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Mobility of discrete multibreathers in the exciton dynamics of the Davydov
model with saturable nonlinearities
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We show that the state of amide-I excitations in proteins is modeled by the discrete nonlinear Schrödinger
equation with saturable nonlinearities. This is done by extending the Davydov model to take into account the
competition between local compression and local dilatation of the lattice, thus leading to the interplay between
self-focusing and defocusing saturable nonlinearities. Site-centered (sc) mode and/or bond-centered mode like
discrete multihump soliton (DMHS) solutions are found numerically and their stability is analyzed. As a result,
we obtained the existence and stability diagrams for all observed types of sc DMHS solutions. We also note that
the stability of sc DMHS solutions depends not only on the value of the interpeak separation but also on the
number of peaks, while their counterpart having at least one intersite soliton is instable. A study of mobility is
achieved and it appears that, depending on the higher-order saturable nonlinearity, DMHS-like mechanism for
vibrational energy transport along the protein chain is possible.
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I. INTRODUCTION

During many biological processes, such as muscle con-
traction, DNA reduplication, neuroelectric pulse transfer on
the neurolemma, and work of calcium or sodium pump, the
bioenergy needed is provided by the hydrolysis of adenosine
triphosphate (ATP). This energy has important significance
and the comprehension of their storage and transport has been
a challenge to scientists. In 1973, Davydov [1] suggested
a mechanism based on soliton to elucidate the problem.
Since the previous mentioned work, the possible existence
of solitons in biomolecular systems has been widely studied
(see Ref. [2], and references therein). Following Davydov’s
idea, energy released during ATP hydrolysis is stored in
the form of a vibrational energy of the C=O stretching
(amide-I) oscillators. This energy is transported from one
peptide group to the next because of the dipole-dipole coupling
between the adjacent groups. Experimentally, the model of
Scott and Davydov was tested through the crystalline polymer
acetalinide ((CH3CONHC6H5)X), or ACN, which is an organic
solid close to a biological molecule [3].

At low temperature it has been shown that Davydov’s theory
for the α-helix gives rise to discrete nonlinear Schrödinger
(DNLS) equation [4], which is one of the basic lattice
models appearing in various contexts of physics and biology.
During the past decade, DNLS equations as well as one
of their solutions called discrete breather (alias intrinsic
localized modes) have been intensively studied [5,6]. Discrete
breather has a bell-shaped form while ones possessing an
arbitrary number of extrema is called multibreather. Proof
of the existence of the latter is given in Ref. [7], and since
this work a great deal of effort has been invested to show
their existence in Salerno equation [8], DNLS equation with
cubic nonlinearity [9], and Klein-Gordon chain [10]. More
recently, multibreathers have been predicted theoretically in
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realistic systems [11] and observed experimentally [12]. In
spite the fact that multihump soliton have been observed in
saturable dispersive nonlinear medium [13], their study is
not yet done in purely discrete saturable nonlinear equation.
The first purpose of this work is to explore the possible
existence of multibreathers in DNLS equation with saturable
nonlinearities.

At the beginning of the year 2000, the stability of multi-
breathers was an open problem (see Ref. [14]). Up to now much
effort has gone into their stabilization [10–12,15], and it’s well
clear that stable multibreathers can be found. Could we obtain
stable multibreathers in the exciton dynamics modeled by
DNLS equation with competitive nonlinearities? The answer
to this question is the second purpose of this work.

It has been observed for several years that discrete breathers
could be mobile in some models [16–24]. To the best our
knowledge, a study related to the mobility of multibreathers
is not yet done. As the last aims of this work, we look for the
possible mobile multibreathers in the system.

The rest of the paper is organized in the following manner.
In Sec. II, the DNLS equation with saturable nonlinearities,
which describes the state of amide-I excitations in proteins is
derived. In Sec. III, we look for the discrete multihump solitons
solutions of the previous-mentioned equation. Section IV is
devoted to the mapping and linear stability analysis of these
solutions. This section ends with the existence and stability
diagrams for all observed types of discrete multihump soliton
solutions. In Sec. V, we investigate the potential mobility
of these solutions. Finally, the conclusion summarizing the
different results of this work is given in the Sec. VI.

