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Emulation of lossless exciton-polariton condensates by dual-core optical waveguides:
Stability, collective modes, and dark solitons
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We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not
currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one
core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion point, and the other
core being linear and dispersive. Both two-dimensional (2D) and one-dimensional (1D) EP systems may be
emulated by means of this optical setting. In the framework of this system, we find that, while the uniform
state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations,
the upper branch is always subject to the modulational instability. The stability and instability are verified by
direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include
a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound
velocity and energy gap. The effect of a uniform phase gradient (superflow) on the stability is considered too,
with a conclusion that the lower-branch state becomes unstable above a critical wave number of the flux. Finally,
we demonstrate that the stable 1D state may carry robust dark solitons.
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I. INTRODUCTION AND THE OBJECTIVE

Emulation of complex effects and systems known in
condensed-matter physics by means of simpler and “cleaner”
settings, based on classical photonic, or quantum-mechanical
atomic, waves has recently drawn a lot of interest [1]. The
first example is provided by the superfluidity, which may be
studied in a much more accurate form in atomic Bose-Einstein
condensates (BECs) [2] and ultracold Fermi gases [3] than
in liquid helium. Another possibility, which has come to
the forefront recently, is the experimental realization [4] and
theoretical analysis [5] of the (pseudo-) spin-orbit coupling
in a binary BEC, induced by specially designed laser fields
(see a brief review of the topic in Ref. [6]). Similar tech-
niques were recently developed for the creation of synthetic
Abelian and non-Abelian gauge fields in atomic BEC [7,8].
As concerns photonics, it is well known that it allows an
efficient experimental emulation of fundamentally important
settings known in condensed matter, such as the Anderson
localization [9] (the experimental realization of this effect in
BEC has been demonstrated too [10]), graphene [11], and
topological insulators [12]. Furthermore, the use of the wave
propagation in photonic media opens the way for experimental
simulation, in terms of classical physics, of fundamental
phenomena predicted in the quantum theory, which are very
difficult to observe directly, such as non-Hermitian Hamil-
tonians which generate real spectra due to the PT symme-
try [13,14], and exotic relativistic effects (Zitterbewegung and
others) [15,16].

The photonic and matter-wave systems may often be used
to emulate each other. For instance, the system of coupled
Gross-Pitaevskii equations (GPEs) realizing the spin-orbit
coupling in the one-dimensional (1D) setting [17] is exactly
tantamount to the earlier studied system of coupled nonlinear
Schrödinger equations (NLSEs) modeling a twisted bimodal

optical fiber [18], making solitons in these systems also
mutually equivalent.

The emulation methods offer an additional advantage,
making it possible to attain physical conditions and effects
in simulating systems which are inaccessible in the original
ones. An obvious example is provided by matter-wave solitons,
which can be readily created in rarefied atomic gases, cooled
into the BEC state [19], while they are not observed in dense
superfluids.

Another important topic, combining semiconductor physics
and photonics, which has recently drawn a great deal of
interest, is the strong coupling of light (cavity photons)
and matter (excitons, i.e., bound electron-hole states) in
semiconductor microcavities [20]. It is well established that
this interaction leads to the creation of hybrid modes in the
form of exciton polaritons (EPs) [21–23]. The EP nonlinearity
is self-defocusing due to the electrostatic repulsion between
excitons. The nonlinearity plays an important role in a number
of effects predicted and (partly) observed in EP systems,
such as bistability [24–26], wave mixing [25–27], superflu-
idity [26,28], and the formation of dark and bright solitons
[29–34], as well as of gap solitons (of the bright type),
produced by the interplay of the self-repulsive nonlinearity
with a spatially periodic linear potential [35]. The nonlinearity
manifests itself too in EP bosonic condensates, which have
been created in the experiment [36], and used to demon-
strate Bogoliubov excitations [37], diffusionless motion [28],
persistent currents, and quantized vortices [39], among other
effects.

