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Response calibration is the process of inferring how much the measured data depend on the signal one is
interested in. It is essential for any quantitative signal estimation on the basis of the data. Here, we investigate
self-calibration methods for linear signal measurements and linear dependence of the response on the calibration
parameters. The common practice is to augment an external calibration solution using a known reference signal
with an internal calibration on the unknown measurement signal itself. Contemporary self-calibration schemes
try to find a self-consistent solution for signal and calibration by exploiting redundancies in the measurements.
This can be understood in terms of maximizing the joint probability of signal and calibration. However, the
full uncertainty structure of this joint probability around its maximum is thereby not taken into account by
these schemes. Therefore, better schemes, in sense of minimal square error, can be designed by accounting for
asymmetries in the uncertainty of signal and calibration. We argue that at least a systematic correction of the
common self-calibration scheme should be applied in many measurement situations in order to properly treat
uncertainties of the signal on which one calibrates. Otherwise, the calibration solutions suffer from a systematic
bias, which consequently distorts the signal reconstruction. Furthermore, we argue that nonparametric, signal-
to-noise filtered calibration should provide more accurate reconstructions than the common bin averages and
provide a new, improved self-calibration scheme. We illustrate our findings with a simplistic numerical example.
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I. INTRODUCTION

A. Motivation

Any measurement device needs a proper calibration, oth-
erwise an accurate translation of the raw measurement data
into a common system of units is impossible. Our ability to
process, combine, communicate, and draw conclusions from
the results of measurements depends critically on the achieved
calibration accuracy.

The calibration problem is widespread across different
fields. Knowing the amplifier gain factors and detector effi-
ciencies of physical measurement apparatuses is necessary to
analyze their data. In astronomy, the point spread function of a
telescope observation might be unknown since it could depend
on varying atmospheric influences. In analyzing sociological
questionnaires, the reliability of people’s answers might differ
from topic to topic, but needs to be taken into account. In
all those cases, the measurement response to the quantity
of interest, our signal, needs to be known. This response
expresses how the data react (on average) to changes in the
signal. Only if one knows the response precisely, one can
accurately recover the signal of interest correctly from data.
The process of the response determination is called calibration,
its result the calibration solution, calibration reconstruction,
or just calibration for brevity.

Several kinds of calibration uncertainties appear in practice:
offsets (or additive noise), gain uncertainties (or multiplicative
noise), and nonlinearities (e.g., receiver saturation). This work
deals with the first two kinds of problems: multiplicative and
additive noise. Noise denotes here any influence of the data
which is not due to the signal of interest, be it stochastic
or just unknown in nature. Nonlinear signal responses com-
plicate the signal inference considerably. If the nonlinearities
are known, the generic insights about the calibration of additive
and multiplicative noise derived in this work still apply. The

calibration of unknown nonlinearities is beyond the scope of
this paper, though.

The classical way to calibrate a measurement device is
to apply it to a known reference signal, the calibrator. The
obtained instrument response to this can then be used to
gauge the instrument and to interpret the data obtained from
measuring an unknown signal [1–6].

However, in many measurement situations, the response
depends strongly on time, location, temperature, energy,
frequency, or other dimensions. A simultaneous measurement
of both calibrator and signal is often impossible. The external
calibration needs then to be extrapolated within the time
(space, energy, . . .) domain of the signal measurement.
Extrapolation in time is only possible if the calibration exhibits
sufficient autocorrelation. This autocorrelation could be used
to optimally filter out noise in the calibration solution. In
practice, however, usually only averaging of the individual
calibration solutions within suitably chosen intervals is per-
formed.

A calibration obtained might be further improved by
exploiting redundancies in the signal measurement. If the same
aspects of the signal are measured repeatedly, but the data show
significant deviations between the individual measurements,
this indicates a change in the instrument’s sensitivity. Thus,
an external calibration can often be improved by an internal
calibration using the unknown signal itself as an additional
source of calibration information.

The usual internal calibration or self-calibration (self-
cal [7–14]) scheme proceeds as follows. A coarse external
calibration is obtained and then applied to the data to get a
first signal reconstruction. This signal reconstruction is then
used for a refinement of the calibration, which in turn helps to
further improve the signal reconstruction. The reconstruction
and calibration operations are repeated until some desired
convergence criteria are met.
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It is, in general, unclear whether such a procedure converges
and whether the obtained solution is reasonable. There are self-
cal schemes derived from minimizing an objective function
[6] and convergence can be proven for them. However, for
empirically designed self-cal schemes, as used, e.g., in radio
interferometry, such a proof is often missing. It could well be
that only a self-consistent solution of an incorrect signal and
an incorrect calibration is obtained, although the joint fit to the
data is perfect.

This problem is of generic nature. If a measured datum
depends on two unknowns, the signal and the instrument
sensitivity, these cannot unambiguously be reconstructed. The
additional presence of measurement noise makes this inference
problem even harder. External calibration is essential, but often
relies on the ability to extrapolate it into domains in time or
location, where, strictly speaking, it was not measured for.

In this work, we show that the classical self-cal scheme can
be understood as a joint maximization of the joint posterior
probability of signal and calibration given the data. This
posterior represents all available information on signal and
calibration. A stable fix point of the self-cal scheme is a
maximum of this joint posterior. It therefore represents the
most likely combination of signal and calibration, at least in
some vicinity of the fix point.

However, such maximum a posteriori (MAP) estimators are
known to be prone to overfitting the data. A posterior mean
signal would be optimal with respect to an expected square
error norm (e.g., [15]). In case of a symmetric posterior, mean
and maximum coincide and the MAP estimator is also optimal
in this sense. However, the presence of a nuisance parameter,
here being the unknown calibration, can turn an originally
symmetric problem into a skewed one. As a consequence,
the maximum of such a skewed, nonsymmetric posterior is
systematically biased away from the location of the posterior
mean (e.g., [16]). Indeed, we will show in this work that using
the joint MAP estimator of signal and calibration, as the self-
cal scheme does, implies a systematical bias with respect to
the more optimal posterior mean of signal and calibration.

B. Previous work

The previous work on calibration is vast, in particular the
mathematical-statistical literature. It may be classified into
whether it deals with univariate or multivariate calibration
problems, concentrates on external or internal calibration,
and uses frequentist or Bayesian methodologies. A review
of various mathematical treatments of external calibration
(univariant and multivariant as well as frequentistic and
Bayesian) can be found in [3].

External calibration means that an external, high-quality
data set is used to map out and reconstruct the response of
a measurement device. This could be a single real function
(univariate calibration, e.g., [1]) or a vector valued function
(multivariate calibration, e.g., [2]). This calibrated response is
then used in the interpretation of the following measurements.
The main challenge in external calibration is to construct a
noise suppressing reconstruction operation, which takes the
often unknown noise variance properly into account. The
function might be of parametric form [1], or nonparametric
estimators might be used [4,17]. It was realized that in many

situations, a calibration obtained at some instant is not accurate
for subsequent measurements, as the instrument might have
changed with time. An appropriate calibration transfer method
should be employed that takes such uncertainties properly
into account [5].

Internal calibration deals with the situation that an external
calibration solution is not available, or is known to be
inaccurate. For example, the instrument response might change
on time scales comparable to the one needed to switch the
instrument to the calibrator signal. This, for example, is a
common problem in radio interferometry, where the rapidly
changing Earth ionosphere can be regarded as part of the
telescope optics. In such cases, the signal of interest has to
serve as a calibration signal as well. The resulting self-cal
schemes image the signal with an assumed calibration, cali-
brate on this signal reconstruction, and repeat these operations
until convergence [7–14]. To the knowledge of the authors,
an information theoretical investigation is lacking about under
which conditions this leads to reliable results, and when it
fails, although practitioners certainly have developed a good
intuition on this.

A rigorous information theoretical treatment of the problem
of unknown calibration should be built on the calibration
marginalized likelihood since it contains all the available
information from the data and on the measurement process.
For a measurement with Gaussian noise, linear response, and
linear calibration uncertainties with a Gaussian distribution of
known covariance, this marginal likelihood can be calculated
analytically [18] and is reproduced here in Eq. (43). This likeli-
hood is a Gaussian probability density in the data, with a signal
dependent covariance. Thus, the resulting signal posterior is
very non-Gaussian. If the mean of this signal posterior can be
calculated, all the available internal calibration information
is taken implicitly into account, and there is no need for
a determination of the calibration. In case of nonparametric
measurement and calibration problems, the dimensionality of
the problem is, however, often too large (virtually unbound)
for the usual Monte Carlo methods to sample the posterior.
To tackle such and other problems, information field theory
[15,19,20] was developed. This exploits the mathematical and
conceptual similarities of the nonparametric inference problem
with statistical field theories well known in mathematical
physics. For example, the reconstruction of Gaussian random
fields with unknown covariance, as also needed for calibration,
was successfully treated in this framework [16,17,21–23].