II. THE DAVYDOV MODEL AND DISCRETE NONLINEAR
SCHRÖDINGER EQUATION WITH SATURABLE

NONLINEARITIES

Let us consider the Davydov model with exciton-phonon
coupling in hydrogen-bonded molecular chains. This infi-
nite discrete chain consists of peptide groups (H-N-C=O)
with a mass M , regularly spaced by a distance R, and
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weakly bound according to the following sequence: · · · H-N-
C=O· · · H-N-C=O· · · H-N-C=O· · · H-N-C=O· · · . The dot-
ted lines represent the hydrogen bonding. In addition, the
interaction is assumed to work only between nearest-neighbor
molecules.

The Hamiltonian associated with the network so described
is expressed as

H = T + U +
∑

n

[(ε − Dn)B+
n Bn

− J (B+
n+1Bn + Bn+1B

+
n )], (1)

where T is kinetic energy and U is the potential energy.
The first part of the third term, εB+

n Bn, defines the amide-I
excitation energy, and the fourth term stands for the resonance
dipole interaction between nearest neighbors. This interaction
is characterized by the dipole-dipole interaction energy J .
Notice that B+

n (Bn) is the creation (annihilation) operator
of the amide-I excitation in the nth group. In the second part
of the third term, the function −Dn represents the deformation
excitation energy of the nth peptide group with its nearest
neighbors and can be written as [25]

Dn = Dn(|xn+1 − xn|) + Dn(|xn − xn−1|). (2)

Then,−DnB
+
n Bn describes the interaction between the in-

tramolecular excitation and the lattice displacements. Assum-
ing that the coupling is strong, because it has been shown [26]
that autolocalized excitation solitons appear in the system due
to the nonlinear and strong exciton-phonon interaction, Eq. (2)
can be written in the form

Dn ≈
(

1 + β

R
ρn − γ

2R2
ρ2

n

)
D, (3)

where

ρn = R − |xn − xn−1| (4)

denotes the relative distances between two neighboring groups
from equilibrium and xn, the small displacement of the nth
peptide groups. Add that β and γ are adjustable positive
parameters of the deformation excitation energy while D =
2D(R). Comparing Eq. (3) to one used in Ref. [27], the choice
of the negative sign of the last term here is to take into account
the competition between local compression and local dilation
of lattice.

The use of Born-Oppenheimer approximation leads us
to consider the lattice displacements as classical variables.
This is justified by the fact that the effective mass M of
the peptide group is large, thus leading acoustic vibrations
to be slow compared to the excitonic modes. In order to
establish the equations of motion, we define the soliton wave
function as

|ψ〉 =
∑

n

an(t)B+
n |0〉, (5)

where |0〉 is the vacuum state and an is the complex
probability amplitude of the exciton wave, which satisfies the
normalization condition

〈ψ |ψ〉 =
∑

n

|an(t)|2 = 1. (6)

Using time-dependent Schrödinger equation and Heisenberg
equation we obtain the system of coupled equations

i�
∂an

∂t
=

[
ε + T + U −

(
1 + β

R
ρn − γ

2R2
ρ2

n

)
D

]
an

− J (an+1 + an−1), (7)

M
∂2ρn

∂t2
= −ω(2ρn − ρn+1 − ρn−1)

+ βD

R
(2|an|2 − |an+1|2 − |an−1|2)

− γD

R2
(2ρn|an|2 − ρn+1|an+1|2 − ρn−1|an−1|2),

(8)

where ω is the spring constant. T = M
2

∑
n( ∂xn

∂t
)2 and U =

ω
2

∑
n ρ2

n . The great value of M leads to the adiabatic
approximation [4]

∂2ρn

∂t2
≈ 0. (9)

Neglecting the inertia term, we solve Eq. (8) and obtain the
following relation:

ρn =
βD

Rω
|an|2

1 + γD

R2ω
|an|2

. (10)

Then, the substitution of Eq. (10) in Eq. (7) yields

i�
∂an

∂t
= [ε + T + U − D]an − ν1J

|an|2an

1 + ν3|an|2

+ ν2J
|an|4an

(1 + ν3|an|2)2
− J (an+1 + an−1), (11)

where ν1 = β2D2

R2ωJ
, ν2 = γβ2D3

2R4ω2J
, and ν3 = γD

R2ω
.

