length of the interval on which the
simulation is run once this length exceeds the width of the
distribution significantly. However, a potential problem with
this quantity is that it is always nonzero for � > 0, no matter
how accurate the algorithm is. A potentially better possibility
is using

�II(t) =
⎧⎨
⎩

+∞∑
i=−∞

[∫ i�+ �
2

i�− �
2

ρ(x,t)dx − P (i,t)

]2
⎫⎬
⎭

1
2

. (32)
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With this quantity, the error can actually be zero even for finite
� > 0, if the number of particles in each bin is correct. One
may also argue that each term in the above equation should be
further divided by the lattice step and hence propose another
quantity,

�III(t) =
⎧⎨
⎩1

�

+∞∑
i=−∞

[∫ i�+ �
2

i�− �
2

ρ(x,t)dx − P (i,t)

]2
⎫⎬
⎭

1
2

= �II(t)√
�

. (33)

The justification of quantities �II and �III can be briefly
given as follows. Suppose for simplicity that there are only
n nonzero terms in the sum in Eq. (32) and each of them is

equal to a2. Then �II = n1/2a. However, if instead we take
the absolute value and remove the square root, then we get
�II = na, which is quite different. If we are comparing two
distributions, then, if we decrease � by a factor of 2, a will
decrease by a factor of 2 and n will increase by a factor of
2. So na will not change, and �II does not depend on �, but
�III does. However, if �II = n1/2a is considered instead, then
this quantity will decrease by a factor of

√
2 and therefore

the opposite conclusion is reached: �III does not depend on �

while �II does.
The justification of �II is simply that it is a convenient

quantity, since it only depends on ξ for the LMC algorithm
considered in this paper. First of all, let us consider the quantity
�II defined by Eq. (32). According to the analytic solution
given by Eq. (2) and the fixed time step given by Eq. (13), we
have

�II(t = NT+) =
⎧⎨
⎩

+∞∑
i=−∞

[∫ i�+ �
2

i�− �
2

ρ(x,NT)dx − P (i,NT)

]2
⎫⎬
⎭

1
2

=
⎛
⎝ +∞∑

i=−∞

{∫ i�+ �
2

i�− �
2

1√
4πNDT

exp

[
− (x − NqT )2

4NDT

]
dx − P (i,NT)

}2
⎞
⎠

1
2

=
⎧⎨
⎩

+∞∑
i=−∞

[
�

(
i� + �

2 − NqT√
2NDT

)
− �

(
i� − �

2 − NqT√
2NDT

)
− P (i,NT)

]2
⎫⎬
⎭

1
2

=
⎡
⎣ +∞∑

i=−∞

⎛
⎝�

⎧⎨
⎩

i + 1
2 − N

[
coth(ξ ) − 1

ξ

]
√

N
ξ

[
coth(ξ ) − 1

ξ

]
⎫⎬
⎭ − �

⎧⎨
⎩

i − 1
2 − N

[
coth(ξ ) − 1

ξ

]
√

N
ξ

[
coth(ξ ) − 1

ξ

]
⎫⎬
⎭ − P (i,NT)

⎞
⎠

2
⎤
⎥⎦

1
2

,

N = 1,2,3, . . . , (34)

where � is the cumulative distribution function of the standard
normal distribution and the “+” sign in t = NT+ indicates
that all the quantities are measured after the jump, rather than
before.

Upon using the combined generating function and Fourier
transform [4], we can obtain

P (i,NT) =
N−|i|∑
m=0

N !(p0)m(p′
+)

N−m+i
2 (p′

−)
N−m−i

2

m!
(

N−m+i
2

)
!
(

N−m−i
2

)
!

,

(35)
N = 1,2,3, . . . .

Note that the sum over m in Eq. (35) should only include
the values of m of the same parity as N + i. According to
Eqs. (14) and (15), it is clear that the probabilities to move to
the nearest neighbor sites as well as to stay put at each step
only depend on the Péclet number. Consequently, it is proved
that �II only depends on the Péclet number and the number of
simulation steps.

