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Depolarization coefficients of light in multiply scattering media
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The depolarization coefficients are calculated for multiply scattered linearly and circularly polarized light.
For a number of media (aqueous suspension of polystyrene particles, water droplets in air), the calculations
are carried out both numerically, with solving the vector radiative transfer equation and analytically, within the
polarization mode approximation. In the latter case the depolarization coefficients are expressed explicitly in
terms of the scattering and absorption coefficients, and the scattering matrix elements of the medium. The range
of applicability of the polarization mode approximation is established. For most practically important cases,
this method is shown to provide a satisfactory degree of accuracy. We also find the fundamental values of the
depolarization coefficients for a Rayleigh medium.
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I. INTRODUCTION

Over the last 20 years, great interest has been taken in po-
larized light propagation through various turbid media [1–26].
Polarization phenomena play a key role in multiple scattering
by birefringent media (e.g., magneto-optic disordered systems
[3], liquid crystals [6], etc.) and also accompany phase co-
herent transport of electromagnetic waves [15]. Many studies
were motivated by applications to atmospheric and oceanic
optics and diagnostics of biological tissues [5,7,8,12,14,22,24–
26]. The discovery of the difference in depolarization rate be-
tween linearly and circularly polarized light [1,2,4,5,11,16,21]
was one of the striking results of these studies.

From published experimental data it follows that
polarization-sensitive methods provide a way of improving
the image quality of objects hidden inside turbid media.
Among the most promising approaches being currently studied
for transillumination of highly scattering media, worthy of
mention are the polarization-difference techniques (see, e.g.,
[7,12,14,22,24–26]) where the “image-bearing” component of
light is extracted by subtracting the detected cross-polarized
signal from the co-polarized one. As the diffusive photons
with completely randomized polarization contribute equally to
both polarized components of scattered radiation, subtraction
of the cross-polarized component from the co-polarized one
filters out the diffusive photons from the “image-bearing”
photons. The feasibility of these techniques is contingent
on the value of depolarization coefficients that govern the
depth dependence of the difference between the polarized
components of intensity. These coefficients, in their turn,
are influenced by concentration, size of scattering particles,
and their refractive index (the effect of these parameters
on depolarization is experimentally studied with the use of
the well-characterized media, e.g., aqueous suspensions of
polystyrene microspheres [1,2,24–26]).

Previous theoretical studies of depolarization of light in
multiply scattering media were mainly based on Monte Carlo
simulations and various methods of numerical integration of
the vector radiative transfer equation (see, e.g., [2,10–12,23]).

The most frequently used analytical results for the depo-
larization coefficients [2,17–19] (see also review [26]) rely
on the assumption of the diffusive propagation of light in
a scattering medium. Within the random matrix approach

[2,17–19] the coefficients of polarization decay per unit
path were calculated. Then, under the assumption that the
distribution over paths at a given depth is described by the
diffusion law, the depolarization coefficients themselves were
found [2,17,19]. Within such an approach, the coefficients of
polarization decay per unit path are supposed to be much less
than the transport scattering coefficient, and depolarization of
light follows the onset of the diffusion regime of wave propaga-
tion. This can be valid for circularly polarized light propagating
through a medium with large particles (see, e.g., [4]). However,
for linearly polarized light, decay of polarization occurs at
scales of the order of the transport mean-free path up to the
onset of the diffusion regime, and the condition mentioned
above is never fulfilled. Approach [2,17–19], as shown below,
overestimates noticeably the values of the coefficients of
depolarization in the case of Rayleigh scattering. According
to [2,17–19,26] the depolarization coefficients for linearly
and circularly polarized light turn out to be greater than the
scattering coefficient of the medium.

In this paper, we present the results of rigorous calculations
of the depolarization coefficients beyond the assumption of
the diffusive propagation of light. The numerical calculations
are carried out with solving the characteristic equations of
the vector radiative transfer equation. The analytical results
are based on decoupling the vector radiative transfer equation.
Our approach relies on the special features of the phase matrix
in the circular representation. Using numerical calculations
with the Mie theory, we show that the off-diagonal elements
of the phase matrix prove to be small within a wide range
of sizes and refractive index of scattering particles. In the
first approximation we can neglect the off-diagonal elements.
Then the vector radiative transfer equation decouples into
independent equations. This corresponds to the basic mode
approximation [27–29]. Taking into account the off-diagonal
elements, we develop a perturbative procedure for calculating
the depolarization coefficients of linearly and circularly po-
larized light. The obtained analytical results enable us to find
explicit interrelation between the depolarization coefficients
and the single-scattering characteristics of the medium. The
range of applicability of the polarization mode approximation
is established and it is shown that our results provide a
good accuracy for most practically important cases. We
also calculate the fundamental values of the depolarization
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coefficients for the medium composed of Rayleigh particles.
The obtained values correct result [2,17,19,26], which overes-
timates noticeably these coefficients in magnitude.

Our results are in good agreement with numerical compu-
tations [10,11] and experiments [2,5,8,16,21] and can be of
interest for studying strongly scattering media by polarization
optical methods.

II. GENERAL RELATIONS

Consider a beam of polarized light incident on a medium
normally to its surface. The medium is assumed to be a
statistically isotropic disordered ensemble of scatterers. The
polarization state of scattered light can be described by the
Stokes column vector [23,30–33]

Ŝ =

⎛
⎜⎝

I

Q

U

V

⎞
⎟⎠, (1)

where four Stokes parameters are defined by relations

I = 〈E‖E∗
‖ + E⊥E∗

⊥〉,
Q = 〈E‖E∗

‖ − E⊥E∗
⊥〉,

(2)
U = 〈E‖E∗

⊥ + E∗
‖E⊥〉,

V = i〈E‖E∗
⊥ − E∗

‖E⊥〉.
The Stokes parameters and the components E‖ and E⊥

of the electric field appearing in Eq. (2) are defined in the
system of unit vectors e‖ = ∂n/∂θ , e⊥ = [n,e‖], and n. The
unit vector n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is the direction
of propagation of the transverse electromagnetic wave, the
vector e‖ lies in the plane formed by the vectors n0 and n
(where n0 is the internal normal to the surface), and the vector
e⊥ is perpendicular to this plane. The brackets 〈. . .〉 denote
statistical averaging.