Equation (11) is reduced in the form

i
∂φn

∂τ
= −2φn + η1

φn

1 + |φn|2 + η2
|φn|2φn

(1 + |φn|2)2
, (12)

if we set

φn = √
ν3an exp iτ

[
ε + T + U − D − 2J − η1J

J

]
,

(13)
η1 = ν1/2ν3, with ν3 �= 0, η2 = −η1,

and use the dimensionless time τ = J t/�. In Eq. (12), η1 and
η2 are the strength of the nonlinearities and 2φn = (φn+1 +
φn−1 − 2φn).

It is well known that under adiabatic approximation,
Davydov shows that the dynamics of the coupled exciton-
phonon system is reduced to the DNLS equation [4]. Here,
since η1 > 0 and η2 < 0, Eq. (12) is named the DNLS equation
with competitive saturable nonlinearities. This equation has
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two conserved quantities: the Hamiltonian,

E =
∑

n

[
|φn+1 − φn|2 + (η1 + η2)

× log(1 + |φn|2) + η2

1 + |φn|2
]
, (14)

and the number of quanta (l2-norm),

P =
∑

n

|φn|2. (15)

We also note that, due to the last term in the right-hand side,
Eq. (12) is different from the well-known DNLS equation
with photorefractive nonlinearity, widely used in optics. In
the other words, the coefficient η2 guarantees the presence of
higher-order saturable nonlinearity. In order to give a physical
meaning to η2, let us set η1 = −η2 = η and we consider χ1 =
(βD/R) > 0 and χ2 = −(γD/2R) < 0, the phonon-exciton
coupling parameters. χ1 and χ2, respectively, represent the
parameters of nonlinear coupling. Thus, if γ = 0 (χ2 = 0), we
have through Eq. (11) ν2 = ν3 = 0, and we get the classical
Davydov-Scott model, which leads to the well-known DNLS
equation with cubic nonlinearity. Therefore, χ2 contributes to
the strong phonon-exciton coupling, thereby promoting the
formation of soliton. Similar considerations have been used
by Velarde and coworkers [28], when looking for long-living
intrinsic localized solectron, they have considered an extended
polaron Hamiltonian in which the electron-hopping term is
affected by anharmonicity. In the following, we parametrize
our problem by η, which is also expressed as η = (χ1R/4J )̃η,
with η̃ = −(χ1/χ2). For α-helical proteins, the use of the
following physical parameters [29,30] J = 9.67 × 10−4 eV,

χ1 = 8 × 10−2 eV/Å, ω = 0.8125 eV/Å
2
, R = 4.5 Å, leads

to η ≈ 93η̃.
Based on the meaning of the sign of χ [31], it appears

that negative coefficient means that the molecular chain is
locally dilated (dilatational soliton) and a positive value
represents the local compression (compressional soliton) of
molecular chain due to amide-I vibrations. It follows that our
model exhibits a competition of self-focusing (dilatation) and
defocusing (compression) saturable nonlinearities. This is a
good compromise given the fact that in the literature, the
coupling parameter is taken positive or negative [32].

It is also important to recall that an equation similar to
Eq. (11) has been obtained by Aguero [27] in a continuous
medium. However, to look for the soliton structures, he has
simplified the equation to cubic-qintic nonlinear Schrödinger
equation in order to solve it. So, in the next section, we
will determine discrete multisoliton (discrete multibreather)
solutions of Eq. (12).

III. DISCRETE STATIONARY MULTIHUMP
SOLITON SOLUTIONS

In order to solve Eq. (12) governing the evolution of the
complex probability amplitude φn, we seek the stationary so-
lutions of the form φn = un exp(−i�τ ), � being a frequency.
Under this condition, we obtain a set of coupled algebraic
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FIG. 1. (Color online) Examples of profiles of single-hump
[(a) (̃η; �) ≈ (1.1;96.706)], two-hump [(b) (̃η; �) ≈ (1.1;100.4)],
three-hump [(c) (̃η; �) ≈ (1.1;101.75)], and four-hump [(d) (̃η; �) ≈
(1.1;102)] solitons.

equations for the real function un:

�un + (un+1 + un−1 − 2un) − η
un

1 + u2
n

+ η
u3

n(
1 + u2

n

)2 = 0.