For the effective treatment of non-Gaussian posteriors, the
method of minimal Gibbs free energy [24] (a thermodynamical
incarnation of the variational Bayes approach) has proven to
be useful and was applied to the calibration marginalized
signal inference problem by Ref. [25]. However, due to the
contrived structure of the marginal likelihood, relatively coarse
approximations had to be used there to get to analytical
formulas. For this reason, a more pragmatic approach shall
be followed here in tackling the internal calibration problem.

C. Structure of this work

This work is organized as follows. In order to develop an
intuitive understanding, we investigate an illustrative example
from a frequentist and Bayesian perspective in Sec. II. Then,
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we investigate in Sec. III the general theory of calibration of
linear measurements with partly unknown response operators,
in particular external calibration, classical self-cal, and a
new, uncertainty corrected self-cal schemes. These different
approaches are compared in Sec. IV via a numerical example
that is based on the illustrative example of Sec. II. We conclude
in Sec. V with a summary of our main findings and a brief
perspective on what would be required to develop a full theory
of calibration.

II. ILLUSTRATIVE EXAMPLE

It is the goal of this work to improve the present self-cal
schemes such that the reconstructed signal is closer to the a
posteriori mean. It turns out that this is a problem of high
mathematical complexity even for linear responses. The most
important correction we find can be understood intuitively,
though. For this, we first turn to a simplistic example, which
we investigate using a less formal language. A more general
and rigorous treatment will be given in Sec. III, which is able to
deal with the complex linear responses one can find in practice,
like convolving telescope beams, etc. The illustrative example
introduced here will be simulated in Sec. IV and is also the
basis of the figures in this article.

A signal s should be observed with an instrument that has
a sensitivity or gain g. In our illustrative example, which will
be replaced by a more general case later on, the instrument’s
data

d = gs + n (1)

is further corrupted by noise n. Here and in the following, any
calibration offset in the data is regarded as part of the noise n.

Signal, noise, and gains should be independent stochastic
processes so that their joint probability separates according to

P(n, g, s) = P(n)P(g)P(s). (2)

At this stage, the problem of signal and gain reconstruction
is symmetrically degenerate since we know as much about the
signal as about the gain given the data. Typically, the gain is not
completely unknown, for example, the sign of the instrument
gain is usually known. For definiteness, let us assume it to be
positive and actually g = 1 + γ , with 1 being the known part
of the gain and γ denoting the unknown part that we need
to calibrate. This could as well be positive as negative with
the same probability. We will refer to any estimate of γ as a
calibration.

A. Frequentist perspective

In frequentist data analysis, repeated instances of the data
are assumed to exist. These permit us to perform data averages
that can be tailored towards statistical averages. We adopt for
a moment this perspective since it allows us to highlight the
essence of the calibration problem.

If we would know the calibration, we could infer the signal
by averaging over the data in a way that averages over noise
realizations

〈d〉(n|γ,s) = (1 + γ ) s + 〈n〉(n)︸ ︷︷ ︸
=0

. (3)

Here, we assumed the noise to have a zero mean and denote
averages over the probability of a given b by

〈f (a)〉(a|b) ≡
∫

Da f (a) P (a|b). (4)

Here,
∫
Da denotes the phase space integral of a, at the

moment a finite dimensional integral like
∫

dn, and later on
also path integrals over functional spaces.

In case we do not know the calibration, we could still learn
something about the signal, if we are able to average over
the data in a way that averages over noise and calibration
realizations. This reveals the signal since

〈d〉(n,γ |s) = (1 + 〈γ 〉(γ )︸ ︷︷ ︸
=0

) s + 〈n〉(n)︸ ︷︷ ︸
=0

= s. (5)

This is less sensitive to the signal since we need more data
to perform our averaging of two stochastic processes: noise
and calibration. But, the point we want to make is that the
signal can be estimated from a suitable linear data average,
even without knowing the precise calibration, since there is
a known and positive part of the response of the data to the
signal.

Obtaining information on the unknown calibration γ , which
would help us to get the signal more accurately, is more
difficult. If we want to perform an analogous averaging to
retrieve some information on γ , now over noise and signal
realizations, we find

〈d〉(n,s|γ ) = (1 + γ ) 〈s〉(s)︸︷︷︸
=0

+〈n〉(n)︸ ︷︷ ︸
=0

= 0, (6)

while assuming a zero mean for the signal as well. Thus, at
linear order in the data, there is no calibration information
available. We cannot proceed without some knowledge of
the signal since the response of the data to our calibration
could as well be positive (for s > 0) as negative (for s < 0).
Furthermore, whenever the signal is close to zero, the data
respond only poorly to the calibration.

In self-cal we obtain some information on the signal from
the data, e.g., by using only the known part of the response,
which then might be used to analyze the data for a better guess
on the calibration. This means the data have to be used at least
twice (first a rough signal reconstruction, then calibrating on
this) and we end up with a scheme that is at least quadratically
in the data. Indeed, if we investigate averages over squared
data,

〈d2〉(n,s|γ ) = 〈s2〉(s)(1 + γ )2 + 〈n2〉(n), (7)

we find that this contains terms that are directly sensitive to the
calibration and therefore calibration information is available.

It should be noted that the sensitivity of this squared data
to the gains depends on the signal (and noise) variance,
which we therefore would need to know. Any systematic
error in its determination from data will lead to a systematic
bias in the calibration. If such a biased calibration is used
again for improving the signal variance in an attempt to
iteratively improve the calibration solution, the bias is even
increased. Without any external calibration constraints, the
self-cal solution would easily drift far away from an initially
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acceptable calibration.1 Thus, a strong, but self-consistent bias
can be present in the results of self-cal.

In practice, self-cal is rarely done using Eq. (7) as this
requires too much data with comparable calibration coeffi-
cients for getting reliable averages to measure the calibration
from the data variance. More direct and more sensitive
calibration methods are used, e.g., the mentioned iteration of
reconstruction and calibration steps. The self-cal instability
exists there as well, in a slightly more subtle form. For the
detailed information theoretical development and investigation
of such methods, we switch now to a Bayesian perspective.

B. Bayesian perspective

In probabilistic logic (see, e.g., Refs. [26–28]), only a
single realization of a data set needs to be available. All
reasoning has to be done conditional to these data and averages
over different data realizations are not part of the resulting
data analysis method. Probabilities express the strength of
believe in a certain possibility conditionally that some other
statement is assumed to be true and not necessarily how
often this possibility happens to be the case as in frequentist
thinking. The data are regarded as a vector of values d =
(d1, . . . , dn) ∈ Rn, n ∈ N, for which any datum di could be
the result of a unique, nonreproducible measurement as, e.g.,
its gain gi = 1 + γi probably never takes exactly the same
value again.2

The measurement equation of our illustrative example is
still Eq. (1) if we read it as a vector equation with components

di = (1 + γi) si + ni. (8)

We might want to calculate the signal averaged over all
unknowns, but conditioned to the data

m = 〈s〉(n,γ,s|d) (9)

since this is known (see, e.g., Ref. [15]) to minimize the
expected square error

〈(s − m)2〉(n,γ,s|d). (10)

On linear order in the data, the optimal estimator of this
mean is known to be given by (see, e.g., [29])

m = 〈s d†〉(n,γ,s)〈d d†〉−1
(n,γ,s)d + O(d2) (11)

with

〈s d†〉(n,γ,s) = 〈s s†〉(s)︸ ︷︷ ︸
≡S

and

〈didj 〉(n,γ,s) = (1 + 〈γiγj 〉(γ )︸ ︷︷ ︸
≡�ij

) Sij + 〈ninj 〉(n)︸ ︷︷ ︸
≡Nij

, (12)

1This instability is well known in radioastronomical interferometry.
To suppress it, it is common practice to apply self-cal only to either
the phases of the complex gain coefficients and to keep the gain
amplitudes fixed or vice versa.

