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Theory of self-oscillation and mode locking in a longitudinal photoacoustic resonator
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The wave equation for pressure that governs generation of the photoacoustic effect possesses a forcing term
proportional to the time derivative of the energy delivered to the gas per unit volume and time. A positive
pressure fluctuation, with its accompanying density increase, thus increases the optical absorption and provides a
positive feedback mechanism for sound generation. A theory for self-oscillation in a one-dimensional resonator
is given. Expressions for the photoacoustic pressure are derived for the cases of highly and weakly absorbing
gases that indicate mode-locked sound generation. Experiments with CO; lasers are reported where evidence of

the self-generation effect was sought.
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I. INTRODUCTION

The photoacoustic effect [1-3], which refers to the produc-
tion of sound by absorption of optical radiation, generally is
produced as a result of thermal expansion following the optical
deposition of energy. When heat conduction and viscous
effects are ignored, the photoacoustic pressure p is governed
by the wave equation [4]
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where ¢ is the sound speed, § is the thermal expansion
coefficient, Cp is the specific heat capacity, ¢ is the time,
and H is the heating function, which describes the energy per
unit volume and time delivered by the optical source to the
absorbing medium. It is evident from the form of the forcing
term in Eq. (1) that sound can be generated by any optical
source that provides constant heat deposition but which varies
in space [1,5,6], or as in, for example, trace gas detection, for
any source that is invariant in space, but which varies in time
[7]. It has been recognized by Kolomenskii and Maznev [8]
that since an increase in pressure in a propagating acoustic
wave is accompanied by a corresponding increase in density,
when an optical beam with a wavelength corresponding to an
absorption of the gas is present, the density increase leads to an
increase in optical absorption and a further pressure increase,
so that amplification of the wave is possible—even for the case
of a continuous optical beam whose intensity varies neither in
time nor in space.

Here, the generation of longitudinal acoustic waves by a
continuous laser beam directed into a resonator is considered
based on the amplification inherent in the mechanism of
sound production by the photoacoustic effect. The theory
is formulated for a one-dimensional resonator with plane
parallel surfaces, one of which acts as a window for the
entrance of a continuous laser beam that is absorbed by an
inviscid gas. In the region near the entrance window, where a
pressure antinode exists, any pressure increase in a standing
wave results in an increased density of absorbers and hence
additional energy deposition relative to gas in the cell at
the ambient pressure. Correspondingly, when the pressure
decreases near the window on the next half cycle of the acoustic
standing wave, a smaller amount of energy is deposited relative
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to gas at ambient pressure. The result is a reinforcement of the
pressure amplitude of the standing wave, or, equivalently, an
amplification of the standing wave.

Consider a laser beam with a uniform intensity /; directed
into a cell containing a gas with a density p with an optical
absorption coefficient per unit density &, as depicted in Fig. 1.
The heating function can be written as

H(x,t) = a(p + 8)I(x,1), 2

where & is the acoustic density and I is the optical beam
intensity. From linear acoustics [9,10], the density and pressure
are related by the relation § = p/c?, which, when substituted
with Eq. (2) into Eq. (1), gives for a one-dimensional resonator
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where the beam intensity is taken to be absorbed exponentially

in space, with an absorption coefficient & given by & = &p;

that is, the effect of a change in pressure the exponential

function has been taken to be negligible.

The generation of the acoustic signal in the resonator, with
the assumptions noted above, is governed by Eq. (3), which
is a partial differential equation in space and time. In Sec. II,
the properties of sound generation as governed by Eq. (3) are
discussed for a strongly absorbing gas, which shows a mode
coupling effect. Section III gives a frequency domain, series
solution to Eq. (3) where the amplification effect is described
for the general case of an absorption coefficient of arbitrary
magnitude. A solutionis given for a weakly absorbing using the
series solution. Section IV discusses experiments carried out
with CO; lasers irradiating cells filled with SFg, and Sec. V, the
Discussion section, gives an overview of the self-oscillation
effect.