(16)

It should be added to the above relations, the normalization
condition given by Eq. (6), and rewritten as∑

n

u2
n � 0.043

η̃
. (17)

It is well known that two-component systems with saturable
nonlinearity can sustain both single-hump and multihump
solitons (optical solitons) [33]. The idea is to investigate
the presence of such solutions in our model despite be-
ing a one-component system. This is done numerically,
by means of iterative multidimensional Newton-Raphson
method with periodic boundary conditions and initial guess
produced by the high-confinement approximation [34]. These
solutions are illustrated in Fig. 1, where we give the
profiles of single-hump, two-hump, three-hump, and four-
hump solitons for (̃η; �) ≈ (1.1;96.706), (̃η; �) ≈ (1.1;100.4),
(̃η; �) ≈ (1.1;101.75), and (̃η; �) ≈ (1.1;102), respectively.
These discrete stationary multihump solitons are all consti-
tuted of solitons belonging to site-centered (sc) mode. Note
that multihump solitons composed of solitons belonging to
bond-centered (bc) mode and those belonging to bc and sc
mode were also found. Figure 2 shows this case with the
profile of two-hump and three-hump solitons for bc-sc mode,
bc-bc mode, and sc-bc-sc mode. We are now interested in
multihump soliton solutions constituted solely of sc modes.
Let �δ represents the interpeak separation, i.e., the distance
between two neighbor peaks, where the subscript δ is the
number of peak of the solution. In the case of two-hump
solitons, we obtain �2 = 4 while for three- and four-hump
solitons, �3 = �4 = 4�2 = 16 (see Fig. 1). This means that the
localization of solution decreases when δ increases. Moreover,
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FIG. 2. (Color online) Examples of profiles of two-hump
[(a) (̃η; �) ≈ (1.1;100.9)], two-hump [(b) (̃η; �) ≈ (1.1;100.9)], and
three-hump [(c) (̃η; �) ≈ (1.1;101.75)] solitons for bc-sc mode, bc-bc
mode, and sc-bc-sc mode, respectively.

by noting ζδ as being the maximum amplitude of the δ-soliton,
we have ζ1 � 0.19, ζ2 � 0.13, ζ3 � 0.077, and ζ4 � 0.055.
So we also see a gradual decrease of ζδ as the number
of peaks δ increases. It appears from these results that the
system cannot admit an unlimited number of peaked localized
states. Recall that the normalization condition for envelope
un (

∑
n u2

n � 0.043
η̃

) is satisfied for all these solutions. We can
conclude that the localization of vibrational energy in protein
can be in the form of single discrete solitons or a discrete
multisoliton. A similar result was obtained in the past in the
context of two-component solitary waves [35].

It is important to mention that η̃ not only reflects the
saturation coefficient but also the ratio between the expansion
and compression terms of the molecular chain. We also want
to add the following biological meaning of the phenomenon
of saturation in order to show how our model is more realistic.
The ATP conserves energy via glycolysis, glycogenolysis, and
the citric acid cycle. If the cells have sufficient supplies of
ATP, then these pathways and cycles are inhibited. Under these
conditions of excess ATP, the liver will attempt to convert a
variety of excess glucose molecules into glycogen [36]. Thus,
when ATP is too large, there is a saturation through these
inhibitions. Otherwise, when the probability amplitude |φn|
is low, the saturable nonlinearities can be reduced to a cubic
nonlinearity via a Taylor expansion. Thus, the feature of our
model is that it includes two cases (where ATP is produced in
excess and otherwise).

For the soliton solutions previously seen to be biologically
acceptable, they must be stable. Study of their stability is the
purpose of the next section.

IV. STABILITY ANALYSIS

The previous discrete solutions must be stable to be
biologically acceptable for the localization and transport of
vibrational energy in protein. Here, the stability of these
solutions is considered from the view point of both the map
orbit stability and the corresponding dynamical stability.

A. Mapping stability

Using the map approach technique [8,34,37–39], and
defining pn = un and qn = un−1, Eq. (16) is transformed into
the following two-dimensional real map:

pn+1 = (2 − �)pn + η
pn

1 + p2
n

− η
p3

n(
1 + p2

n

)2 − qn

(18)
qn+1 = pn.