2Repeated measurements or measurements with different instru-
ments can be combined into a single data vector by simple
concatenation of the individual data vectors.

where the bar denotes complex conjugation. Here, we defined
the matrices S = 〈s s†〉(s), � = 〈γ γ †〉(γ ), and N = 〈n n†〉(n)

that express the a priori uncertainty covariances in signal,
calibration, and noise, as well as the notation † for the
transpose of a vector (and its complex conjugate in case it is
a complex number). This optimal linear estimator is known
under many names, such as minimal square error (MSE)
estimator, generalized Wiener filter [30], and others.

Using matrix notation and defining the component-wise
matrix product (S ∗ �)ij = Sij�ij (no summation), we get

m ≈ S [S + S ∗ � + N ]−1︸ ︷︷ ︸
F

d (13)

and find that the reconstruction is a filtered version of the
data. The filter F reduces the variance since its “denominator”
S + S ∗ � + N is spectrally3 larger than the “numerator” S.
We can write F < 1 (spectrally). As larger the noise variance
N is with respect to the signal variance S, as stronger the down-
weighting of the data. Further down-weighting comes from the
combined signal and calibration variation S ∗ �. However, if
N � S and � � 1 (spectrally) the filter is close to the identity
1 and the signal estimate Fd is nearly unfiltered data.

In any case, the expected covariance of this reconstruction

〈mm†〉(n,s,γ ) = S [S + S ∗ � + N ]−1S = F S < S (14)

is (spectrally) smaller than that of the signal S.
Using this linear data filter F [Eq. (13)] is in general

not a bad idea since it is a conservative approach to signal
reconstruction under calibration uncertainties. It adds the
impact of the calibration uncertainty S ∗ � to the noise budget
N of a generalized Wiener filter [30], which is then applied
to the data. The disadvantage of this approach is that even
in case the signal is so strong that the signal-to-noise ratio is
excellent S 	 N (spectrally), the calibration-noise covariance
S ∗ � can still be substantial as it increases with increasing
signal strength. For large calibration uncertainties, better, and
necessarily nonlinear methods have to be used, since among
all possible linear data filters, F is already the optimal one [in
the sense of minimizing Eq. (10)].

The optimal (nonlinear) method can be constructed by
rewriting (9) as

m =
∫
Dn

∫
Dγ

∫
Ds P(n,γ,s|d) s

=
∫
Dγ

∫
Ds P(γ,s|d) s

=
∫
Dγ P(γ |d)

∫
Ds P(s|d, γ ) s

= 〈〈s〉(s|d,γ )〉(γ |d). (15)

Here, we have performed a noise marginalization4 and have
split P(s,γ |d) via the product rule into P(s|d,γ )P(γ |d).
The inner signal average 〈s〉(s|d,γ ) assumes the calibration

3Meaning that ξ †(S + S ∗ � + N ) ξ > ξ †S ξ for ∀ ξ ∈ Rn\0.
4This marginalization is trivial since the term P(d|n,γ,s) = δ[d −

(1 + γ ) s − n] can be obtained using Bayes theorem, which cancels
the noise phase space integral

∫
Dn.
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to be known. However, the outer average goes over the
unknown calibration while weighting each possible calibration
according to its posterior probability given the data P(γ |d).

The inner signal average might in many situations be well
dealt with by using the optimal linear estimator

〈s〉(s|d,γ ) ≈ 〈s d†〉(n,s|γ )〈d d†〉−1
(n,s|γ )d

= S R†[R S R† + N ]−1︸ ︷︷ ︸
≡W

d, (16)

where R = diag(1 + γ ) is the calibration dependent response
matrix of our measurement. The previously problematic signal
suppression by the term S ∗ � in Eq. (13) became more specific
since R S R† = S + S ∗ (γ γ †) and therefore � → γ γ †. We
therefore expect to obtain a higher fidelity signal recovery
even when the subsequently applied calibration averaging in
Eq. (15) might smooth out some of the features present in
〈s〉(s|d,γ ) as the posterior average 〈γ γ †〉(γ |d) implies much less
averaging than the prior average � = 〈γ γ †〉(γ ).

It is common practice to use a single “best” calibration so-
lution γ �, a so-called point estimate, instead of averaging over
all possible calibrations. Thus, implicitlyP(γ |d) ≈ δ(γ − γ �)
is assumed. This is indeed often a good approximation, as we
will argue in Sec. III G. The next order corrections that take
into account the width of the distribution P(γ |d) are usually
small. An imperfectly chosen γ � has typically a larger impact
on the reconstruction quality than these corrections and our
focus should, therefore, be on how to calibrate most reliably.

Again, we regard the posterior mean as a good estimate and
choose it as a starting point

γ � = 〈γ 〉(s,γ |d) = 〈〈γ 〉(γ |d,s)〉(s|d). (17)

If we would know the signal close enough, calibration
would be simple, as we could ignore the outer averaging over
P(s|d). We would form signal subtracted data d ′ = d − s =
γ s + n from which we could construct the optimal linear
estimator of the calibration

γ � ≈ 〈γ 〉(γ |d ′,s) ≈ 〈γ d ′†〉(n,γ |s)〈d ′d ′†〉−1
(n,γ |s)d

′

= � R′†[R′ � R′† + N ]−1(d − s), (18)

with R′ = diag(s) being the response of the data to the
calibration parameters γ .

Iterating the linear estimators for signal and calibration
[(16) and (18)], while assuming s = Wd and γ = γ �, is then a
plausible self-cal scheme. It ignores, however, the uncertainties
in signal reconstruction and calibration and therefore might
suffer from a bias similar to the one discussed before using
frequentist arguments. In particular, the outer averaging in
Eq. (17) over P(s|d) is crucial. If we ignore for a moment,
for simplicity, the signal dependence of the “denominator” in
Eq. (18), we see that our calibration estimator

γ � = 〈� R′†[. . .]−1(d − s)〉(s|d)

≈ O(〈s〉(s|d)) − O(〈s s†〉(s|d)) (19)

requires the knowledge of the a posteriori signal mean
m = 〈s〉(s|d) and variance 〈s s†〉(s|d) since the two underlined
“numerator” terms both contain the unknown signal. In
classical self-cal schemes 〈s s†〉(s|d) is approximated by mm†.
The latter has, however, less variance than the former if m is

a filtered version of s as assumed here.5 This means that a
systematic bias is present in such schemes, as the O(〈s s†〉(s|d))
term is systematically underestimated by mm† leading to an
overestimation of γ �. The most important result of this work
is to show how to correct for this bias.

Such a bias was not present in case of the signal estimation
using a point estimator γ � for the calibration (instead of the
calibration averaging). The difference lies in the fact that
for the chosen illustrative data model [Eq. (8)] (as well as
for many realistic measurement situations), the symmetry of
signal and gain as suggested by Eq. (1) is broken since s

varies around zero and g around a known nonzero value.
Thus, signal estimators can be built on a more reliably
nonzero gain than calibration estimators, which have to exploit
opportunistically any sufficiently nonzero signal fluctuation
suitable for calibration.

III. THEORY OF CALIBRATION

A. Generic problem

A more rigorous and more abstract treatment of the
calibration problem should be addressed now. The signal
and data domain are not necessarily the same anymore as
signals live typically in continuous domains (time, position,
or spectral spaces) and data sets are always finite. For dealing
with probabilities over spaces of continuous functions (fields
in physical language), we use the formalism of information
field theory [15,19,20].

A generic, linear response that maps the signal into
data domain will be assumed. This covers many realistic
measurement situations. Unknown properties of this response
are to be calibrated. The unknown signal, calibration, and
noise components are all assumed to fluctuate around zero
with known individual covariances, but no cross correlations
between them. As we do not assume any higher order
statistics of these components to be known, the maximum
entropy criterion [27,28,31,32] suggests we should model
our a priori knowledge states as Gaussian distributions. This
does not imply that our analysis is only valid for Gaussian
statistics. If signal, noise, or calibration follow non-Gaussian
distributions and those are known, the here derived methods
still produce sensible results. Just more efficient methods might
be constructed that exploit the additional statistical knowledge.