II. SOLUTION FOR A STRONGLY ABSORBING MEDIUM

When the absorption of the gas become high, it is possible
to approximate the exponential factor in Eq. (3) through use
of the relation
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FIG. 1. (Color online) Diagram of a photoacoustic cell for pro-
ducing self-oscillation in a gas. The radiation enters from the left at a
coordinate z = 0. In some experiments the microphone was mounted
at the exit window; in others it was as shown.

where §(z) is the Dirac é function. With this approximation,
and taking the pressure to vary as p(z)exp(—iwt), Eq. (3)
becomes
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A Green’s function for the resonator that has boundary
conditions such that the acceleration in the acoustic wave
Vp/pis zero at z = 0 and L can be found [11] to be

z7<7
z>7"

Ga(z,2) = (6)
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The Green’s function solution to a Helmholtz equation of the
form of Eq. (5) with a source function S(z) is given by

= / G(z,2)8(Z)dz . )

The integration of the Green’s function over the source term
in Eq. (5) is trivial as the integral fOL cos kz'8(z")dz’ is unity;
thus, the time domain acoustic pressure becomes
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Each term in the series given by Eq. (9) can be evaluated as a
8 function so that Eq. (9) becomes
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Since on every reflection of the acoustic pulse at the entrance
window the pressure is augmented by a factor of I', Eq. (10)

(10)

PHYSICAL REVIEW E 90, 043204 (2014)

must be modified to give
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which shows a series of pressure transients that increase with
each pass through the resonator. The § functions travel within
the boundaries of the cell and are considered to exist within
the photoacoustic cell only. Initially, the right-going § function,
corresponding to n = 0, leaves the left window at z = 0 where
the laser beam enters, travels inside the cell to the pointz = L,
and exits, at which time the left-going 6 function launched at
z = 2L arrives at z = L, and propagates inside the cell. When
this latter pulse reaches the point z = 0 the right-going pulse
from the n = 1 term enters the cell. When all of the terms
are considered, a traveling § function pulse that propagates
continuously back and forth inside the cell is described.

(11)

III. SERIES EXPANSION SOLUTION

When Eq. (3) is written so that all quantities vary as
exp(—iwt), the wave equation for pressure becomes

%p
SE K =T, (12)
where
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A series expansion solution for the pressure can be obtained
by considering the right hand side of Eq. (12) to be of order ¢,
and expanding the pressure in a series of functions f; as

p=ch+efrtefit . (13)
Substitution of Eq. (13) into Eq. (12) and equating terms with
identical powers of ¢ gives each f; as solutions to
fl+kfi=0,
[+ =T fie™™,
{+Kfs =T fre ™,
[+ f =T fie

The solution for the first of these that satisfies the boundary
conditions at the ends of the cell would be a superposition
of the eigenmodes of the cavity, p = Z Pn cosk,z, where
k, =nm/L.

Consider the solution of Eq. (14) for a single eigenmode
Pm cos k;,z. The solution for f, from the second of Eq. (14)
can be found using a Green’s function of the form

(14)

for arbitrary ;.

Z cosk,zcosk,z’
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, 2
Gp(z,7) = I

to give a first approximation to the photoacoustic pressure as

ky
b= pm|:coskmz+ FZCOS kzzlnm}, (16)
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where

L

L = / cos k,z cosk,,ze **dz. 17)
0

Although the integral in Eq. (16) can be evaluated analytically,

solutions to the subsequent equations for f3 or higher result in

complicated, lengthy expressions.

Weakly absorbing gas

For the case where the absorption coefficient is small,
the exponential function in the expression for I, can be
approximated as unity so that I, = L&,,,/2, where 8, is
the Kroneker § function. The solution for f, using Eq. (7) with
G p gives

cos k,,z

r—n (18)

f2:pm 2 — 2

Using f, as a source, according to the third of Eq. (14),

gives

, €OSky,z
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It is not difficult to show that for the general term f, the
solution is

f3=Pm 19)

cosk,z
=p, 91— 20
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The series given by Eq. (13) is of the form of of a power se-
es 1 +x+x24+x3+.-- =1 —=x)"!, where x = F/(k2 —
ki); thus, the series can be summed to give the acoustic
pressure as
k2 — k2
P = Pm km . 21
P = Pmcos Z(kz—k%—l") 21