A linearly unstable map orbit gives rise to a dynamically stable
solution [37]. Moreover, to investigate the mapping stability,
the study of the stability of the fixed point of the corresponding
2D map is sufficient. Then, the fixed points of Eq. (18), for
which pn = qn, are located at

p0 = 0, p1,2 = ±
√

−� ± √
�η

�
. (19)

Knowing that η > 0 with η = 93η̃, p1,2 exists if only if � > 0
and η � �. The Jacobian matrix J̌ of the map Eq. (18) is given
by ⎡⎣(2 − �) + η

1−p2
n(

1+p2
n

)2 − η
p2

n

(
3−p2

n

)(
1+p2

n

)3 −1

1 0

⎤⎦ . (20)

The study of the stability of fixed points requires the evaluation
(calculation) of the eigenvalues of the Jacobian J̌ evaluated
at these points. This being done, the fixed points will be an
unstable saddle point if |λ1| > 1 and |λ2| < 1 or vice versa.
λ1 and λ2 being the eigenvalues of J̌ . Particular attention
is given to saddle fixed points due to the fact that they can
support homoclinic orbits used to generate bright soliton
solutions [37]. On the other hand, we recall that the homoclinic
orbits are obtained through the intersection of stable and
unstable manifolds. In the top left panel of Fig. 3, the areas
marked in blue, red, and yellow are those for which p0, p1,
and p2 are unstable saddle nodes, respectively. When we
employ the technique of residues as defined in Ref. [38], we
obtain that the condition of existence of unstaggererd soliton
is η � �, with η = 93η̃. This condition is shown in the top
left panel of Fig. 3 by the area bounded by two straight lines
of black color. The condition of existence mentioned above
is similar to that in the case of the discrete version of the
Vinetskii-Kukhtarev equation [34]. This is probably due to
the fact that our model has the same tangent map around
zero as the discrete Vinetskii-Kukhtarev equation. However,
properties related to nonzero fixed points are different from
theirs.

Notice that the area of existence in the top left panel of Fig. 3
contains probably two types of spatially localized solutions:
breathers and multibreathers [8]. Because the fixed point is
saddle, it is not sufficient by itself to guarantee the existence of
stable and unstable manifolds that intersect [9]. This is why we
must determine the domain for which the stable and unstable
manifolds intersect. Figure 4 corroborates the top left panel of
Fig. 3 despite some nuances observed when � � 0.08.

Another illustration of the comments that have been carried
out is through the top right and bottom left panels of Fig. 3.
From these figures, it clearly reflected that the bright soliton
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FIG. 3. (Color online) Stability diagram of the fixed points of Eq. (19) (top left panel) in the �-̃η parameter plane. The areas marked in
blue, red, and yellow are those for which p0, p1, and p2 are, respectively, unstable saddle nodes. In the top right and bottom left panels, we
have intersections of stable and unstable manifolds for (�, η̃) = (4.4,0.06) and (5,0.06), respectively. The red dots being the fixed points. In
the bottom right panel, we have the map orbits around the fixed point p0 according to �, η̃ = 0.06.
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FIG. 4. (Color online) Domain of existence of the intersection of
manifolds. Condition of obtaining bright soliton solution.

cannot exist without constraints on the parameters. Moreover,
knowing that a much richer tangling structure is equivalent to
a richer family of solitons [39], the evolution of map orbits
(̃η = 0.06) from � = 4.4 to � = 5 shows a dimunition of this
family of soliton solutions (bottom right panel of Fig. 3). This
dimunition continues until � = 5.58, where a fold bifurcation
occurs. Before that, we have a pitchfork bifurcation that occurs
when � � 4.9.

At this point, among the previous types (or modes) of
solitons discussed, which are most likely to carry in a stable
manner the energy of amide-I vibrational excitation through
the protein molecules?

B. Linear stability analysis

In this subsection, we will study the stability of DMHS by
means of linear stability analysis [40]. Here the DMHS are
slightly perturbed:

φn = exp(−i�t){un + ε[xn exp(λt) + yn exp(λt)]}, (21)
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where xn and yn are complex, ε is a linearization parameter, and
λ is the eigenvalue. Add that λ denotes the complex conjugate

of λ, � being the frequency seen above. This leads to the linear
stability equations:

iλ

(
xn

yn

)
=

[
−� + η

1+|un|2 − 3η|un|2
(1+|un|2)2 + 2η|un|4

(1+|un|2)3 − 2 − 2ηu2
n

(1+|un|2)2 + 2η|un|2u2
n

(1+|un|2)3

2ηu2
n

(1+|un|2)2 − 2η|un|2u2
n

(1+|un|2)3 � − η

1+|un|2 + 3η|un|2
(1+|un|2)2 − 2η|un|4

(1+|un|2)3 + 2

] (
xn

yn

)
. (22)

Among the 2N eigenvalues λ, if at least one has a strictly
positive real part, a DMHS is spectrally unstable. Solving
numerically Eq. (22), we obtain the eigenvalue spectrum for
strongly localized sc and bc modes.