We assume that a signal s = (sx)x over some continuous
domain (parametrized by x) was targeted by a linear measure-
ment device that produced the finite dimensional data d = (di)i
with signal independent Gaussian noise n = (ni)i that includes
also calibration offsets

d = Rs + n. (20)

The signal response R = Rγ = (Rγ

i x)i x depends on the un-
known calibration parameters γ = (γa)a as well as on the
signal and data domain coordinates, here x and i, between

5See Eq. (14), which is valid also here if we set S ∗ � → 0 there.
If m resulted from naive data averaging, noise remnants might
be significantly present and can lead to an overestimation of the
posterior signal variance and therefore also to a systematically biased
calibration.
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which it translates via (Rγ s)i = ∫
dx R

γ

i xsx . This is the general
form for any linear signal response. It not only embraces
the illustrative example of the previous section, where R

γ

ix =
δ(i − x) (1 + γi), but also a convolution with a calibration
dependent kernel R

γ

ix = f (i − x,γ ), Fourier transformations
R

γ

kx = exp(ikx), and more complex measurement situations.
In general, the response can depend in a very complicated

way on the unknown parameters γ . We suppose that a first
order Taylor expansion captures the most relevant dependence

Rγ = R0 +
∑

a

γaR
γ
,γa

|γ=0 + O(γ 2), (21)

with R0 = Rγ |γ=0 being the well calibrated part of the
response and R

γ
,γa

= ∂Rγ /∂γa its linear dependence on the
calibration parameter. Thereby, we ignore second order cor-
rections in γ .

To have a compact notation, we define scalar products for
the continuous u-dimensional signal domain and its Fourier
space as

j †s =
∫

dxu jxsx =
∫

dku

(2π )u
jksk (22)

for the discrete data domain as

n†d =
∑

i

ni di, (23)

and for the calibration parameter domain something analog
to (23) or (22), depending on whether the calibration param-
eters form a discrete set or a continuous function. Discrete
calibration parameters are instrument gains since there are at
most a finite number of parameters per data value, so that
the calibration domain can be mapped onto the data domain
(the set of data indices). A continuous set of calibration
parameters would be the spatial sensitivity map of a telescope,
the so-called telescope beam, for which the domain in which
the calibration parameters reside (the sphere S2 of directions

in the telescope frame) can often be mapped onto the signal
domain (positions in the sky, also S2).

In order to have an illustrative case, we assume further that
the signal obeys a priori a Gaussian distribution

P(s) = G(s, S) ≡ 1

|2πS| 1
2

exp

(
−1

2
s†S−1s

)
, (24)

with known covariance S = 〈s s†〉(s) = ∫
Ds s s† P(s). This

and other covariances are assumed here to be known either
from similar previous measurements or on theoretical grounds.
In practice, they might need to be determined from the
data themselves. This is often well possible, as shown in
Refs. [16,21,23,24], and explained in Sec. III C. The extension
to non-Gaussian cases can be treated in future studies along
the lines sketched in Refs. [15,16,21,24].

The noise covariance N = 〈n n†〉(n) is assumed to be known
as well, leading to the likelihood

P(d|s, γ ) = P(n = d − Rγ s|s) = G(d − Rγ s,N ). (25)

Likelihood and prior can be combined into the joint prob-
ability of data and signal P(d, s|γ ) = P(d|s, γ )P(s|γ ) =
P(d|s, γ )P(s) [see Eq. (2) for the last step], from which the
signal posterior for known calibration can be obtained via
Bayes theorem,

P(s|d, γ ) = P(d, s|γ )

P(d|γ )
= e−H(d, s|γ )

Z(d|γ )
.

Here, we have introduced the information Hamiltonian
H(d, s|γ ) ≡ − ln P(d, s|γ ), and its partition function

Z(d|γ ) ≡
∫

Ds e−H(d, s|γ ) =
∫

Ds P(d, s|γ ) = P(d|γ ),

(26)
in order to exploit the mathematical and conceptual analogies
of Bayesian inference and thermodynamics.

FIG. 1. Simulated signal [according to Eqs. (24) and (58)] and data realization from observing the signal three times [according to Eqs. (20),
(25) and (57)]. Left: Signal (line), its prior-free and therefore noisy estimation by Eq. (32) using the correct calibration (γ , black dots), and
no calibration (γ = 0, gray triangles). Right: Data (dots), the signal response Rγ s [gray line, Eqs. (57) and (58)] and the response in case of
zero calibration Rγ=0s (dashed, gray line, basically three repetitions of the signal pattern). The difference between these two lines contains
information on the calibration. The corresponding gain curve is shown in Fig. 2.
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FIG. 2. Signal reconstruction and calibration without self-cal. Left: Original signal (as in Fig. 1), and signal reconstructions using only
the external calibration data [according to Eq. (39) with external calibrator c at only four moments as described in Sec. IV], the correct gains
[g = 1 + γ , Eq. (27)], and no calibration [g = 1,γ = 0 in Eq. (27)]. Right: Original gains [according to Eqs. (35) and (58)] and their calibration
reconstruction using only the external calibration data (as on the right-hand side), calibrating on the correct signal [Eq. (39) with c = s], and
assuming no calibration (g = 1,γ = 0). The gray areas in the left and right panels show the one sigma posterior uncertainties of the signal and
calibration reconstructions using the correct calibration and signal, respectively. These are the accuracies of the best achievable reconstructions
and show that recovering the calibration accurately is more difficult than recovering the signal. In the top panels, these uncertainties are shown
twice, once around the signal/calibration reconstructions and once at an arbitrary location for better visual inspection of their structures.

B. Wiener filter

Under these conditions, the optimal signal reconstruction
for a given calibration γ is known to be the Wiener filter (e.g.,
see Ref. [15])

mγ = 〈s〉(s|d γ ) = Dγ jγ , (27)

where

Dγ = (S−1 + Rγ †N−1Rγ )−1, (28)

jγ = Rγ †N−1d (29)

are the information propagator (or Wiener variance) and
information source, respectively [15]. This formula is equiv-
alent to the data space centric formula for Wiener filtering
[see Eq. (16)] we had argued to be the optimal linear filter
[minimizing Eq. (10)]. The remaining a posteriori uncertainty
of the signal is given by the Wiener variance

〈(s − mγ ) (s − mγ )†〉(s|d, γ ) = Dγ . (30)

Since the signal posterior for known calibration is a
Gaussian (for this case composed of a Gaussian prior and
likelihood, and a linear response), it must be

P(s|d, γ ) = G(s − mγ ,Dγ ), (31)

as can also be verified by a direct calculation.
The often used so-called prior-free or maximum likelihood

reconstruction can as well be reproduced by taking the limit
of S → ∞ or S−1 → 0, which removes any prior contribution
to the filter formula, and interpreting the matrix inversion in
Eq. (28) as a pseudoinverse,6 so that

m+
γ = (Rγ †N−1Rγ )+Rγ †N−1d. (32)

6We define the pseudoinverse of a Hermitian matrix A = ∑
i aia

†
i λi

with eigenvalues λi and normalized eigenvectors ai as

A+ =
∑

i

aia
†
i

{
λ−1

i , λi �= 0
0, λi = 0.
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This prior-free signal estimator is very noisy, as can be seen
from Fig. 1. There, a simulated signal, the resulting data, and
the corresponding prior-free signal estimator are shown. The
latter exhibits a lot of noise7 compared to the reconstructions
exploiting the knowledge on covariances shown in Fig. 2.

In the following, we often suppress the γ dependence of R,
D, j , m and other quantities for notational compactness, as we
also do not note explicitly that m is a function of the data d.

C. Power spectrum estimation

A problem in setting up the Wiener filter is often that
the signal and noise covariances are not known precisely
or might even be completely unknown. Thus, these need
to be inferred from the same data used for imaging. The
proper way is to formulate hyperpriors on these spectra, and
to solve the combined problem of simultaneous signal and
spectra recovery. A suitable, however, numerically expensive
method for this is Gibbs sampling [33,34], here introduced
in Sec. III F.

An approximative, but numerically cheaper approach of
iteratively analyzing a reconstruction for its covariance and
using this covariance in improved reconstructions was devel-
oped in [16,21,23,24]. The basic idea works for a statistical
stationary signal, for which the signal covariance is diagonal
in Fourier space, with the power spectrum Ps(k) = 〈|sk|2〉(s) on
the diagonal [here, quantities with the index k denote Fourier
transformed quantities such as sk = ∫

dx sx exp(ikx)]. In case
of a Jeffreys prior on the power spectra, a uniform distribution
on logarithmic scale, the formula to get a point estimate for
the spectrum is

Ps(k) ≈ |mk|2 + Dkk, (33)

where Dkk corrects for the missing variance in the Wiener
filter reconstruction m. Equation (27) for m, Eq. (28) for D,
and Eq. (33) for Ps(k) have to be iterated until convergence.
The accuracy of this spectral estimate can be improved
by averaging Fourier modes with similar spectrum and by
exploiting available prior information on the spectral values
and their smoothness as a function of wave vector [16,23].
The method can even be extended to estimate simultaneously
the signal and noise covariance [21] and be combined with
nonlinear signal estimators [24,35,36].