The Stokes parameters obey the vector radiative transfer
equation [30–32],{

n
∂

∂r
+ σtot

}
Ŝ(z,n) = σ

∫
dn′Ẑ(n,n′)Ŝ(z,n′), (3)

where σtot = σ + σa is the coefficient of total extinction;
σ and σa are the coefficients of scattering and absorption,

FIG. 1. (Color online) Geometry of scattering.

respectively. The phase matrix Ẑ(n,n′) entering into Eq. (3)
can be expressed in terms of the scattering matrix as follows
(see [23]):

Ẑ(n,n′) = L̂(π − β)F̂ (cos γ )L̂(−β ′), (4)

where cos γ = nn′. The scattering matrix F̂ (cos γ ) describes
the intrinsic properties of the medium. The matrix L̂(−β ′)
transforms the Stokes parameters of the incident light in
going from the system of unit vectors {e′‖, e′⊥, n′} to the
scattering plane (i.e., the plane formed by vectors n and n′;
see Fig. 1). The matrix L̂(π − β) corresponds to the inverse
transformation from the scattering plane to the system of unit
vectors {e‖, e⊥, n} related to the direction of propagation of
the scattered light. The L̂ matrix is given in Appendix A. The
angles entering into Eq. (4) are defined by formulas

cos 2β = 1 − 2(1 − μ′2)(1 − cos2 ψ)

1 − (nn′)2
,

(5)

sin 2β = 2
√

1 − μ′2(μ′√1−μ2 − μ
√

1−μ′2 cos ψ) sin ψ

1 − (nn′)2
,

nn′ = μμ′ +
√

(1 − μ2)(1 − μ′2) cos ψ, ψ = ϕ − ϕ′,

μ = nn0 = cos θ, μ′ = n′n0 = cos θ ′. (6)

The functions cos 2β ′ and sin 2β ′ are obtained from Eq. (5) by
interchanging μ and μ′.

For a macroscopically isotropic and symmetric medium, the scattering matrix F̂ (cos γ ) appearing in Eq. (4) has the block-
diagonal structure (see, e.g., [23,31]):

F̂ (cos γ ) =

⎛
⎜⎜⎝

a1(cos γ ) b1(cos γ ) 0 0
b1(cos γ ) a2(cos γ ) 0 0

0 0 a3(cos γ ) b2(cos γ )
0 0 −b2(cos γ ) a4(cos γ )

⎞
⎟⎟⎠. (7)

For the forward scattering (n = n′, cos γ = 1), the F̂ matrix is diagonal: F̂ (1) = diag(a1,a2,a3,a4) and a2(1) = a3(1) [23]. The
matrix element a1 appearing in matrix (7) is the scattering phase function. This element is normalized by the relation∫

dn′a1(nn′) = 1. (8)
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Calculation of the Stokes parameters with the vector radiative transfer equation is valid for all directions excluding a narrow
vicinity near the backward direction where the coherent backscattering due to wave interference should be taken into account
(regarding interrelation between polarization of the coherent backscattering and the solution of Eq. (3), see Refs. [23,34]).

As was shown in [35], to describe multiple scattering of light in turbid media, it is more convenient to go from the linear basis
[see Eq. (2)] to the circular basis, where the electric field is defined in the system of unit vectors

e± = 1√
2

(e‖ ± ie⊥)

as superposition of waves with right (+) and left (−) circular polarizations.
For the circular representation, column vector [35,36]

Î =

⎛
⎜⎜⎜⎝

〈E−E∗
+〉

〈|E+|2〉
〈|E−|2〉
〈E∗

−E+〉

⎞
⎟⎟⎟⎠ = 1

2

⎛
⎜⎝

Q − iU
I − V

I + V

Q + iU

⎞
⎟⎠ = 1√

2

⎛
⎜⎝

I2

I0

I−0

I−2

⎞
⎟⎠ (9)

is an analog of Stokes vector (1).
The vector Î obeys the following vector radiative transfer equation [23,35,36]:{

n
∂

∂r
+ σtot

}
Î (r,n) = σ

∫
dn′d̂(n,n′)Î (r,n′). (10)

The phase matrix d̂(n,n′) appearing in Eq. (10) is given by [23]

d̂(n,n′) =

⎛
⎜⎜⎜⎜⎝

a
(2,3)
+ exp(2iχ+) b+ exp(−2iβ) b− exp(−2iβ) a

(2,3)
− exp(2iχ−)

b+ exp(−2iβ ′) a
(1,4)
+ a

(1,4)
− b− exp(2iβ ′)

b− exp(−2iβ ′) a
(1,4)
− a

(1,4)
+ b+ exp(2iβ ′)

a
(2,3)
− (−2iχ−) b− exp(2iβ) b+ exp(2iβ) a

(2,3)
+ exp(−2iχ+)

⎞
⎟⎟⎟⎟⎠, (11)

where angles χ± and β, β ′ are related by

χ± = π − (β ± β ′). (12)

Functions a
(i,j )
± and b± entering into Eq. (11) are expressed in terms of the elements of scattering matrix (7) and have the form

a
(i,j )
± = ai ± aj

2
, b± = b1 ± ib2

2
. (13)

For spherical particles of given radius and refractive index, matrix elements (13) can be expressed in terms of the scattering
amplitudes [23,33]. Quantities ai (i = 1–4), b1, and b2 are equal to

a1(cos γ ) = a2(cos γ ) = n0

2σ
(|A‖(cos γ )|2 + |A⊥(cos γ )|2), (14)

a3(cos γ ) = a4(cos γ ) = n0

σ
ReA‖(cos γ )A∗

⊥(cos γ ), (15)

b1(cos γ ) = n0

2σ
(|A‖(cos γ )|2 − |A⊥(cos γ )|2), (16)

b2(cos γ ) = n0

σ
ImA‖(cos γ )A∗

⊥(cos γ ), (17)

where A‖ and A⊥ are the amplitudes of the components polarized parallel and perpendicularly to the scattering plane, and n0 is
the number of scattering particles per unit volume. The values of A‖ and A⊥ can be calculated with the Mie theory [23,32,33].
In the limiting case of the Born particles (ka|n − 1| 	 1, where k = 2π/λ, and a and n are the radius and the relative refractive
index of the particles; λ is a wavelength), amplitude A‖ is related to amplitude A⊥ by equation A‖(cos γ ) = A⊥(cos γ ) cos γ

[23,32,33].
In the case of the normal incidence, quantities Im (m = ±0, ± 2) in Eq. (9) can be expanded in azimuthal harmonics

[27–29,37,38]:

I±2(z,n) = 1√
2

[W (z,μ) exp(±2iϕ) + QI (z,μ) ∓ i UV (z,μ) + w(z,μ) exp(∓2iϕ)],

I±0(z,n) = 1√
2

[I (z,μ) ∓ V (z,μ) + IW (z,μ) cos 2ϕ ∓ VW (z,μ) sin 2ϕ]. (18)
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The functions entering into Eq. (18) obey three independent systems of transfer equations:{
μ

∂

∂z
+ σtot

}(
I (z,μ)

QI (z,μ)