In experiments based on incoherent pumping [28,36–38],
off-resonance pumped polaritons scatter down, losing the
coherence inherited from the pump, and go into the condensate
which emerges at the lower branch of the EP dispersion
law. Real EP condensates are very well described by the
extended GPE which takes into account the pump and loss
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[23,36,40–42]. A more general approach adopts a system
of two Rabi- (linearly) coupled equations, viz., the GPE
for the wave function (order parameter) of excitons, and
the propagation equation of the linear-Schrödinger type for
the amplitude of the cavity-photon field [26]. In particular,
these equations have been used to predict the existence of
the above-mentioned dark [30], bright [31], and gap [35] EP
solitons. The same equations have been used to investigate the
stability of the EP fluid under coherent pumping [43].

In most cases, the Rabi-coupled system includes the
loss and pump terms in the exciton and photon-propagation
equations, respectively. In some works, it was assumed that
the system maintains the background balance between the
pump and loss in the first approximation, allowing one to
consider effectively lossless dynamics [29,33–35]. While this
“ideal” version of the EP model makes it possible to predict a
number of potentially interesting effects, such as solitons, in
a relatively simple form, it is not realistic for the description
of the EP dynamics in semiconductor cavities. This problem
suggests one to look for feasible photonic systems which
would be able to emulate the lossless version of the EP model.
In fact, such photonic systems were proposed, without any
relation to EP models, in Refs. [44] and [45]. They are based
on asymmetric dual-core optical fibers (or a photonic-crystal
fiber with two embedded cores [46]), with the linear coupling
between the cores emulating the Rabi coupling between
excitons and cavity photons in the EP system. It is assumed
that only one core is nonlinear (which can be easily realized
by engineering an appropriate transverse modal structure or
using nonlinearity-enhancing dopants [47]), operating close
to the zero-dispersion point, while in the mate (linear) core the
group-velocity dispersion (GVD) is normal or anomalous [45],
if the sign of the nonlinearity in the first core is self-focusing
or defocusing, respectively. Alternatively, the linear core may
carry a Bragg grating [44], which offers the optical emulation
of the model for the EP gap solitons introduced in Ref. [35].

It is relevant to mention that the EP system in semiconductor
microcavities may be excited solely by the pump injecting
cavity photons. The emulation scheme based on the similarity
to the dual-core optical fiber opens an additional possibility, to
excite various states in the system by injecting the field into the
nonlinear core, which simulates the excitonic wave function.

The above-mentioned temporal-domain dual-fiber-based
setting, which was introduced in Ref. [45], is exactly tanta-
mount to the lossless limit of the 1D EP system [see Eqs. (35)
and (36) below (in the optical fiber, the losses may be easily
kept negligible for an experimentally relevant propagation
distance, or, if necessary, compensated by built-in gain)].
The optical emulation of the two-dimensional (2D) version
of the EP system is more tricky, but possible too. In the latter
case, one may introduce the system of spatiotemporal NLSEs
for the dual-core planar waveguide. The 2D diffraction of
cavity photons is then emulated by the combination of the
transverse diffraction and anomalous GVD in the linear core.
Accordingly, the nonlinearity in the mate core, kept near the
zero-GVD point, must be self-defocusing. Furthermore, to
suppress the transverse diffraction in the nonlinear core (to
emulate the nonexisting or very weak diffraction of excitons),
the nonlinear core should be built as an array of fibers, rather
than as a solid waveguide. This 2D setting which emulates

the lossless EP system is based on Eqs. (1) and (2) presented
below. Such a planar dual-core waveguide, in which one core
is solid, while the other one is represented by an array of 1D
waveguides, is quite possible [48].

Using the emulating counterpart of the lossless EP system,
we address new possibilities suggested by this emulation. In
particular, we consider the dynamics on the upper branch of the
nonlinear dispersion relation, which are usually disregarded
in the dissipative EP system. The issues addressed below
include the modulational instability (MI) of uniform states
corresponding to the upper and lower branches and collective
excitations on top of the stable background (various forms of
the dispersion relation and excitations on top of the lower
polariton branch in dissipative EP systems were studied
earlier [26,49]). In the case when the uniform background
is stable, we consider dark solitons too (in the dissipative EP
model, such solitons were recently studied in Refs. [32,50].