Thus, an unknown covariance can be dealt with in principle.
In order to be able to concentrate on the essentials of the
calibration problem, we assume in the following known
covariances as well as Gaussian prior distributions for signal,
noise, and unknown calibration parameters.

7This noise could be reduced by binning, averaging, or smoothing.
This requires that an averaging length scale has to be specified.
The optimal averaging length scale should be a tradeoff between
suppressing noise and keeping signal features. However, the Wiener
filter [see Eq. (27)] performs already this averaging in an optimal
way [minimizing Eq. (10)] with an averaging length that depends
on the local signal-response-to-noise ratio and therefore can vary
with position. We therefore use in the following the Wiener filter
method and regard binning and averaging scheme applied in practice
as approximative realizations thereof.

Although we showed that methods exist to obtain estimates
of these covariances from the data themselves, we should
investigate how sensitive a reconstruction is to inaccuracies
in those estimates. For this, we consider the special case of
a signal and data space being identical, the response being
the identity matrix, and signal and noise being statistically
homogeneous processes. In this case, their covariances are
diagonal in Fourier space, with the corresponding power
spectra Ps(k) and Pn(k) on the diagonals. The Wiener filter
in Fourier space is then

mk = dk

1 + Pn(k)/Ps(k)
. (34)

Thus, high signal-to-noise (S/N) modes with Pn(k)/Ps(k) � 1
are unmodified by the filter mk ≈ dk , whereas low S/N modes
with Pn(k)/Ps(k) 	 1 are strongly suppressed by the filter
mk → 0. Only for S/N ratios around one, the precise value
of the spectra matters. Overestimation or underestimation of
the S/N ratio leads to too much noise in the reconstruction
or an unnecessary strong signal suppression, respectively.
However, this effect is mainly relevant for the modes with
a S/N around unity. Therefore, moderate inaccuracies in the
power spectra or covariances lead only to a minor degradation
of the reconstruction fidelity [16]. This usually also holds
for more complex measurement situations than used in this
argumentation [22].

D. External calibration

Somehow, the calibration parameters γ have to be measured
in order that Eq. (27) can be used to determine the a
posteriori mean of the signal. The simplest strategy is to use
an external calibrator signal as a known reference from which
the calibration can be determined.

In case the calibration parameters are constant in time,
they can be determined using a known calibration signal
c and then be transferred to the measurement of interest.
The calibrator c = (cx)x is just a signal, which ideally is
known before the measurement, which is strong enough to
have a signal response Rγ c dominating over the noise, and
which is sufficiently complex to probe the relevant calibration
uncertainties. The last requirement means that the calibrator
response should depend on the calibration parameters such
that ∂Rγ c/∂γa ≡ R

γ
,γa

c is significantly nonzero for any
relevant γa .

For the calibration parameters we assume here and in the
following a Gaussian, zero-centered prior8

P(γ ) = G(γ, �), (35)

with known uncertainty covariance � = 〈γ γ †〉(γ ). The knowl-
edge on � can come from theoretical considerations, previous
measurements, or might be obtained from the data themselves.
Prior and likelihood [Eq. (25)] form the joint probability

8The mean can always be subtracted by a redefinition of the
calibration parameters. As it is known, it should be part of the known
part of the response, whereas the calibration parameter should only
affect the unknown part.
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P(d,γ | c) = P(d|γ, c)P(γ ) that contains all available infor-
mation on the calibration.

In general, the calibration inference from this is a nonlinear
and nontrivial problem. In many cases, the MAP approxima-
tion provides a reasonable estimate for γ . This is obtained by
minimizing the corresponding Hamiltonian

H(d, γ |c) = − lnP(d, γ |c)

= 1
2γ †�γ + 1

2 (d − Rγ c)†N−1(d − Rγ c)

+ const. (36)

The gradient of this Hamiltonian,

∂H(d, γ |c)

∂γ
= �−1γ − c†Rγ †

,γ N−1(d − R c), (37)

should then be followed (downhill) until it is zero and
the Hamiltonian minimal. Here, (Rγ

,γ )a ≡ R,a ≡ ∂Rγ /∂γa

denotes the derivative of the response with respect to the
calibration. It is apparent that the discrepancy of the data from
the calibration signal response d − Rγ c drives the calibration
solution away from the default value γ = 0 preferred by the
prior of the calibration P(γ ) = G(γ, �).

In case the calibration parameters enter only linearly,

Rγ = B0 +
∑

a

γaB
a, (38)

with B0 and Ba known and γ independent, we have R,a =
R

γ
,γa

= Ba and the minimum of the Hamiltonian is at

γ � = 
h, with


−1
ab = �−1

ab + c†Ba†N−1Bbc, (39)

hb = c†Bb†N−1(d − B0c).

This MAP estimator for the calibration γ � is actually also
the calibration posterior mean 〈γ 〉(γ |d, c) since this particular
posterior is a Gaussian for which mean and maximum coincide.
This Gaussian calibration posterior is

P(γ |d, c) = G(γ − γ �,
), (40)

with the uncertainty covariance 
 = 〈(γ − γ �) (γ −
γ �)†〉(γ |d, c) given in Eq. (39).

In this specific linear calibration case, external calibration
is Wiener filtering. This can be seen by comparing Eq. (39)
with the Wiener filter equations for the signal [Eqs. (27) and
(28)], while recognizing that the roles of the following terms
correspond to each other: γ � ↔ m, � ↔ S, N ↔ N , B0c ↔
R, 
 ↔ D, d − B0c ↔ d, and h ↔ j .

There is, however, an interesting difference. The signal in-
formation source j = R†N−1d ≈ R†N−1R s = [B0N−1B0 +
O(γ )]s contains a calibration-independent term B0N−1B0 s,
which reacts to s even when γ = 0, whereas the cal-
ibration information source ha ≈ c†Ba†N−1(R − B0) c =∑

b(c†Ba†N−1Bb c) γb = ∑
a Qab γb is a quadratic function of

the calibration signal c, which vanishes for locations with van-
ishing c. The quadratic dependence of Qab = c†Ba†N−1Bb c

on the calibration signal strength will become important again
later on, when we investigate self-cal, the attempt to calibrate
on an unknown signal.

E. Calibration binning

It should be noted that the usage of an a priori calibration
covariance � = 〈γ γ †〉(γ ) to suppress the calibration estimation
noise is not standard practice. Instead, bin averaging and
interpolation is often performed on χ2 or maximum likelihood
calibration estimators.

There is, however, no consensus on the question as to how
to choose the bin size and interpolation scheme. The optimal
bin size should, on the one hand, be sufficiently large to
average down the noise, and on the other hand, be sufficiently
small in order not to iron out existing small scale (spatial
or temporal) variations in the gain parameters. Therefore,
the optimal bin choice depends on the interplay of expected
calibration variations as encoded in �, the noise level N , and
the strength of the calibrator signal in data space Rγ c. Since all
these elements are part of the MAP gain estimator [cf. Eq. (37)]
that reduces to the Wiener filter solution for linear calibration
problems [Eq. (39)], we expect the latter to implement (nearly)
an optimal averaging and interpolation scheme. The optimal
bin size could be read off from this scheme (it should be of
the order of the correlation length of 
), or, even better, the
binning and averaging be replaced with the more accurate
calibration solution given by Eq. (37) or (39).

In the following, we use the unbinned, nonparametric
Wiener filter solution since it is optimal or close to optimal.
We believe that binning schemes used in practice and chosen
with experience can come sufficiently close to the Wiener filter
performance as that the difference does not matter much for our
discussion. When they matter, an adoption of the here proposed
nonparametric Wiener filter calibration methodology would be
beneficial and highly recommended for the application.

F. Gibbs sampling

The signal and the calibration are the two unknowns. Their
joint posterior probability distribution P(s,γ |d) can be probed
via Gibbs sampling in case it is possible to draw samples
from P(s|d,γ ) and P(γ |d,s) [34,37]. These are Gaussian
distributions in our case, given by Eqs. (31) and (40) (with
c = s), respectively, from which it is well possible to draw
samples. The Gibbs sampling procedure is then to update
a combined signal and calibration probe p(i) = (s(i),γ (i)) →
p(i+1) = (s(i+1),γ (i+1)) via

s(i+1) ←↩ P(s(i+1)|d,γ (i)),
(41)

γ (i+1) ←↩ P(γ (i+1)|d,s(i+1)).