However, the error calculated by �II exhibits rather com-
plicated nonmonotonic behavior as a function of the Péclet
number and the number of simulation steps. In the limit ξ → 0,
the first step error of �II approaches a constant. Therefore, the

behavior of the first step error of �III for small lattice steps is
characterized by

�III(t = T +) ∼ �− 1
2 , � → 0. (36)

Note that the first step error is not necessarily the maximum
error during simulation. One can further show that the
maximum of �II also approaches a constant in the limit � →
+∞ or ξ → +∞. For ξ → +∞, it follows from Eqs. (14)
and (15) that p0 ≈ 1/ξ , p′

+ ≈ 1 − 1/ξ , and p′
− is negligible

(exponentially small). Then only the m = N − i term survives
in Eq. (35) and

P (i,NT ) ≈ N !(1/ξ )N−i(1 − 1/ξ )i

(N − i)!i!
. (37)

Suppose N = αξ , where α ∼ 1, and i = N − j , where j

is a small integer. According to Eq. (13), this corresponds to
the time

t = NT ≈ αξ
�

q

(
1 − 1

ξ

)
= α

(
�2

2D
− �

q

)
. (38)

043305-4



ACCURACY OF LATTICE MONTE CARLO SIMULATION OF . . . PHYSICAL REVIEW E 90, 043305 (2014)

Then

P (i,NT) = P (N − j,αξT ) ≈ (αξ )!(1 − 1/ξ )αξ−j

j !(αξ − j )!ξ j

≈ (αξ )j (1 − 1/ξ )αξ

j !ξ j
≈ (αξ )j e−α

j !ξ j
= αje−α

j !
, (39)

i.e., the Poisson distribution. Note that ξ does not enter
the final expression. According to Eq. (2), the continuous
distribution ρ(x,t) at this time is Gaussian with the mean
qt ≈ �α[�q/(2D) − 1] = �α(ξ − 1) and the width

√
2Dt ≈√

α(�2 − 2D�/q) ≈ �
√

α. Thus,

ρ(x,αξT ) ≈ 1

�
√

2πα
exp

(
− (x − �α(ξ − 1))2

2α�2

)
. (40)

Note that

πj (α) ≡
∫ (N−j+ 1

2 )�

(N−j− 1
2 )�

ρ(x,αξT )dx (41)

only depends on j and α, but not on �, ξ , D, or q. Therefore,

�II(αξT ) =
⎧⎨
⎩

+∞∑
j=−∞

[πj (α) − P (N − j,αξT )]2

⎫⎬
⎭

1
2

(42)

is a function of α = t/(ξT ) only. Consequently, the maximum
of �II is a universal constant that does not depend on ξ . This
also proves that �II as a function of α = t/(ξT ) ≈ 2Dt/�2

becomes universal when ξ → +∞. It follows that the behavior
of the maximum of �III for large lattice steps is characterized
by

max{�III(t)} ∼ �− 1
2 , � → +∞. (43)

Since it is not easy to get more information by further
mathematical analysis, we will show more details about the
quantities by using numerical methods in the next section.
According to the definitions, both �II and �III can be
numerically calculated before or during simulation.

IV. NUMERICAL RESULTS

According to Eqs. (13)–(15), we implement the fixed time
step LMC simulation and set up the one-dimensional biased
diffusion problem with constant diffusivity and drift for the
purpose of testing.

The total simulation time is set to 100 s and the total number
of initial particles is set to 106. Since the error introduced in the
skewness is only related with the Péclet number, we use a fixed
diffusivity D = 1 μm2/s and a set of other parameters, i.e.,
� = {1,2,4} μm, q = {0.8,1.6,3.2} μm/s, for a comparative
study. For each configuration, we run the simulation 100 times
and analyze the average result.

We use the Mersenne Twister random number generator
to generate random numbers subject to uniform distribution
during simulation [10]. We report that both the mean and
the mean-square displacement are rather accurate as one can
expect. Thus we only plot the skewness in Fig. 1. Note that we
use the log-log scale to plot the curve of −ηt versus simulation
time t for clarity. It turns out that the results agree with our
theoretical predictions very well.
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FIG. 1. (Color online) Errors measured by skewness (−ηt ) as a
function of simulation time (s). Values of �q (proportional to the
Péclet number) are shown on each curve; individual values of � and
q are also given.

Clearly, it shows that the fixed time step LMC simulation
yields a negative skewness although it can reproduce the
mean and the variance exactly. It is also obvious that the first
step error only depends on the Péclet number and the error
decreases significantly as the Péclet number becomes small.
In this sense, the choice of lattice step can be loosed for weakly
biased diffusion without significant degradation of accuracy,
and vice versa.

It is confirmed that the skewness is inversely proportional
to the square root of the number of simulation steps. Note
the time step is also related with the lattice step and the drift
coefficient according to Eq. (13).