A linear analysis of stability of DMHS composed of soliton
belonging to sc mode is carried out by solving numerically the
eigenvalue problem (EVP) described by Eq. (22) where un is
the solution found numerically in the previous section. The
results of this analysis are shown in Figs. 5 and 6. Figure 5
is concerning the symmetric two-hump solitons normalized
for four values of �2: 4, 8, 12, and 32. The corresponding
eigenvalues spectrum shows that the intensity of the instability
decreases as �2 increases. After checking intermediate values,
we note that �∗

δ ≈ 32 is the threshold value where the solution
becomes stable. A similar phenomenon is observed in Fig. 6
for four-hump solitons when �∗

δ ≈ 50. Thus, the stability of
multihump solitons depends on the value of � contrary to what
is observed in optics (see Ref. [33]). We further note that the
stability of multisoliton depends on �δ . In fact, �δ increases as
δ increases. As an explanation, we can say that the instability
of our multisoliton for values of �δ below the �∗

δ is probably
due to interactions between the δ present solitons. This is why
a large number of peaks (δ) leads to great interaction between
them, hence a large distance between them to stabilize. This
explains the reasons for which we have �∗

2 < �∗
3 < �∗

4.
A numerical evolution of DMHS having at least one soliton

with bc mode, by means of fourth-order Runge-Kutta scheme
with a suitable choice of time step and absolute tolerance
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FIG. 5. (Color online) Profiles of two−hump solitons (left col-
umn) and their correponding eigenvalue spectrum (right column)
with increasing (from top to bottom) values of �2: �2 = 4; 8; 12 and
32. � ≈ 3.6, η̃ ≈ 0.0464.

(10−10) in order to ensure the conservation of energy and
normalization condition, is performed. It appears that this type
of solutions is unstable as we shown in Fig. 7. Indeed, the
bc solition of DMHS turns on sc soliton during the evolution
of DMHS. A similar fact was noted in Ref. [41], where only
onsite single-hump solitons are stable.

C. Existence and stability diagrams of sc DMHS solutions

We proceed to exploring the existence and stability dia-
grams for all observed types of sc DMHS in the parameter
space (�,̃η). It appears from Fig. 8 (top left and bottom
right panels) that the regions where DMHS exist decrease as
the number of humps increase. For the case of four-hump
solitons it is reduced to a very thin region of parameter
space. Insets of these figures illustrate the case where the
local compression prevails over the local dilatation (̃η > 1).
Stability of two-hump soliton with �2 = 32 is displayed in
the bottom left panel of Fig. 8. It emerges that the increase
of interpeak separation �2 does not make all of the solution
stable in the parameter space. It being understood that for
�2 < 32, almost all two-hump solitons are unstable. Similar to
two-hump solitons, almost all four-hump solitons are unstable
for �4 < 50 and stable for �4 = 50 (see the bottom right panel
of Fig. 8). This fact reaffirms that interpeak separation has
a stabilizing effect on the solutions. The bottom left panel
of Fig. 8 underpins this observation. Otherwise, since the
magnitude of instability decreases as the interpeak separation
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FIG. 6. (Color online) Profiles of four−hump solitons (left col-
umn) and their correponding eigenvalue spectrum (right column) with
increasing (from top to bottom) values of �4: �4 =16; 26 and 50. �≈
4.9, η̃ ≈ 0.056.
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FIG. 7. (Color online) Development of instability of two-hump solitons having at least one intersite soliton for [(�,̃η) = (100.9,1.1)]. The
left and right panels correspond to bc-sc mode and bc-bc mode, respectively.