)
= σ

∫
dn′

(
a1 b1e

2iβ ′

b1e
−2iβ a

(2,3)
+ e2iχ+ + a

(2,3)
− e2iχ−

)(
I (z,μ′)

QI (z,μ′)

)
, (19)

{
μ

∂

∂z
+ σtot

}⎛
⎜⎜⎝

W (z,μ)
IW (z,μ)
VW (z,μ)
w(z,μ)

⎞
⎟⎟⎠ = σ

∫
dn′

⎛
⎜⎜⎜⎝

a
(2,3)
+ e2i(χ+−ψ) b1

2 e−2i(β+ψ) − b2
2 e−2i(β+ψ) a

(2,3)
− e2i(χ−−ψ)

b1e
−2i(β ′+ψ) a1e

−2iψ 0 b1e
2i(β ′−ψ)

b2e
−2i(β ′+ψ) 0 a4e

−2iψ −b2e
2i(β ′−ψ)

a
(2,3)
− e−2i(χ−+ψ) b1

2 e2i(β−ψ) b2
2 e2i(β−ψ) a

(2,3)
+ e−2i(χ++ψ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

W (z,μ′)
IW (z,μ′)
VW (z,μ′)
w(z,μ′)

⎞
⎟⎟⎠, (20)

{
μ

∂

∂z
+ σtot

}(
V (z,μ)
UV (z,μ)

)
= σ

∫
dn′

(
a4 −b2e

2iβ ′

b2e
−2iβ a

(2,3)
+ e2iχ+ − a

(2,3)
− e2iχ−

)(
V (z,μ′)
UV (z,μ′)

)
. (21)

The first pair of equations [see Eq. (19)] enables us to calculate
the intensity of radiation and the azimuth-independent contri-
bution to the second Stokes parameter. Quantity QI coincides
with the second Stokes parameter of an initially unpolarized
beam [39]. If the incident light is not polarized, the state of
scattered light is characterized only by quantities I and QI .
The state of a linearly polarized beam multiply scattered in the
medium is governed by Eqs. (19) and (20). For a circularly
polarized incident beam, the third set of equations [see Eq.
(21)] comes into play instead of Eq. (20).

Expression (18) and Eqs. (19)–(21) are valid for arbitrary
initial polarization which can be taken into account in the
boundary condition at z = 0. In particular, for the elliptically
polarized incident light, the initial values of the functions W

and V entering into Eq. (18) are equal to

W = I

√
1 − P 2

C, V = I PC,

where I and PC are the intensity at z = 0 and the degree of
circular polarization of the incident light. The other functions,
QI , IW , VW , w, and UV , should be put to be equal to zero at
z = 0.

III. BASIC MODE APPROXIMATION

In the case of scattering by large inhomogeneities (size
a is larger than wavelength λ) the off-diagonal elements of
the phase matrix appearing in Eqs. (19)–(21) turn out to be
small as compared to the diagonal ones (see Fig. 2). In the first
approximation we can neglect the off-diagonal elements. Then
Eqs. (19)–(21) are reduced to independent transfer equations
[27–29,37,38]. These equations describe propagation of the
individual modes appearing in Eq. (18).

For a linearly polarized incident beam, the boundary
condition at z = 0 takes the form I = W , and QI = IW =
VW = w = 0. Therefore we can consider only the transfer
equations for modes I and W ; no other modes are excited.

Quantity I is the specific intensity and subject to the
ordinary scalar transfer equation (see, e.g., [31,32]){

μ
∂

∂z
+ σtot

}
I (z,μ) = σ

∫
dn′a1(nn′)I (z,μ′). (22)

Quantity W was named [27–29,37,38] by the basic mode
of linear polarization. The transfer equation for W has the

form{
μ

∂

∂z
+ σtot

}
W (z,μ)

= σ

∫
dn′a(2,3)

+ (nn′) exp{2i[χ+(n,n′) − ψ]}W (z,μ′).

(23)
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FIG. 2. (Color online) Angular dependence of scattering matrix
elements for aqueous suspension of polystyrene microspheres (a) and
water droplets in air (b) (ka = 5): solid black, dashed blue, dotted
green, and dash-dotted red lines represent a1, a

(2,3)
− , |b1|, and |b2|,

respectively. The numerical calculations were carried out with the
Mie theory [23,32,33].
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The modes QI , IW , VW , and w come into play only if the
off-diagonal elements are taken into account. In the latter
case the basic modes I and W generate the “sources” in the
corresponding equations for modes QI , IW , VW , and w.

For a circularly polarized light (I = V and QI = UV = 0
at z = 0), the basic mode approximation is similar to that
discussed above. When neglecting the off-diagonal elements
of the phase matrix appearing in Eq. (21), we arrive at the
individual transfer equation for the basic mode V of circular
polarization,{

μ
∂

∂z
+ σtot

}
V (z,μ) = σ

∫
dn′a4(nn′)V (z,μ′). (24)

Within the basic mode approximation, a beam of light
propagating through a turbid medium is described by three
quantities, I , W , and V ; each of them is subject to its own
transfer equation. The separate equations for W and V were
also derived in a different way, without resorting to the circular
representation, in [40].

In the polarization-difference techniques (see, e.g., [22,24–
26]) which are based on subtracting the detected cross-
polarized signal from the co-polarized one, only two modes
W and V are responsible for data of measurements. Intensity
I is not required to process polarization-difference images.

The equations for W and V [see Eqs. (23) and (24)]
differ from the scalar transfer equation (22) by the form of
the effective phase functions. The effective phase functions
appearing in Eqs. (23) and (24) are a

(2,3)
+ exp[2i(χ+ − ψ)] and

a4, respectively. The difference between these phase functions
and phase function a1 entering into Eq. (22) results in the
fact that the integral of either of the effective phase functions
over directions is less than unity [as opposed to Eq. (8)]. This
gives rise to nonzero effective “absorption” in Eqs. (23) and
(24) (even in the absence of true absorption). The effective
“absorption” in Eqs. (23) and (24) is responsible for the
additional attenuation of W and V as compared to intensity
I and describes the effect of depolarization of linearly and
circularly polarized light [27–29,37,38].

There are two different reasons [4] (see also [27–29,37,38])
for wave depolarization in a scattering medium. These reasons
were first pointed out in the context of the study of wave
propagation through a turbulent atmosphere [41–43].