It should be mentioned that the skewness measured during
the simulation may vary slightly, especially for small Péclet
number and large simulation time. In effect, we have two
variants of the LMC simulation: the particle-based approach
and the numerically exact master equation approach. The latter
can be used instead of the former to avoid the use of random
numbers by solving the master equation

ni(t + T ) = p0ni(t) + p′
+ni−1(t) + p′

−ni+1(t), (44)

where ni is the mean particle number at site i.
As a result, it will remove the “noise” from Fig. 1. Note that

only two solid straight lines are plotted in the figure to give an
impression of the result obtained by solving the above master
equation. Clearly, it matches the theoretical result exactly.

Now let us consider the error �II defined by Eq. (32).
According to Eqs. (34) and (35), we plot the error �II as
a function of the number of simulation steps with different
Péclet numbers in Fig. 2.
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FIG. 2. (Color online) Errors calculated by �II versus number of
simulation steps with different Péclet numbers. Note that the log-log
scale is used in the plot.

According to the numerical results, one can roughly infer
that �II decreases monotonically when the Péclet number is
small or the number of simulation steps is large. The behavior
of �II as a nonmonotonic function of the number of simulation
steps is rather complicated, especially when the Péclet number
is large. It is seen that at ξ = 3.2 or ξ = 12.8, �II first goes
up before going down monotonically. It is also obvious that
at even higher ξ = 51.2 or ξ = 204.8 an additional maximum
appears.

It shows that the dependence of the error �II on the number
of simulation steps is power law in the limit N → +∞.
Numerical calculations suggest that there are two power laws:
−5/4 for intermediate times and −3/4 for large times. The
crossover between them shifts downwards with increasing ξ .
For small ξ , the crossover is at very large times, so that only
the −5/4 law is visible, and for large ξ , the crossover is at very
small times, so only the −3/4 law is visible.

According to Fig. 2, it is further confirmed that the
maximum of �II approaches a constant in the limit ξ → +∞
which is already stated in the previous section. In fact, it turns
out that both in the limit ξ → 0 and in the limit ξ → +∞ the
curves merge when plotted against Dt/�2.

It is worth mentioning that the time step depends on the
lattice step �, the diffusivity D, and the drift q instead of the
single Péclet number ξ . Therefore, the figure will be different if
�II is plotted against the simulation time instead of the number
of simulation steps.
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FIG. 3. (Color online) Errors calculated by �II versus simulation
time. Note fitting curves connecting the data points are used in the
plot.

To reveal more details about �II, we also plot �II as a
function of simulation time for some typical parameters in
Fig. 3. According to the definition of �II, it is clear that
�II is not piecewise constant because P (i,t) remains constant
between the jumps while ρ(x,t) does not. Strictly speaking,
�II is smooth between the jumps. Therefore, fitting curves
connecting the data points are used in the plot.

According to Fig. 3, it shows that the error calculated by
�II evolves exactly the same as a function of the number of
simulation steps if the Péclet number is the same. However,
the trajectories of �II plotted against the simulation time may
not overlap because of the different time steps.

As far as the accuracy of the fixed time step LMC simulation
is concerned, it would be more interesting to investigate into
the maximum of �II. For comparison, both the maximum error
and the first step error calculated by �II are plotted against the
Péclet number in Fig. 4.

It is observed that both the maximum error and the first
step error calculated by �II approach the same constant
(approximately 0.062) in the limit ξ → 0. This is consistent
with the observation that �II decreases monotonically when
the Péclet number is small. The maximum of �II approaches
approximately 0.238 in the limit ξ → +∞. In addition, it is
found that the behavior of the first step error calculated by �II
is power law in the limit ξ → +∞ and the exponent is −1.

It is worth noting that the value at which the maximum of
�II reaches its minimum corresponds to a fixed Péclet number
which can be found by numerical method that gives ξ ≈ 1.21.
Consequently, the optimal lattice step can be determined for the
fixed time step LMC simulation if it is required to minimize the
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FIG. 4. (Color online) Maximum error and first step error calcu-
lated by �II versus Péclet number. Note fitting curves connecting the
data points are used in the plot.

maximum of �II. One can also find that the two curves separate
at ξ ≈ 2.25. This means that �II only decreases monotonically
when ξ < 2.25. Otherwise, �II is nonmonotonic.

Then let us consider the maximum error and the first step
error calculated by �III which are plotted in Fig. 5. Note that
�III is not only determined by the Péclet number. Therefore,
we plot �III against the lattice step for some typical parameters.

Clearly, the maximum of �III is no longer a constant in the
limit � → 0 or � → +∞. Instead, it shows that the dependence
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FIG. 5. (Color online) Maximum error and first step error calcu-
lated by �III versus lattice step. Note the curves connecting the data
points are fitting curves.

of the maximum of �III on the lattice step is the inverse power
law relation in both limits. The reason for this is clear since
the maximum of �II approaches a constant in the limit � → 0
or � → +∞. Consequently, the behavior of the maximum of
�III is dominated by the coefficient �−1/2 in both limits. In
the limit � → 0, the first step error of �III is dominated by
the coefficient �−1/2. In the limit � → +∞, the behavior of
the first step error of �III is also power law but the exponent
is −3/2.