If this updating is an ergodic process for the combined p

space, as it is in our case of Gaussian probabilities, the sample
distribution can be shown to converge towards P(s,γ |d).

Marginalization with respect to s or γ to obtain P(γ |d)
and P(s|d), respectively, can be obtained from the samples by
forgetting the corresponding marginal variable. Any posterior
average, such as 〈s〉(s|d), is given by the corresponding sample
averages. The Gibbs sampling provides therefore a route to
calculate any desired estimate from the full posterior, without
invoking approximations, except for replacing the posterior
integration by finite sampling and therefore getting some shot
noise. Beating down this shot noise by generating a large
number of samples can become computationally expensive,
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why it makes sense also to investigate analytical alternatives as
we do in the following. Analytical investigations also provide
deeper insight into the structure of the problem, which is less
easily obtained from the sampling machinery.

Anyhow, we provide Gibbs sampling results as an optimal
benchmark for the different self-cal schemes implemented in
Sec. IV.

G. Calibration marginalized imaging

All relevant information on the signal is contained in the
calibration marginalized posterior

P(s|d) =
∫

Dγ P (s,γ |d). (42)

In the case of linear calibration coefficients Rγ = B0 +∑
a γaB

a [see Eq. (38)], the calibration marginalized likeli-
hood, from which this posterior can be constructed, can be
calculated analytically:

P(d|s) =
∫

Dγ P(d|s,γ )P(γ )

=
∫

Dγ G(d − Rγ s,N )G(γ,�)

= G
(

d − B0s,N +
∑
ab

Bas�abs
†Bb†

)
. (43)

This result can be found in Ref. [18].9

The resulting posteriorP(s|d) = P(d|s)P(s)/P(d) is non-
Gaussian, as the signal field appears as part of the calibration
marginalized effective noise N + ∑

ab Bas�abs
†Bb†. Ideally,

the mean of this signal posterior is calculated since this gives
the optimal signal estimate.

However, integrating over this non-Gaussian function is of-
ten infeasible. The quadratic dependence of the effective noise
on the unknown signal inhibits that this can be calculated via
a simple Gaussian integration. In high-dimensional settings,
Monte Carlo methods used to estimate phase space integrals
might become too expensive. In such cases, approximative
strategies are needed. One is to use the MAP estimator for this
posterior. However, due to the skewness of the distribution, this
can be expected to give biased results. It is better to characterize
the calibration posteriorP(γ |d) by its mean γ � and uncertainty
covariance 
 and to use them to construct an approximative
signal estimation.

Let us assume we managed somehow to estimate the
calibration as γ � with some uncertainty covariance 
 and
that we can well approximate10

P(γ |d) ≈ G(γ − γ �,
). (44)

9One can also simply calculate the first two moments of the data
given the signal averaged over noise and calibration realizations d̄ =
〈d〉(n,γ |s) = B0s, 〈(d − d̄) (d − d̄)†〉(n,γ |s) = N + ∑

ab Bas�abs
†Bb†,

and realize that the calibration marginalized likelihood has to be a
Gaussian with this mean and variance since both noise and calibration
uncertainty just add Gaussian variance to the data.

10In the case of an external calibration of only linear calibration
parameters [Eq. (38)], we had shown in Eq. (40) this to be an exact
result.

For a Gaussian signal field with P(s) = G(s, S) we could
simply use γ = γ � in the Wiener filter formula (27). However,
this is suboptimal if the calibration uncertainty is significant.
In that case, correction terms might become important,
which we calculate now to first order in the calibration
uncertainty 
.

The optimal, calibration marginalized signal estimator is

m = 〈s〉(s|d) = 〈〈s〉(s|d, γ )〉(γ |d) =
∫

Dγ P(γ |d) 〈s〉(s|d, γ )

≈
∫

Dγ G(γ − γ �,
) mγ

≈ D

{
j + 1

2

∑
ab

[
ab (j,ba − M,baD j

+ 2 M,bD M,aD j − 2 M,bD j,a)]

}
γ=γ �

. (45)

In the last step, we Taylor expanded mγ = Dγ jγ up to second
order in γ − γ �, performed the Gaussian integration, exploited
the Hermitian symmetry of 
, suppressed in the notation
the dependence of all calibration dependent terms on γ , and
introduced further the notations

M = R†N−1R, M,a = R†
,γa

N−1R + R†N−1R,γa
,

M,ab = R†
,γa

N−1R,γb
+ R†

,γb
N−1R,γa

+R†
,γaγb

N−1R + R†N−1R,γaγb
,

(46)
j = R†N−1d,

j,a = R†
,γa

N−1d,

j,ab = R†
,γaγb

N−1d.

In case of only linear calibration parameters as in Eq. (38),
R = B0 + ∑

a γaB
a , the derivatives simplify to

M,a = Ba†N−1R + R†N−1Ba,

M,ab = Ba†N−1Bb + Bb†N−1Ba, (47)

j,a = Ba†N−1d, and j,ab = 0.

From Eq. (45) it becomes apparent that the optimal signal
reconstruction in the presence of calibration uncertainties
should contain a correction to m� = Dγ �

jγ �

, which corrects
for the possibility that certain structures in the data might well
be due to a miscalibration rather than being caused by real
signal structures. Thus, the reconstruction will be less prone
to overfitting calibration errors.

The expected level of this correction can, however, be
expected to be moderate in typical situations. The individual
correction terms in Eq. (45) can be paired into similar ones with
opposite signs which partly, but not fully, balance each other.
As a consequence, we expect only a moderate net correction
by them. For the sake of clarity of the following discussion,
we will therefore neglect these corrections and only work
with the lowest order signal estimator m� = Dγ �

jγ �

. The
accuracy of this depends, however, crucially on the quality
of the calibration, which should therefore be our focus.
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H. Self-calibration

1. Motivation

In many situations, only insufficient external calibration
measurements are available. In this case, the signal s of
scientific interest has also to serve as a calibration signal.
Some self-cal procedure has to be applied in which signal and
calibration parameters have to be determined simultaneously
from the same data.

Furthermore, the case of a perfectly known external
calibration is rarely met in practice. Usually, the calibration
signal c was measured with another imperfect reference
instrument as well as with the scientific instrument that is
also used to observe the science signal s. We can now regard
the combined measurements (c with reference instrument, c

with scientific instrument, and s with scientific instrument)
as a single measurement, with combined signals, responses,
noises, and calibration parameter sets.

In our mathematical description, we can combine these
individual measurements into a single measurement of a multi-
component signal s ′ = (c, s)t by a multicomponent instrument
delivering the combined data d ′ = (d r

c, d
s
c, d

s
s )t. Here, the data

d r
c result from the measurement of the calibration signal c with

the reference instrument r, the data ds
c from the calibration

measurement of c with the scientific instrument s, and data
ds

s from the science signal s measurement with the scientific
instrument s. The combined measurement equation reads as⎛

⎝d r
c

ds
c

ds
s

⎞
⎠ =

⎛
⎝Rr

c 0
Rs

c 0
0 Rs

s

⎞
⎠(

c

s

)
+

⎛
⎝nr

c

ns
c

ns
s

⎞
⎠ or d ′ = R′ s ′ + n′,

with the combined noise vector n′, and the combined response
R′ of the three original measurements. In order that the
calibration measurement provides any benefit, the calibration
parameters of the last two measurements with the scientific
instrument need to be identical or at least sufficiently correlated
with each other.

Since for this combined measurement no external calibra-
tion exists (we have incorporated all external measurements),
it should as well be reconstructed with a self-cal scheme.

2. Practice

Self-cal usually consists of repeatedly reconstructing the
signal, assuming a calibration to be correct, and determining
the calibration, while assuming the signal to be given. These
steps are repeated until signal and calibration estimates have
converged sufficiently. However, a proof that this converges
and the meaning of the fix point seem are often missing in the
self-cal literature.