The “geometrical” depolarization is due to the Rytov
rotation [44] of the polarization plane. According to [44], the
plane of polarization turns, as the ray of light propagates along
a nonplanar curve. The depolarization observed in multiple
scattering of linearly polarized light results from superposition
of randomly oriented polarizations of the waves propagating
along different random paths. Therefore, the “geometrical”
depolarization occurs simultaneously with isotropization of
light over the directions of propagation at depths of the order of
the transport mean-free path ltr [ltr = l/(1 − 〈cos γ 〉), where
l = σ−1 is the mean-free path, and 〈cos γ 〉 is the mean cosine
of single scattering] [4]. The situation is different for circularly
polarized light. Circularly polarized light can be presented as a
superposition of two linearly cross-polarized waves shifted in
phase by π/2. In multiple scattering, the Rytov effect results
in the turn of the polarization plane of each linearly polarized
component, but has no effect on the phase shift between them.

Therefore, a circularly polarized wave propagating along any
random trajectory is unaffected by the Rytov rotation. The
wave remains circularly polarized.

A similar picture of depolarization was also discussed
in [45,46] in close analogy with the torsion statistics of
semiflexible polymers of the type of DNA considered as
fluctuating stiff threads.

The pure “geometrical” depolarization can be realized in
the limit A‖ = A⊥ (or a1 = a2 = a3 = a4) [37]. In this case,
phase matrix (11) takes the diagonal form and is expressed
in terms of phase function a1 and angle χ+ [see Eq. (12)].
Depolarization results from multiple turns of the polarization
plane as the direction of wave propagation changes randomly
[4,37].

The difference between the amplitudes A‖ and A⊥ (or,
the difference between diagonal elements ai, i = 1–4) are
responsible for the “dynamical” mechanism of depolarization.
The “dynamical” depolarization occurs independently of the
initial polarization of light. In particular, circularly polarized
light depolarizes only due to the “dynamical” reason (the
difference between a1 and a4 is responsible for depolarization
of circularly polarized waves) [4,27–29].

In the case of the linearly polarized incident beam, the role
of one or the other reason for depolarization depends on the
optical properties of the scattering particles. The “geometrical”
depolarization can be either dominant or as important as the
“dynamical” depolarization [27–29].

IV. DEPOLARIZATION COEFFICIENTS IN
THE ASYMPTOTIC STATE

We can take advantage of Eqs. (19)–(21) to calculate
the coefficients of depolarization in the asymptotic state
of propagation (z > ltr ). Analysis of the asymptotic limit
is important for various practical applications (see, e.g.,
[1,2,5,22,26]).

The elements of phase matrix (11) are expanded in the
generalized spherical functions [35] (see also [23]). Therefore,
solutions to Eqs. (19)–(21) can be sought in the form of series
in these functions as well [35]. In the scalar transfer theory,
this approach is known as the Pl approximation [47]. As
applied to the vector radiative transfer equation, expansion
in the generalized spherical functions was originally proposed
in [35], and used then in a number of studies as a basis for
numerical and analytical calculations (e.g., see [36,48]). In
particular, this approach was applied to calculating spatial
moments of the photon distribution generated by a pulsed
source of light [9,20].

Solutions of Eqs. (19)–(21) in the asymptotic state can be
represented as [27–29](

I (z,μ)
QI (z,μ)

)
= exp(−εI z)

∑
l=0

2l + 1

4π

(
I (l)Pl(μ)

QI (l)P l
20(μ)

)
, (25)

⎛
⎜⎜⎜⎝

W (z,μ)

IW (z,μ)

VW (z,μ)

w(z,μ)

⎞
⎟⎟⎟⎠ = exp(−εWz)

∑
l=2

2l + 1

4π

⎛
⎜⎜⎜⎝

W (l)P l
22(μ)

IW (l)P l
20(μ)

VW (l)P l
20(μ)

w(l)P l
2−2(μ)

⎞
⎟⎟⎟⎠, (26)
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(
V (z,μ)
UV (z,μ)

)
= exp(−εV z)

∑
l=0

2l + 1

4π

(
V (l)Pl(μ)

UV (l)P l
20(μ)

)
, (27)

where Pl(μ) [Pl(μ) ≡ P l
00(μ)] and P l

mn(μ) are the Legendre
polynomials and the generalized spherical functions, respec-
tively. Detailed definitions and properties of P l

mn(μ) can be
found in [49].

Substituting expansions (25)–(27) into Eqs. (19)–(21) we
arrive at an eigenvalue problem for each system of the
coupling equations. The corresponding systems of equations
are given in Appendix B [see Eqs. (B1)–(B3)]. Coefficients
εI , εW , and εV are minimum eigenvalues. The quantities εW

and εV are the depolarization coefficients that govern decay
of polarization with depth z. In particular, decrease in the
polarization difference (for linearly and circularly polarized
light I‖ − I⊥ and I+ − I−, respectively) with depth z is just
characterized by the coefficients εW and εV .

When the optical properties of the medium are known,
the solutions to Eqs. (B1)–(B3) can be found numerically,
by truncating the dimension of the corresponding system at
some lmax. Eigenvalues εI , εW , and εV are determined as the
roots of the corresponding characteristic equations. For the
intensity, the asymptotic state has been studied in detail (see,
e.g., [35]). In what follows we pay our attention to analysis of
depolarization of linearly and circularly polarized beams in a
nonabsorbing medium (σa = 0).

A. Linearly polarized light

Within the basic mode approximation where the off-
diagonal elements are neglected, the value of coefficient εW

is determined from the characteristic equation for mode W .
Explicit analytical expressions for εW [27–29] can be easily
derived within the one-polynomial

ε
(1)
W = 3

2
σ

(2,3)
+ (2) (28)

and two-polynomial

ε
(2)
W = 7

6

[
σ

(2,3)
+ (2) + 2σ

(2,3)
+ (3)

]

×
{

1 −
√√√√1 − 36

7

σ
(2,3)
+ (2)σ (2,3)

+ (3)[
σ

(2,3)
+ (2) + 2σ

(2,3)
+ (3)

]2

}
(29)

approximations, where quantities σ
(2,3)
+ (l) (l = 2,3) are ex-

pressed in terms of the expansion coefficients of matrix
element a

(2,3)
+ in the generalized spherical functions [see

Appendix B, Eq. (B4)]. Comparison with numerical solution
of the characteristic equation for W showed [29] that Eq. (29)
gives virtually the exact result.