If Eq. (21) is Fourier transformed into the time domain, the
photoacoustic pressure becomes

Pm €OSkpZ / * @ — (cky)?
27 —oo (@ — ) (@ — )
The poles in Eq. (22) are found for small I",, to be

T,
ot = Le =+ ck,,,
2

p(z,t) = e dw. (22)

where
aply

r,= .
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Itis convenient to write Eq. (22) using the operator —[d?/dt> +
(ck,)?], which reduces the numerator in the fraction in the
integral to unity. As both poles lie in the lower half complex
o plane, the integration is straightforward giving

Pm €O k2 |: d?

p(z,t) = — + (ckm)z]
ck,,

dt?

2 1/2 B
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On evaluating Eq. (23) to first order in I',,, the photoacoustic
pressure is found to be

(w20t

p(z,t) = pme cos k,,z cos cky,t, 24)

which describes a standing wave growing in amplitude at a
rate I',,/2 in time.

IV. EXPERIMENTS

Experiments seeking evidence for the generation of sound
by absorption of continuous laser radiation were conducted
over a period of time using four different CO, lasers. The
10.6-um beams from the lasers were directed into several
different resonators whose lengths were 11, 17, or 37 cm long,
with inside diameters of 12.5 mm or smaller. The cells were
filled in different experiments with various mixtures of SFg in
N, with mole fractions of 0.05, 0.08, 0.09, and 1. Note that the
largest signals were expected at approximately 90% SF¢ owing
to a heat conduction effect where optically thick gases transmit
heat to the entrance window of the photoacoustic cells resulting
in acoustic signal diminution, as has been previously reported
[12]. The acoustic signals were recorded with a condenser
microphone (B & K Inc., Model 4130) whose output was
viewed on a digitizing oscilloscope.

In all of the experiments carried out, there was little
difficulty in seeing an acoustic signal at either the fundamental
or one of the overtones of the longitudinal resonance frequency
of the cell as long as the laser power exceeded roughly
0.2 W. The difficulty in ascertaining that self-oscillation was in
fact taking place was that oscillation could be excited by
transients that arose from plasma oscillations in the laser, or,
more typically, from small voltage spikes that were generated
by the power supply, which gave transient power fluctuations
on the laser outputs. Even with power supplies based on full
wave rectification of 60-Hz high voltage, transients were found
at the line frequency which arise from nonideal behavior of
the high voltage diodes in the voltage rectifier circuit. When
transients in the laser power are generated in this way, it is easy
to distinguish between self-oscillation and sound generation
by transients by triggering the oscilloscope on the line voltage,
and signal averaging the microphone waveform. A clear sign
that the sound does not arise from self-oscillation is that the
amplitude of averaged signal even though it appears at a
longitudinal resonance of the cell averages to a finite amplitude
synchronous with the line frequency. Self-oscillation will not
be synchronous with the line frequency and the waveform
should decay to zero after multiple averages.

In order to reduce the amplitudes of the transients in the
power supply for the flowing gas laser (Advanced Kinetics Inc.,
Model MIRL 50), a single stage RC circuit using high voltage
capacitors was used. As this proved to be only marginally
successful in reduction of the transients, a feedback circuit
employing a liquid nitrogen cooled HgCdTe infrared detector
was used to stabilize the power supply through the laser’s
external voltage control unit. As this proved inadequate for
suppressing the transients, a sealed CO, laser (Parallax Tech
Inc.) powered with a high voltage supply (Unipower Inc.
Model BRC-30-25P-PX50) that employed a switching supply
to provide the high voltage was used. Although no transients at
the switching frequency of 40 kHz were detected, again, 60-Hz
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transients were found on the laser output. To further stabilize
the power supply, an Agilent Inc. Model 6035A supply with
a ripple specified as less than 0.05% was used to replace
the first stage of dc power generation that fed the switching
circuit in the laser power supply. This modification of the
laser power supply resulted in transients on the laser output
on the order of 3% of the continuous output power. Later, for
even better stability, the Agilent supply was replaced by 15
lead acid storage batteries wired in series that gave the 180 V
required by the switching circuit. Additionally, a feedback
circuit comprising an acousto-optic modulator and a HgCdTe
infrared detector was employed to reduce the amplitude of the
transients and stabilize the laser power further.