Using simultaneously MAP estimators for the signal
inference and the calibration actually means that the joint
posterior of signal and calibration parameters is extremized
in both unknowns. This is equivalent to the minimum of the
information Hamiltonian

H(d, γ, s) = − lnP(d, γ, s)

= 1
2 (d − Rγ s)†N−1(d − Rγ s)

+ 1
2γ †�γ + 1

2 s†S−1s + const, (48)

which is as given by

0 = ∂H(d, γ, s)

∂s
= D−1 s − j

∣∣
γ
,

(49)

0 = ∂H(d, γ, s)

∂γ
= �−1γ − s†R†

,γ N−1(d − R s).

The resulting formula is identical to the Wiener filter signal
reconstruction [Eq. (27)] and the calibration on this signal
[Eq. (37)]. Thus, the joint MAP self-calscheme is equivalent
or at least similar to the usual practice of iterating signal and
calibration estimation.

It has been noticed, e.g. by Ref. [16], that using a
joint MAP solution simultaneously for signal and nuisance
parameters (here the unknown calibration, in [16] the unknown
signal covariance) can be suboptimal. It is better to use the
signal marginalized posterior to determine the calibration
parameters and then to use the resulting parameters in the
signal reconstruction. This approximation is also known under
the term empirical Bayes (e.g., [38]).

I. Signal marginalized calibration

The signal marginalized Hamiltonian

H(d, γ ) = − ln
∫

Ds P(d, γ, s)

= 1

2
[γ †�−1γ − Tr (ln D) − j †D j ] + const

(50)

can be minimized with respect to γ to find the MAP calibration
solution γ �. The gradient and Hessian of this Hamiltonian are

∂H(d, γ )

∂γa

= (�−1γ )a + 1

2
Tr(D M,a) − j †D j,a

+ 1

2
j †D M,aD j, (51)

∂2H(d, γ )

∂γa∂γb

= �−1
ab + 1

2
Tr(D M,ab − D M,aD M,b)

+ 1

2
j †D M,abD j + j †D M,aD j,b

+ j †D M,bD j,a − j †
,aD j,b − j †D j,ab

− j †D M,aD M,bD j. (52)

The Hessian can be used to construct an approximative
calibration uncertainty covariance matrix via


−1
ab ≈ ∂2H(d, γ )

∂γa∂γb

∣∣∣∣
γ=γ �

(53)

so that a Gaussian approximation of the calibration posterior
[Eq. (44)] as well as a calibration marginalized signal recon-
struction [Eq. (45)] can be obtained.

It is instructive to compare the classical formula used for
external calibration (37) to the one of self-cal (51). For this
we have to identify m = mγ = Dγ jγ in Eq. (51), which reads
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now as

∂H(d, γ )

∂γa

= (�−1γ )a + 1

2
Tr(D M,a)

−m†R,aN
−1(d − R m), (54)

with c in Eq. (37). We see that the only change is the additional
term 1

2 Tr(D M,a), which ensures that the signal uncertainty is
taken into account in the calibration.

In case of only linear calibration parameters as in Eq. (38),
Rγ = B0 + ∑

a γaB
a , a nearly closed calibration formula can

be given:

γ � = 
′ h, with


′ −1
ab

= �−1
ab + Tr[(m m† + D)Ba†N−1Bb], (55)

hb = m†Bb†N−1d − Tr[(m m† + D)B0†N−1Bb].

This formula is not exactly closed since m = mγ �

and D =
Dγ �

are still calibration dependent. However, iterations as
performed usually in self-cal schemes should converge to a
fixed point. In practice, one might prefer to use a gradient
scheme based on Eq. (54) rather than to iterate Eq. (55) since
the latter contains nested matrix inversions that are numerically
expensive.

The apparent calibration covariance 
′ is also not exactly
identical to 
 obtained from the inverse Hessian (52) since
precisely the calibration dependence of m and D were ignored
in the identification of 
′. It should, however, be a useful
approximation with lower computationally complexity than
Eq. (52).

A comparison of the calibration formulas (39) and (55)
while identifying c with m reveals the main effect of the signal
marginalization. This inserts an additional signal uncertainty
covariance D wherever a term m m† appears. As we had seen
in the case of the external calibration, the quantity determining
how sensitive the calibration information h reacts to γ, Qab =
s†Ba†N−1Bb s = Tr(s s†Ba†N−1Bb) in ha ≈ ∑

b Qabγb (ne-
glecting the noise impact), depends quadratically on the
unknown signal s. Using m m† as an estimator for the quadratic
signal ss† underestimates the variance of the latter since m is
a filtered version of s with less power. The correct a posteriori
expectation value for ss†,

〈ss†〉(s|d,γ ) = m m† + D, (56)

contains the signal uncertainty covariance D in order to correct
for this bias. This is therefore the appropriate term to be used
in Qab.

The calibration propagator 
 also gets a similar term Qab =
Tr[Ba†N−1Bb(m m† + D)] that ensures that a good guess for
the signal variance is used in the term describing the calibration
measurement precision. This additional positive term due to
the D correction in 
−1 decreases 
 and makes therefore the
calibration reconstruction γ � = 
h less reactive to variations
in the data. This prevents an overcalibration on data features
that might be caused by noise. Furthermore, the new self-cal
scheme corrects a systematic bias of classical self-cal towards

delivering higher calibration values.11 We therefore suspect the
signal marginalized calibration procedure to provide a more
accurate calibration and signal reconstruction than the classical
joint MAP calibration procedure. Whether this is indeed the
case, we investigate numerically.

IV. NUMERICAL EXAMPLE

A. Gain uncertainties

As an illustrative case to compare the performance of
the different calibration schemes we investigate a simple
one-dimensional measurement problem with gain fluctuations
in the spirit of the simplistic example of Sec. II.

A signal field s = (sx)x over the periodic domain 
 =
{x}x = [0, 1) ⊂ R is observed u = 3 times by a scanning
instrument. The instrument has a perfect pointlike response
at scanning location xt = t mod 1 at time t but a time
varying gain gt = 1 + γt . The instrument samples with a
period τ = 2−9 ≈ 2 × 10−3 so that the ith data point is at
location xiτ = (iτ ) mod 1. It is convenient to regard the data
as a function of time (which is discrete with period τ , so that
t ∈ {0, τ, 2τ, . . . ,u}) and to exploit the fact that the spatial and
temporal coordinates are well aligned (except that the temporal
domain is u times larger than the spatial domain).

The response operator

Rtx = (1 + γt ) δ(x − xt ) (57)

is of the linear calibration parameter form Rγ = B0 +∑
a γaB

a [Eq. (38)] with B0
tx = δxxt

and Ba
tx = δat δxxt

so that
Rtx,t ′ = (Rγ

tx),γt ′ = δtt ′δxxt
and Rtx,t ′t ′′ = (Rtx),γt ′γt ′′ = 0.12

The Gaussian signal, noise, and calibration covariances are
assumed to be known and to be described by power spectra in
Fourier space. In our concrete example, we use

Ps(k) = as

[1 + (k/ks)2]2
,

(58)
Pγ (ω) = aγ

[1 + (ω/ωγ )2]2
, Pn(ω) = an,

respectively. We express the amplitudes as as = σ 2
s λs , aγ =

σ 2
γ τγ u, and an = σ 2

n τn in terms of their respective variances
σ 2

s = 〈s2
x〉(s), σ 2

γ = 〈γ 2
t 〉(γ ), and σ 2

n = 〈n2
t 〉(n) and correlation

lengths λs = 4/ks , τγ = 4/ωγ , and τn = τ . We choose σs = 1,

11This is valid in the here discussed case in which the signal is
obtained via noise suppressing filtering, otherwise the bias could even
be opposite in cases, in which noise remnants add spurious variance
to the reconstruction.

12As a consequence of this simple response and noise structure
while assuming white noise with Ntt ′ = σ 2

n δtt ′ , we get

Mxy = δxy

∑
t

δxxt
(1 + γt )

2σ−2
n ,

Mxy,t = 2δxyδxxt
(1 + γt )σ

−2
n ,

Mxy,tt ′ = 2δxyδxxt
δtt ′σ

−2
n ,

jx =
∑

t

(1 + γt ) δxxt
dtσ

−2
n ,

jx,t = δxxt
dtσ

−2
n , and jx,tt ′ = 0.
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FIG. 3. Signal reconstruction and calibration using self-cal. Left: Signal (as in previous figures) and its reconstruction using classicalself-cal
[iterating Eq. (27) with γ = γ ∗ to get m and Eq. (39) with c = m to get γ ∗; precisely Eq. (59) is used with T = 0], new self-cal [Eq. (59) with
T = 1], and using Gibbs sampling (see Sec. III F). Right: The gain curve and its reconstructions using the classical [Eq. (59) with T = 0] and
the new self-cal [Eq. (59) with T = 1] scheme as well as using Gibbs sampling (Sec. III F). The uncertainty estimates of the Gibbs sampling
are shown as gray bands in all panels. In the top panels, it is shown twice, once around the Gibbs sampling mean and once at an arbitrary
location for better visual inspection of its structure.