To analyze the effect of the off-diagonal elements, first
we consider the result of calculations of the depolarization
coefficient within the one-polynomial approximation. Within
this approximation the characteristic equation looks like as

follows:

det

⎛
⎜⎜⎝

2εW

3−σ
(2,3)
+ (2)

σ
2 b1(2) − σ

2 b2(2) σa
(2,3)
− (2)

σb1(2) −σ1(2) 0 σb1(2)
σb2(2) 0 −σ4(2) −σb2(2)

σa
(2,3)
− (2) σ

2 b1(2) σ
2 b2(2) − 2εW

3 − σ
(2,3)
+ (2)

⎞
⎟⎟⎠ = 0,

(30)

where quantities σ1(l), σ4(l), b1(l), and b2(l) (l = 2) are defined
in Appendix B by Eq. (B4). Then the εW coefficient is equal
to

εW = 3

2
σ

(2,3)
+ (2)

(
1 − σa

(2,3)
− (2)

σ
(2,3)
+ (2)

− [σb1(2)]2

σ
(2,3)
+ (2)σ1(2)

)1/2

×
(

1 + σa
(2,3)
− (2)

σ
(2,3)
+ (2)

+ [σb2(2)]2

σ
(2,3)
+ (2)σ4(2)

)1/2

. (31)

Comparison of Eqs. (28) and (31) shows that the effect of the
off-diagonal elements of the scattering matrix on the value εW

is characterized by quantities(
σa

(2,3)
− (2)

σ
(2,3)
+ (2)

)2

,
[σb1(2)]2

σ
(2,3)
+ (2)σ1(2)

,
[σb2(2)]2

σ
(2,3)
+ (2)σ4(2)

. (32)

The dependence of quantities (32) on the radius of scattering
particles is illustrated in Fig. 3 for two important cases.
Polystyrene microspheres in water are frequently used for
modeling optical properties of biological tissues (see, e.g.,
[2,5,16,26]). Water droplets in air are the model of atmospheric
aerosols. From Fig. 3 it follows that the effect of the off-
diagonal elements can be observable only for relatively small
particles ka(n − 1) � 1. In the limiting case of Rayleigh
scattering particles [23,32,33] quantities (32) are equal to 9/49,
2/21, and zero, respectively. As a result, the contribution of
the off-diagonal elements to the value of the depolarization
coefficient εW can be supposed to be small and taken into
account within a perturbative method.

With allowance for the off-diagonal elements, generaliza-
tion of the two-polynomial formula (29) gives the following
result:

εW = ε
(2)
W + δεW , (33)

δεW = 3σ
(2,3)
+ (2)�

(
σa

(2,3)
− (2)

σ
(2,3)
+ (2)

+ [σb1(2)]2

σ
(2,3)
+ (2)σ1(2)

,
σa

(2,3)
− (2)

σ
(2,3)
+ (2)

+ [σb2(2)]2

σ
(2,3)
+ (2)σ4(2)

,
σ

(2,3)
+ (3)

σ
(2,3)
+ (2)

)
, (34)

where function �(a,b,c) is presented in Appendix C.
Figures 4 and 5 illustrate accuracy of different approxima-

tions in calculating the depolarization coefficient εW . From
Fig. 4 it follows that Eq. (29) provides a good accuracy
at ka(n − 1) � 0.5. The more general result (33), (34) is
applicable all over the range of variations of size parameter
ka and refractive index n.

As our calculations show (see Fig. 6) ratio εW/σtr is of the
order of unity and depends only slightly on the particle radius
at ka(n − 1) > 1–2. For such values of ka(n − 1), coefficient
εW can be calculated with Eq. (29) (i.e., without allowance
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FIG. 3. (Color online) Quantities (
σa

(2,3)
− (2)

σ
(2,3)
+ (2)

)2 (solid black),

[σb1(2)]2

σ
(2,3)
+ (2)σ1(2)

(dashed blue), [σb2(2)]2

σ
(2,3)
+ (2)σ4(2)

(dotted green), and [σb2(2)]2

σ3(2)σ4(2)

(dash-dotted red) appearing in Eq. (31) as a function of radius a

of scattering particles for aqueous suspension of the polystyrene
microspheres (a) and water droplets in air (b). The numerical
calculations were carried out with the Mie theory [23,32,33].

for the off-diagonal elements of the phase matrix). Moreover,
the main contribution to εW results from the “geometrical”
depolarization [27–29]. The value of ε

geom
W calculated within

the assumption that the depolarization is only due to the Rytov
rotation (i.e., a1 = a2 = a3 = a4) differs little from the exact
value of εW (see the inset in Fig. 6).

B. Circularly polarized light

Under certain conditions, propagation of circularly polar-
ized light through a scattering medium can be considered as
the spatial diffusion [4]. The diffusion is described by the
two-polynomial approximation in expansion (25) for V . In this
approximation the depolarization coefficient εV is given by

εV =
√

3σ4(0)σ4(1), (35)

where quantities σ4(0) and σ4(1) are defined in Appendix B
by Eq. (B4).

.

.

.

.

.

.

.
. . . .

FIG. 4. (Color online) Depolarization coefficient εW as a func-
tion of radius a of scattering particles for aqueous suspension of
polystyrene microspheres [blue (bottom) lines] and water droplets in
the air [red (upper) lines]. Calculations of εW are carried out with
numerical solution of the characteristic equation (lmax = 10, solid
line) and with Eqs. (29) (dashed lines), (33) (dotted lines).

In a medium with no true absorption, quantity σ4(0) is
determined by the difference between the phase function a1

and the “effective” phase function a4 entering into the transfer
equation (24) for V ,

σ4(0) = σ

∫
dn′[a1(nn′) − a4(nn′)], (36)

and is responsible for the appearance of the effective “absorp-
tion” in Eq. (24). The effective “absorption” coefficient σ4(0)
describes additional attenuation of V as compared to intensity
I . According to the notations of [4,27–29] σ4(0) = σdep is the
coefficient of depolarization of circularly polarized light per

.

FIG. 5. (Color online) Depolarization coefficient εW as a func-
tion of relative refractive index for ka = 5 [red (upper) lines] and
ka = 10 [blue (bottom) lines]. Calculations of εW are carried out
with numerical solution of the characteristic equation (lmax = 10,
solid lines) and with Eqs. (29) (dashed lines), (33) (dotted lines).
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.

.

.

.

.

.

.

FIG. 6. (Color online) Ratio εW /σtr as a function of radius
a of scattering particles for aqueous suspension of polystyrene
microspheres (solid blue line), water droplets in air (dashed red
line). Calculations are carried out with numerical solution of the
characteristic equation of Eq. (B2) (lmax = 10). The inset shows the
radius dependence of ratio ε

geom
W /εW .

unit path. Quantity σ4(1) can be written as

σ4(1) = σ4(0) + σ

∫
dn′(1 − nn′)a4(nn′), (37)

where the second term plays the role of the transport scattering
coefficient in the equation for V [27–29].

Formula (35) is valid under conditions of weak effective
“absorption” [4,27–29]

σ4(0) 	 σ4(1). (38)

Inequality (38) is fulfilled if the difference between a1 and a4

is rather small. In this case quantity σ4(1) can be estimated as
σtr , and Eq. (38) can be rewritten in the form [4]

σdep 	 σtr . (39)

More polynomials should be taken into account in expansion
(27), as the condition of weak effective “absorption” is
violated.