With the last modification of the laser power supply,
experiments were carried out at powers up to a maximum
of 6 W, where no detectable transients on the laser output
were found, as determined by the HgCdTe detector. However,
no self-oscillation at this power level was found with any of
the resonators filled with SFe-N, mixtures that ranged over the
percentages noted above.

V. DISCUSSION

At this point, the experiments reported here can only be
used to put a bound on the power necessary to generate
self-oscillation. It is possible that a highly stable laser with
higher output power, or possibly the employment of a spherical
resonator, which can be expected to have a higher quality factor
than a cylindrical resonator, would uncover the self-oscillation.
The remarkable capability of the photoacoustic effect for trace
detection at the sub ppm level serves as a strong indicator of
a corresponding high sensitivity of the photoacoustic effect to
small fluctuations in optical power when a strongly absorbing
gas is present in the resonator.

The calculations given above do not give the effects of
losses in the cavity which act to damp out self-oscillation.
Such losses can be incorporated into the above results by
considering the cavity quality factor O, the value of which is
given a subscript indicating a dependence on the longitudinal
oscillation mode number n. For the calculation leading to a
single mode, standing wave pressure, the exponential term
in Eq. (24) must be replaced by exp[[', — (w,/Ox)1(t/2),
where w, is the angular frequency of the the mode n. For
Eq. (11), the incorporation of losses is complicated in that
each 6 function contains a wide spectrum of frequencies
corresponding to a sum over all of the longitudinal modes
of oscillation, the damping for each mode on a single cycle
being exp(—2mn/Q,). If the simple case of a frictional force
proportional to the wave speed at the wall is taken [9],
then the quality factor becomes proportional to n so that
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" becomes I" = [(BIy/cpCp) — exp(—27/Q)]. It is to be
noted that the effects of dispersion, which have not been
included in the calculations given here, would degrade the
sharply spiked pressure profile indicated by Eq. (11); strong
deviation from the & function pressure profile would be
expected in an experimental realization of the mode locking
effect. The question of what factors limit the amplitude of the
photoacoustic wave once oscillation has been attained is not
addressed in the formulation given here, but can be found by
considering the effects of nonlinear acoustics as discussed in
Ref. [8].

The results given here are carried out assuming an initial
pressure p that is amplified on interaction with the optical
beam, which provides a straightforward starting point for
calculations. Although self-oscillation is perhaps excited most
easily by an external perturbation, at all times there is thermal
excitation of the various modes of oscillation in the cavity
depending on their energy relative to kg7, where kp is
Boltzmann’s constant and 7 is the ambient temperature. It is
thus possible that self-oscillation can take place spontaneously
on achieving a sufficiently high gain in the resonator.

Any single mode can sustain oscillation independently of
the other modes since the energy deposition increment (or
decrement) is always in phase with the pressure. The salient
result given by Eq. (11), however, is that the photoacoustic
effect from a continuous optical source causes a locking of
the various longitudinal modes of oscillation, the mecha-
nism of synchronizing the modes being a pressure increase
at the entrance window in a given mode that increases
the pressure in the other modes. As any pressure increase
at the entrance window results in increased absorption of
energy from the optical beam, the modes are naturally excited
to reinforce each other so that phase matching is inherent
in the excitation process. This mode locking, under ideal
circumstances, would result in the train of sharp pulses
described by Eq. (11), which would appear to be directly
analogous to the pulse train seen in a mode locked picosecond
laser. Despite the apparent similarity between photoacoustic
and mode locked laser generation of pulses, the photoacoustic
process does not require imposition of a periodic loss in the
oscillator. Photoacoustic generation of sound according to
the theory given here arises from energy deposition in the
wave dependent on the absorbed optical power and acoustic
wave amplitude, and appears to be unique in its mechanism of
mode locking.
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