According to the maximum of �III as well as the plot in
Fig. 5, one would most likely conclude that the lattice step
should be chosen as large as possible to minimize the error
introduced in the fixed time step LMC simulation. This is
obviously counterintuitive at first, as one would expect the
algorithm to become less accurate as the lattice is coarser.
However, this is mainly due to the fact that �III calculated
by Eq. (33) is dominated by the coefficient �−1/2 in the limit
� → 0 or � → +∞ as we have stated above.

Suppose there are two normalized distributions and we want
to estimate how much they differ from each other using �II or
�III. If the squaring of each term is replaced by the absolute
value and the square root is removed, then �II is exactly the
nonoverlapping area covered by the two distributions while
�III equals �II divided by �. Clearly, �II does not depend
on � while �III does. Most importantly, �II has a finite
upper bound. In this case, it is not strange that �III will
be infinitely small in the limit � → +∞. The situation is
similar when we come back to the original definitions. Loosely
speaking, a larger lattice step will in general produce an even
wider and flatter distribution. For simplicity, let us suppose
� is large enough. If � is increased, but q and D are kept
the same, then T will increase according to Eq. (13). As a
result, the width of the Gaussian distribution

√
2NDT will

increase. Consequently, the difference measured by �III will be
smaller.

According to Fig. 3, one can also infer the behavior of �III
as a function of the simulation time by taking the coefficient
�−1/2 into account. The only difference is that the relative
vertical relation between the trajectories with different lattice
steps changes. Thus the plot is not presented here.

To sum up, the accuracy of the fixed time step LMC
simulation can be measured by different quantities. Roughly
speaking, the skewness only characterizes the crude overall
shape of the distribution and it may be zero even when
the simulated distribution is not identical to the correct
distribution. This is the case, in particular, for q = 0 and
ηN = 0, but in fact the distribution obtained in LMC simulation
is obviously not identical to the Gaussian distribution, and
indeed, �II and �III are nonzero. Therefore, looking at the
skewness alone may be misleading, since other character-
istics of the error do not necessarily vanish in the limit
ξ → 0.

On the other hand, �II and �III look at the errors in every
bin and sum them up. For a large ξ and a small N , �II
and especially �III may be quite small, since most particles
are within one bin in both the simulated distribution and
the theoretical one, but the overall shape of the distribution
is very different from Gaussian and the distribution is very
asymmetric, which is reflected in a large ηN . Therefore, it is
the meaning of the quantities that makes the difference.
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Despite the fact that different quantities may exhibit rather
complicated nonmonotonic behavior and lead to various
optimal lattice steps, it is believed that these quantities will be
appropriate for different purposes or make sense in different
contexts.

V. CONCLUSION

The accuracy of the fixed time step LMC simulation is
always a matter of concern, especially for biased diffusion
models. However, it is never a trivial matter to measure
the accuracy of such LMC simulations quantitatively and
convincingly. We propose to use the skewness and other
quantities to measure the accuracy. We have obtained an
explicit expression for the skewness of the one-dimensional
fixed time step LMC simulation. It reveals that the accuracy as
measured by the skewness only depends on the Péclet number
and converges to zero in the long-time limit. We also confirm
our theoretical analysis by numerical results.

Moreover, we have discussed several other quantities
defined by the root-mean-square error that can also be used to
measure the accuracy of the fixed time step LMC simulation.
We have revealed some complicated nonmonotonic behavior
of these quantities by using numerical calculations. It is found
that different quantities may lead to different optimal lattice
steps although sometimes it seems to be counterintuitive.
Therefore, other possible quantities that can be used to measure

the accuracy of such stochastic simulations should be further
investigated.

As the importance of introducing a wait time and a
probability to stay put is already well known in the LMC
simulation [11], we would like to emphasize the importance
of choosing an optimal lattice step and better quantities to
measure the accuracy of such stochastic LMC simulations
whenever it is possible. More generally, the accuracy of such
LMC simulations, either uncorrelated or correlated, should be
extensively studied because many real applications that involve
reactions or interactions between particles depend greatly on
the accuracy of simulation [12].

The accuracy not only determines the simulation credibility
but also affects the user’s confidence. While this work by
itself only reveals a little about this topic, we hope it would
help to give more insight into the accuracy of such stochastic
simulation.
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