Within the three-polynomial approximation, the contribu-
tion from the off-diagonal element b2 is also allowed for in εV ,
to give

εV =
√

3σ4(0)σ4(1)

(
1 + [σb2(2)]2

5σ3(2)σ4(2)

)1/2

×
(

1 + 4σ4(0)

5σ4(2)
+ [σb2(2)]2

5σ3(2)σ4(2)

)−1/2

. (40)

The contribution from the off-diagonal element b2 to the εV is
always a small quantity (see Fig. 3),

[σb2(2)]2

5σ3(2)σ4(2)
	 1.

So, allowance for the additional number of polynomials in
expansion of V proves to be of more importance due to a
noticeable value of effective “absorption” σ4(0) rather than
the off-diagonal element b2.

FIG. 7. (Color online) Depolarization coefficient εV as a function
of radius a for scattering particle aqueous suspension of the
polystyrene microspheres [blue (bottom) lines] and water droplets
in the air [red (upper) lines]. Calculations are carried out numerically
with the characteristic equation of Eq. (B3) (lmax = 10, solid lines) and
with approximate formulas (35) (dashed lines), (40) (dotted lines).

Figures 7 and 8 illustrate the depolarization coefficient εV

as a function of, respectively, radius a and relative refractive
index n of scattering particles. From the figures it follows
that the diffusion formula for the εV coefficient [see Eq. (35)]
is applicable only to large (ka � 1) and slightly refractive
(|n − 1| 	 1) scattering inhomogeneities. The more advanced
result (40) improves considerably the accuracy of calculating
εV all over the range of variations of size parameter ka and
refractive index n.

Ratios εW/σ and εV /σ reach their maximum values in
the limiting case of Rayleigh scattering particles (ka 	 1,
|n − 1| 	 1; see Figs. 4 and 7). In this case accurate numerical

FIG. 8. (Color online) Depolarization coefficient εV as a function
of relative refractive index for ka = 5 [red (upper) lines] and ka = 10
[blue (bottom) lines]. Calculations are carried out numerically with
the characteristic equation of Eq. (B3) (lmax = 10, solid lines) and
with approximate formulas (35) (dashed lines), (40) (dotted lines).
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calculations with the characteristic equations give

εW = 0.74 σ, εV = 0.85 σ. (41)

Approximate formulas (33) and (40) give slightly exceeded
values

εW = 0.76 σ, εV = 0.91 σ. (42)

According to the analytical results presented above [see
Eqs. (29), (33) and (35), (40)], the depolarization coefficients
can be expressed in terms of a few first coefficients of
expansion of the scattering matrix elements in the generalized
spherical functions. These results establish explicit interre-
lation between the depolarization properties of the multiply
scattering medium and optical characteristics of individual
scatterers.

V. ANALYTICAL SOLUTION FOR A RAYLEIGH MEDIUM

In the case of a Rayleigh medium the depolarization
coefficients can be found exactly. For Rayleigh particles
(ka 	 1, |n − 1| 	 1) the scattering matrix (7) is given by
[30]

F̂ (cos γ )

= 3

16π

⎛
⎜⎝

1 + cos2 γ cos2 γ − 1 0 0
cos2 γ − 1 1 + cos2 γ 0 0

0 0 2 cos γ 0
0 0 0 2 cos γ

⎞
⎟⎠.

(43)

Element b2 ≡ 0 and we can put VW = 0.
Let us introduce a new function

FW (z,μ) = (1 + μ)2W (z,μ) − (1 − μ2)IW (z,μ)

+ (1 − μ)2w(z,μ). (44)

Then, combining the equations entering into system (20), we
can easily show that function FW obeys the following equation:{

μ
∂

∂z
+ σtot

}
FW (z,μ) = 3σ

16
(1 + μ2)2

∫ 1

−1
dμ′FW (z,μ′).

(45)

The characteristic equation corresponding to the asymptotic
solution of Eq. (45) has the form

1 = 3

16

σ

σtot

∫ 1

−1
dμ

(1 + μ2)2

1 − μεW/σtot
. (46)

Evaluating the integral in Eq. (46) we arrive at the algebraic
equation

εW

σtot
= 3

16

σ

σtot

{[
1 +

(
σtot

εW

)2]2

ln
1 + εW

σtot

1 − εW

σtot

− 14

3

σtot

εW

− 2

(
σtot

εW

)3}
. (47)

Equation (46) is among the set of the characteristic equations
that were derived in a different way by Chandrasekhar within
the problem of diffuse reflection and transmission of light
by a slab of Rayleigh particles (see Chap. X, Sec. 69,

Eqs. (120) and (124) in [30]). However, as we have learned,
nobody has applied the corresponding characteristic equation
yet to calculate the coefficient that is responsible for depolar-
ization of initially linearly polarized light.

For Rayleigh scattering matrix (43), the fourth Stokes
parameter V is described by the independent equation{

μ
∂

∂z
+ σtot

}
V (z,μ) = 3σ

4
μ

∫ 1

−1
dμ′ μ′V (z,μ′). (48)

The corresponding characteristic equation is given by

1 = 3

4

σ

σtot

∫ 1

−1
dμ

μ2

1 − μεV /σtot
(49)

or, in the algebraic form, by(
εV

σtot

)2

= 3

4

σ

σtot

{
σtot

εV

ln
1 + εV

σtot

1 − εV

σtot

− 2

}
. (50)

For a nonabsorbing medium, the roots of Eqs. (47) and (50)
are coincident with numerical values given by Eq. (41).

In the Rayleigh case, as opposed to the case of large
inhomogeneities, circular polarization decays faster than linear
polarization, εW < εV . The difference between the values of
εW and εV decreases with increasing absorption. In the limit
σ 	 σa ratios εW/σ and εV /σ tend to unity.

VI. DISCUSSION

There are rather many studies devoted to calculations and
measurements of depolarization of light in disordered media
(see, e.g., [2,4,5,8–11,16–19,21]). Within the random matrix
approach, the coefficients of depolarization per unit path were
found for both linearly and circularly polarized light [17–19].
For circular polarization, result [17,19] is coincident with our
quantity σdep = σ4(0) (see Eq. (36) and also [4,27–29]). Result
[17,18] related to linear polarization is coincident with the
formula derived in [9] by solving the nonstationary vector
radiative transfer equation integrated over space. In [9] the
coefficient of depolarization per unit path is the coefficient of
polarization decay with time t as path s = ct , where c is the
speed of light. Coefficients εW and εV that are responsible for
depolarization of light with depth z were calculated in [17–19]
under the assumption that the distribution over paths at given
depth z is subject to the diffusion law. This assumption is
valid only if the coefficient of depolarization per unit path is
much less than transport scattering coefficient σtr , and decay of
polarization follows the isotropization of light over directions.
Such conditions are fulfilled for circularly polarized light in
media composed of large weakly refractive particles [4,27–
29]. In this case result [17,19] coincides with Eq. (35) (see
also [4,27–29]). For linearly polarized light, the coefficient of
depolarization per unit path is of the order of the transport
scattering coefficient and the above-mentioned assumption is
never valid. Therefore, approach [17,18] fails for calculations
of the εW coefficient.