σγ = 0.75, and σn = 0.2 and correlation lengths λs = 0.3 and
τγ = 1.5. This way, we have a unit variance signal, a 75%
calibration uncertainty, and 20% white noise per measurement
(in terms of typical signal strength). The noise is white, the
signal short correlated (with about three correlation regions
within the signal domain 
), and the gain correlates over a
slightly larger region (a bit more than the size of the signal
domain 
). The gains are only slightly correlated between
subsequent passages over the same position (τγ = 1.5).

Any systematic difference in the data resulting from
identical signal positions should be due to gain variations.
A decent self-cal scheme should be able to exploit this
redundancy to estimate the gains and therefore the signal.

However, a global degeneracy of the data with respect to
its variations being caused by signal and gain variations can
only partly be broken by the three redundant scans over the
signal domain. The data dt ≈ (1 + γt ) sxt

only report a product
of signal and response and one of those can be traded for the
other. Therefore, a few external calibration measurements are
essential to break the degeneracy globally.

To fix this degeneracy, we assume that four additional
external calibration measurements of the gain value have been

performed at certain times tj ∈ {0, 0.75, 1.5, 2.25}, with d ′
j =

(1 + γtj ) c + n′
j by momentarily switching the observation to

a strong calibration source with a known strength of c = 4. We
assume that the noise during these calibration measurements
is as before, n′

j ←↩ G(n′
j , σ

2
n ).13

The self-cal equations become

γ � = 
h, with


−1
t t ′ = �-1

t t ′ + δtt ′

(
qt + c2

∑
j

δttj

)
σ−2

n ,

(59)

ht =
⎡
⎣dtmxt

− qt + c2
∑

j

δttj d
′
j

⎤
⎦ σ−2

n ,

qt = m2
xt

+ T Dxtxt
.

13For mental and notational convenience, we ignore that during the
external calibration measurement usually no science signal data can
be taken by real instruments. However, this idealization is inessential
and has only a negligible impact on the results.
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TABLE I. Reconstruction error of the different reconstruction for
the example shown in Figs. 1–3.

Reconstruction method εs εγ

Wiener filter using known gains/signal 0.037 0.056
Expected uncertainties of above 0.040 0.063
Gibbs sampling 0.073 0.116
Expected uncertainty of above 0.042 0.076
No calibration, unit gains 0.110 0.533
Only external calibration 0.081a 0.246
Classical self-cal 0.089 0.192
New self-cal 0.073 0.141

aIn this particular realization of signal, gain, and data, despite
the external calibration being relatively poor it has coincidentally
provided a better signal reconstruction than classical self-cal.

Here, we introduced the expected posterior variance of the
signal realization as constrained by the data qt = 〈s2

xt
〉(s|d,γ ) =

m2
xt

+ Dxtxt
. Furthermore, we introduced T as a parameter that

switches between classical self-cal (T = 0) and the new signal
marginalized self-cal (T = 1).

B. Calibration comparison

A simulated signal, gain, and resulting data realization
using the above specifications, as well as their reconstructions
using different information, assumptions, and approximations
can be seen in Figs. 1, 2, and 3. These were generated using
the generic signal inference framework NIFTY14 [39].

We quantify the signal and gain reconstructions in Table I
in terms of their average squared errors ε2

s = (m − s)†(m − s)
and ε2

γ = 1
u

(γ � − γ )†(γ � − γ ), respectively. Their expectation
values, in case of known Gaussian statistics, are given by

〈
ε2
s

〉
(d,s|γ ) =

∫ 1

0
dx Dxx,

(60)〈
ε2
γ

〉
(d,γ |s) = 1

3

∫ 3

0
dt 
tt .

The best results are of course obtained when signal or
calibration are known. These Wiener filter solutions are
optimal (dotted lines in Fig. 2) and their uncertainty estimates
are reliable (gray regions in Fig. 2).

The worst signal reconstruction is the one obtained while
assuming unit gains (thin gray lines in Fig. 2). Using only the
four external calibration measurements gives slightly better
results (dashed lines in Fig. 2). The classical self-cal provides
more accurate calibration (dashed lines in Fig. 3), which is
further improved by the uncertainty corrections included in the
new self-cal scheme (solid lines in Fig. 3). The best self-cal
solutions are provided by the Gibbs sampling. Despite some
numerical noise in the results, which can only be suppressed
by investing a large number of samples, these are optimal
and therefore provide a good benchmark for comparison.
The new self-calscheme obviously does not fully reach the
accuracy of the Gibbs sampling. Nevertheless, it is a significant

14To be found at www.mpa-garching.mpg.de/ift/nifty

improvement over the classical self-cal as its solutions are
visibly closer to the optimal Gibbs sampling results.

These numbers and also the bottom panels of Fig. 3
show further that the uncertainties in the calibration are
systematically larger than those of the signal. This is due to the
fact that the self-cal has to rely on the signal being significantly
nonzero, which is not the case for many locations, whereas the
signal reconstruction is data driven for all positions except
some rare points where the gain g = 1 + γ happens to vanish.

Since the signal uncertainty correction of the calibration
removed a systematic bias of the classical scheme, which
had led to overestimated gain solutions, the corresponding
reconstructed signal shows more variation as the one without
this correction. This is visible by careful inspection of the top
left panels of Fig. 3.

V. CONCLUSIONS

We investigated the calibration problem of signal recon-
struction from data. Although we concentrated on simplified
cases, approximating all uncertainties in signal, calibration,
and noise to be Gaussian distributed, we believe that the gained
qualitative insights are also valid in many other circumstances.

In case a perfect or sufficient external calibration measure-
ment is missing, the signal to be measured has also to serve as
a calibrator. This is usually done by self-cal schemes, which
reconstruct the signal assuming some calibration, calibrate on
the reconstructed signal, and iterate this until convergence
or other termination criteria are met. We have shown that
such self-cal schemes arise naturally from trying to maximize
the joint posterior of signal and calibration. We therefore
demonstrated that any fixed point of such self-cal iterations
must be a maximum of this posterior. There is, however, no
guarantee that the obtained maximum is a global one.

The joint MAP estimator is not necessarily optimal in
the sense of a minimal expected square error. Due to the
interwoven coupling between signal and calibration in the
data, this maximum is indeed not optimal. In order to obtain
improved signal and calibration schemes, we worked out
the calibration marginalized signal posterior and the signal
marginalized calibration posterior and the resulting maximum
a posteriori estimators. Both contain correction terms taking
into account the remaining uncertainties of calibration and
signal, respectively.

For the canonical situation that the signal is a quantity
that varies around zero, whereas the signal response has a
known nonzero part, we argue that the calibration corrections
due to signal uncertainties are more essential than the signal
reconstruction corrections due to calibration uncertainties. The
reason is that, in this case, the information source of the data on
the unknown signal contains a calibration independent term,
whereas the information source for the calibration requires
signal information. This is reflected by the observation that
the calibration uncertainty corrections for the signal as given
by Eq. (45) contain pairs of mutually nearly canceling terms.

In contrast to this, the calibration correction for signal
uncertainties as given by Eq. (55) is of a systematic nature.
It reduces, on average and for positive known part of the
response, the values of the inferred calibration solution. This
leads to a more pronounced and thereby more accurate signal
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reconstruction as more of the data variance can be assigned to
the signal. We have illustrated this with a simplistic numerical
example.

The proposed improvement of self-cal schemes should
not be regarded as the ultimate theory of calibration. A
number of approximations have been incorporated in order to
limit the computational complexity. In particular, the mutual
dependence of signal and calibration uncertainties are not fully
taken into account and only the dominant influence of the
uncertainties on the posterior means of signal and calibration
were calculated. A comparison with a numerically expensive,
but asymptotically exact, Gibbs sampling scheme shows that
the corrections are indeed a good step in the right direction.

However, they also show that there is still space for further
improvements.

Thus, we believe that these corrections can help to refine
the contemporary art of calibration and thereby improve
measurement results in many areas of science and technology.
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