increases [42], the strength of higher-order nonlinearity in
our saturable DNLS may enhance the stability. Indeed, it is

well known that the magnitude of instability decreases by
increasing the strength of nonlinearity of Cubic DNLS [42].
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FIG. 8. (Color online) Existence and stability diagrams for all observed types of sc DMHS solutions. In the top left panel, we have the
existence diagram for one-hump solitons (red), two-hump solitons (blue), and three-hump solitons (black). Inset (d) shows the case where
η̃ > 1. Other insets, (a), (b), and (c), are related to observed types of sc DMHS. The stability diagram of one-hump and two-hump (�2 = 32)
solitons is shows in the top right and bottom left panels, respectively. The bottom right figure illustrates the existence (dot) and stability (circle)
diagram for four-hump (�4 = 50) solitons. Insets show the case where η̃ > 1.
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FIG. 9. Density plot |φn|2 for not kicked (a) two-hump, (b) three-hump, (c) four-hump solitons and their kicked counterparts, (d), (e),
and (f), respectively. We have (d) � = 0.55, � ≈ 3.6, η̃ ≈ 0.0464; (e) � = 0.3, � ≈ 5.635, η̃ ≈ 0.065; (f) � = 0.3, � ≈ 4.9, η̃ ≈ 0.056;
respectively. Mobility is achieved for � � η( 1

1+α2 ), (d) α = 0.4777, (e) α = 0.2765, (f) α = 0.2549.

Here the enhancement of the stability is justified by the
fact that the strength of higher-order saturable nonlinearity
increases the nonlinearity of cubic DNLS equation obtained
by expanding in Taylor series the saturable nonlinearities.

At the end of this section, as the evolution of the localized
solectron states has suggested their potential as new carriers
for fast electric charge transport [28], it emerges that when
multipeaked localized solutions are stable, they may be a
candidate for energy transport in the protein.

V. MOBILITY OF DISCRETE MULTIHUMP SOLITONS

In this section, we study the DMHS mobility. Note at the
outset that the study of bright mobile solution in the DNLS with
photorefractive nonlinearity has already been done [23,37,43].
However, for DNLS equation with saturable nonlinearities,
mobility of multibreathers has not been yet found. We use here
the energy techniques which consist “to push” the localized
solution to move through the lattice by means of a variation of
the solution initial phase. This is done through the following
perturbation:

φn(0) = un exp(i�n), (23)

where un is a stationary solution seen above, and � represents
the relative strength.

By applying the kick to two-hump [Fig. 9(a)], three-hump
[Fig. 9(b)], and four-hump solitons [Fig. 9(c)], we obtain
Figs. 9(d), 9(e), and 9(f), respectively. In these figures, it
appears that the mobility is achieved for three-hump solitons,
four-hump solitons, and to a more limited extent, two-

hump solitons. This is not the case for one-hump solitons.
Moreover, in our model, the mobility is achieved for � �
η1[1 + η2α

2

η1(1+α2) ], where α is the amplitude of our solutions
and η2 = −η1. This new condition of mobility depends on
the higher-order saturable nonlinearity. For the general case
(model where η1 and η2 are arbitrary nonlinear coefficients),
if η2 = 0, this latter condition reduces to � � η, which is
the condition of mobility for the single soliton in the DNLS
equation with saturable nonlinearity (see Ref. [37]). In view of
the existence diagram, it follows that the sc DMHS are more
able to be mobile. In other words, the sc DMHS are more able
(with the kick) to overcome the Peierls-Nabarro barrier (PNB).

The main conclusion to be drawn from these observa-
tions is that a discrete multihump soliton-like mechanism
for vibrational energy transport along the protein chain is
possible.

VI. CONCLUSION

In this paper we have shown that the DNLS equation with
saturable nonlinearities models the localization and transport
of vibrational energy in protein, when a nonlinear and strong
exciton-phonon interaction is taken into account. Thus, the
model includes conditions of excess ATP and the opposite
case. In the absence of the higher-order saturable nonlinearity,
the equation model is reduced to the DNLS equation with pho-
torefractive nonlinearity widely used in optics. The multihump
(two-hump, three-hump, and four-hump) solitons having sc
mode and/or bc mode were sought as solutions of the system
and their stability was examined. The linear stability analysis
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that followed the stability diagram established reveals that
the stability of multihump solitons depends not only on the
value of the interpeak separation but also on the number of
peaks of the solution. The results concerning the existence
and stability of the sc DMHS solutions are consolidated in
parameter space. A numerical evolution of DMHS having
at least one intersite soliton reveals their instability. Finally,

the study of the mobility of our solutions has led us to
the main conclusion that, depending on the higher-order
saturable nonlinearity, a multihump soliton-like mechanism
for vibrational energy transport along the protein chain is
possible. It will be interesting to study in future works the
behavior of two stable discrete multihump solitons during and
after collisions.
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(2006).

[38] D. Hennig, K. Ø. Rasmussen, H. Gabriel, and A. Bülow, Phys.
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