The drawback of approach [17–19] reveals itself clearly for
Rayleigh particles. Within approach [17–19] (see also [2,26])
the values of the depolarization coefficients are equal to εW =
1.03 σ and εV = 1.46 σ , exceeding noticeably the scattering
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FIG. 9. (Color online) Depolarization coefficient εW as a func-
tion of radius a of scattering particles for aqueous suspension of
polystyrene microspheres. The symbols are the results of experiments
(�, [2]; �, [5]; , [8]; •, [16]; �, [21]) and numerical calculation (◦,
[11]). The curves are the results of our calculations (regarding details,
see Fig. 5).

coefficient of the medium (i.e., light is depolarized faster than
scattered).

The fundamental values of εW and εV for a Rayleigh
medium [see Eq. (41)] differ essentially from results
[2,17,19,26] both quantitatively and qualitatively. According
to Eq. (41) these values are less than the scattering coefficient
of the medium and the difference between εW and εV is less
noticeably than that predicted in [2,17,19,26].

It is of interest to compare the results obtained in the present
work with data of experiments [2,5,8,16,21] and numerical
integration [11] of the vector radiative transfer equation. In
Figs. 9 and 10 the depolarization coefficients εW and εV

as functions of size parameter ka are shown for aqueous
suspension of polystyrene microspheres. Experimental and
numerical data on εW and εV were extracted from the depth

FIG. 10. (Color online) Depolarization coefficient εV as a func-
tion of radius a of scattering particles for aqueous suspension of
polystyrene microspheres. The symbols are the results of experiments
(�, [2]; �, [5]; •, [16]; �, [21]) and numerical calculation (◦, [11]).
The curves are the results of our calculations (regarding details, see
Fig. 8).

dependence of the degree of polarization. In accordance
with [27–29] the degree of linear (PL = W/I ) and circular
(PC = V/I ) polarization falls off by law

P ∼ z exp(−εz), (51)

as W ∼ exp(−εWz), V ∼ exp(−εV z), and the diffusive inten-
sity I decreases in a nonabsorbing medium as I ∼ 1/z with
increasing z. Fitting of Eq. (51) to data [2,5,8,11,16,21] enables
us to extract the corresponding values of the depolarization
coefficients.

Our results are also in agreement with the numerical
integration of the vector radiative transfer equation carried
out in [10]. The values of εW and εV obtained above and in

(a)

(b)

(c)

FIG. 11. (Color online) Difference between depolarization coef-
ficients εW − εV as a function of radius a for various relative refractive
index of particles n = 1.01(a), n = 1.20(b), and n = 1.40(c). Solid
curves are the results of numerical calculations of εV − εW with
the characteristic equations of systems (B2) and (B3) (lmax = 10).
The results of numerical integration of the vector radiative transfer
equation [10] are shown by symbols.
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[10] are slightly different due to a systematic error which is
inherent in data [10]. When extracting εW and εV from the
data for the degree of polarization, the authors of [10] omit
the linear prefactor in Eq. (51). The systematic error resulting
from this procedure can be excluded in the difference εW − εV .
Comparison of our results for εW − εV with the corresponding
data taken from [10] is illustrated in Fig. 11.

From Fig. 11 it follows that the circular polarization decays
slower than the linear one for relatively large particles. There
is a critical value of ka where the difference between the
depolarization coefficients εW and εV vanishes. This critical
value can be approximated by

ln ka ≈ 0.74 − 0.77(n − 1) + 0.15(n − 1)2, (52)

where relative refractive index n ranges from 1 to 2.5.
Although the depolarization coefficients are related to the

scattering matrix elements of the medium, a qualitative picture
of depolarization can be characterized only by two quantities,
σtr and σdep, respectively. From the results obtained above it
follows that the value of εW is of the order of σtr [for ka(n −
1) ∼ 1, coefficient εW ∼ (1.2–1.25)σtr ; see Fig. 6], while the
value of εV , as a rule, is less than εW and is approximated by
εV = √

3σdepσtr [see Eq. (35)]. According to these estimates
the depolarization coefficients are equal to each other at σdep ∼
0.5 σtr . Such a qualitative assessment is confirmed by accurate
numerical calculations. Within a wide range of ka and n =
1–2.5 equality εW = εV is achieved at ratio σdep/σtr = 0.58.

It should be noted that there is correlation between the
difference εW − εV and a prevailing mechanism of depolar-
ization. In the case of slow decay of circular polarization,
σdep 	 σtr , the “geometrical” mechanism (i.e., depolarization
due to the Rytov rotation effect) is mainly responsible for depo-
larization of linearly polarized light. Otherwise σdep � 0.5 σtr ,
the “dynamical” and “geometrical” mechanisms contribute
equally to εW .

VII. CONCLUSIONS

In conclusion, the coefficients of depolarization of multiply
scattered linearly and circularly polarized beams have been
calculated both numerically and analytically. The coefficients
of depolarization govern the depth dependence of the dif-
ference between the intensities of the polarized components
of light and are of great interest for various applications of
polarization techniques to remote sensing of highly scattering
media (aerosols, colloidal solutions, biological tissues, etc.).
Based on the polarization mode approximation, we have
expressed the depolarization coefficients in terms of a few
first coefficients of expansion of the scattering matrix elements

in the generalized spherical functions. This method has been
shown to provide a satisfactory degree of accuracy for most
practically important cases. The fundamental values of the
depolarization coefficients for a Rayleigh medium have been
calculated both numerically and analytically. The obtained
values correct the frequently used result (see, e.g., [2,17–
19,26]), which overestimates noticeably the magnitude of the
depolarization coefficients.

APPENDIX A

The Stokes parameters are always defined with respect to a
reference frame, in our case the system of unit vectors {e‖, e⊥,
n}. If the reference frame is rotated through angle α around the
direction n, transformation of the Stokes vector is described
by

Ŝ ′ = L̂(α)Ŝ, (A1)

where rotation matrix L̂ is equal to

L̂(α) =

⎛
⎜⎝

1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

⎞
⎟⎠. (A2)

According to Eq. (A2) the Stokes parameters Q and U are
transformed via each other under spatial rotation

Q′ = Q cos 2α + U sin 2α,
(A3)

U ′ = −Q sin 2α + U cos 2α.

In going from the linear to circular representation (i.e., from
the Stokes vector Ŝ to the vector Î ) relation (A1) is replaced
by

Î ′ = L̂(α)Î , (A4)

where

L̂(α) =

⎛
⎜⎝

exp(2iα) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(−2iα)

⎞
⎟⎠. (A5)

Contrary to the Stokes parameters Q and U , either component
of Î is transformed via itself [36],

I ′
m = exp(2imα)Im. (A6)

So within the circular representation we exclude coupling
between the different Stocks parameters Q and U that results
from spatial rotations of the reference frame.

APPENDIX B

Taking into account expansions of the scattering matrix elements in the generalized spherical functions [35] (see also [9,23])
we arrive at the following equations for the coefficients entering into Eqs. (25) and (26):

εI

(
l

(2l + 1)
I (l − 1) + (l + 1)

(2l + 1)
I (l + 1)

)
− σ1(l)I (l) = σb1(l)QI (l),

(B1)

εI

(√
(l + 2)(l − 2)

(2l + 1)
QI (l − 1) +

√
(l + 3)(l − 1)

(2l + 1)
QI (l + 1)

)
− σ2(l)QI (l) = −σb1(l)I (l),
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εW

(
l2 − 4

l(2l + 1)
W (l − 1) + 4

l(l + 1)
W (l) + (l + 3)(l − 1)

(l + 1)(2l + 1)
W (l + 1)

)
− σ

(2,3)
+ (l)W (l)

= −σ

2
b1(l)IW (l) + σ

2
b2(l)VW (l) − σa

(2,3)
− (l)w(l),

εW

(√
(l + 2)(l − 2)

(2l + 1)
IW (l − 1) +

√
(l + 3)(l − 1)

(2l + 1)
IW (l + 1)

)
− σ1(l)IW (l) = −σb1(l)W (l) − σb1(l)w(l),

εW

(√
(l + 2)(l − 2)

(2l + 1)
VW (l − 1) +

√
(l + 3)(l − 1)

(2l + 1)
VW (l + 1)

)
− σ4(l)VW (l) = −σb2(l)W (l) + σb2(l)w(l),

εW

(
(l + 2)(l − 2)

l(2l + 1)
w(l − 1) − 4

l(l + 1)
w(l) + (l + 3)(l − 1)

(l + 1)(2l + 1)
w(l + 1)

)
− σ

(2,3)
+ (l)w(l)

= −σa
(2,3)
− (l)W (l) − σ

2
b1(l)IW (l) − σ

2
b2(l)VW (l), (B2)

εV

(
l

(2l + 1)
V (l − 1) + (l + 1)

(2l + 1)
V (l + 1)

)
− σ4(l)V (l) = σb2(l)UV (l),

(B3)

εV

(√
(l + 2)(l − 2)

(2l + 1)
UV (l − 1) +

√
(l + 3)(l − 1)

(2l + 1)
UV (l + 1)

)
− σ3(l)UV (l) = −σb2(l)V (l),

where

σ1,4(l) = σ (1 − a1,4(l)) + σa, a1,4(l) = 2π

∫ 1

−1
dμ a1,4(μ)Pl(μ), σ

(2,3)
± (l) = σ

(
1 − a

(2,3)
± (l)

) + σa,

a
(2,3)
± (l) = 2π

∫ 1

−1
dμ a

(2,3)
± (μ)P l

2±2(μ), b1,2(l) = 2π

∫ 1

−1
dμ b1,2(μ)P l

20(μ). (B4)

Coefficients σ2(l) and σ3(l) appearing in Eqs. (B1), (B3) can be expressed in terms of a
(2,3)
± (l) as follows:

σ2,3(l) = σ
(2,3)
+ (l) ± σ

(2,3)
− (l) ∓ (σ + σa). (B5)

Solutions to Eqs. (B1)–(B3) can be found numerically with the use of truncating at some lmax.
Within the basic mode approximation, coefficients b1(l), b2(l), and a

(2,3)
− (l) should be put equal to zero. Then expansion

coefficients I (l), W (l), and V (l) are subject to the separate equations that coincide with the first equations of systems (B1)–(B3)
with nil on the right-hand side.

APPENDIX C

The simplest generalization of the two-polynomial formula derived within the basic mode approximation [see Eq. (29)] can
be obtained with allowance for one-polynomial expansion of the off-diagonal elements. In this case the characteristic equation
takes the form

det

⎛
⎜⎜⎜⎜⎜⎜⎝

εW

3−σ
(2,3)
+ (3)

5
21εW 0 0 0

1
3εW

2εW

3 − σ
(2,3)
+ (2) σ

2 b1(2) − σ
2 b2(2) σa

(2,3)
− (2)

0 σb1(2) −σ1(2) 0 σb1(2)

0 σb2(2) 0 −σ4(2) −σb2(2)

0 σa
(2,3)
− (2) σ

2 b1(2) σ
2 b2(2) − 2εW

3 − σ
(2,3)
+ (2)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (C1)

Equation (C1) can be rewritten as

x3 − x2

(
5

18
− 5

36
(a − b) + 14

9
c

)
− 7

18
(1 − a)(1 + b)x + 7

18
(1 − a)(1 + b)c = 0, (C2)

where x = εW/3σ
(2,3)
+ (2),

a = σa
(2,3)
− (2)

σ
(2,3)
+ (2)

+ [σb1(2)]2

σ
(2,3)
+ (2)σ1(2)

, b = σa
(2,3)
− (2)

σ
(2,3)
+ (2)

+ [σb2(2)]2

σ
(2,3)
+ (2)σ4(2)

, c = σ
(2,3)
+ (3)

σ
(2,3)
+ (2)

. (C3)

From Eq. (C2) it follows that the dependence of εW on the parameters of the scattering matrix has the form of Eqs. (33), (34).
A solution to Eq. (C2) can be obtained numerically or expressed in terms of the Cardano formula. As one of the roots of Eq. (C2)
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is much greater than the others, the sought-for � function appearing in Eq. (34) can be approximated by the analytical relation

�(a,b,c) ≈ −B

A
+

√(
B

A

)2

− 2
C

A
, (C4)

where

A = −108

7
x0 + 8c + 5

7
(2 − a + b),

B = −
(

5

7
(a − b) + 4c + 32

7

)
x0 + (1 − a)(1 + b) + 6c,

C = 5

14
(b − a)x2

0 − (x0 − c)(a − b + ab),

x0 = ε
(2)
W /3σ

(2,3)
+ (2); the coefficient ε

(2)
W is determined by Eq. (29).
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