The rest of the paper is structured as follows. The 2D
system, which is emulated, as said above, by the planar dual-
core waveguide in the spatiotemporal domain, is introduced in
Sec. II. The MI and collective excitations on top of the stable
(lower) branch of the nonlinear dispersion relation are consid-
ered in Sec. III. Effects of the phase gradient on the stability
are investigated in Sec. IV. The reduction of the 2D model to
1D, and the investigation of dark solitons in the latter case, are
presented in Sec. V. The paper is concluded by Sec. VI.

II. THE MODEL

The spatiotemporal evolution of complex amplitudes of
the electromagnetic field in the nonlinear and linear cores
of the planar waveguide, ψ and φ, obeys the system of
coupled NLSEs [45], which is written here in the notation
corresponding to the emulation of the EP system [20–23] by
means of the optical model:

i
∂

∂t
ψ =

[
− 1

2mX

(
∂2

∂x2
+ ∂2

∂y2

)
+ εX + g |ψ |2

]
ψ + �φ,

(1)

i
∂

∂t
φ =

[
− 1

2mC

(
∂2

∂x2
+ ∂2

∂y2

)
+ εC

]
φ + �ψ, (2)

where t (corresponding to time in the EP system) is the
propagation distance along the waveguide, x and y are,
respectively, the transverse coordinate and reduced time, both
corresponding to spatial coordinates in the emulated semicon-
ductor microcavity, while mX and mC , which correspond to
the effective excitonic and cavity-photon masses, are actually
the inverse diffraction-dispersion coefficients in the two cores
[20–23]. The EP setting typically has mC/mX ∼ 10−4 [22,23],
which implies that, as said above, the nonlinear core of the
waveguide operates very close to the zero-GVD point, while
the diffraction is suppressed by the fact that this core is
built as an array of 1D waveguides [it is assumed that the
small residual GVD and diffraction in the nonlinear core
are adjusted so as not to break the spatiotemporal isotropy
of the optical system in the (x,y) plane]. Further, εX and
εC are propagation-constant shifts in the two waveguides,
which, in terms of the EP, represent, respectively, the chemical
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potential of excitons and photon energy at zero wave number.
Coefficient g > 0 in Eq. (1) represents the self-defocusing
optical nonlinearity, which corresponds to the strength of
the repulsive excitonic self-interaction. Lastly, the intercore
coupling constant � emulates the strength of the EP Rabi
coupling.

The total energy of the optical signal, which represents the
number of condensed polaritons, i.e., the sum of numbers NX

and NC of the excitons and photons, is

N0 = NX + NC =
∫

d2r[|ψ(r,t)|2 + |φ(r,t)|2], (3)

the dynamical invariant of the lossless system. Equations (1)
and (2) also conserve the Hamiltonian,

H =
∫

d2r
[

1

2mX

|∇⊥ψ |2 + 1

2mC

|∇⊥φ|2

+ εX |ψ |2 + εC |φ|2 + g

2
|ψ |4 + �(ψ∗φ + ψφ∗)

]
, (4)

as well as the total 2D momentum and angular momentum.

III. UNIFORM STATES

A. Stationary uniform states

Equations (1) and (2) give rise to an optical continuous
wave in the dual-core waveguide with propagation constant
−μ,

ψ(r,t) = ψ0e
−iμt , φ(r,t) = φ0e

−iμt , (5)

ψ2
0 = 1

g

(
μ − εX + �2

εC − μ

)
, (6)

φ0 = − �

(εC − μ)
ψ0, (7)

which emulates the EP condensate with chemical potential μ

and exciton and cavity-photon amplitudes ψ0 and φ0. Then,
one can eliminate μ from Eqs. (6) and (7) in favor of ψ0:

μ± = 1
2

(
εX + εC + gψ2

0 ±
√(

εX − εC + gψ2
0

)2 + 4�2
)
.

(8)
In terms of EP, this relation includes the lower μ− and the
upper branches, μ− and μ+, respectively.

As said above, the repulsive excitonic nonlinearity cor-
responds to g > 0, and the physically relevant EP setting
has εX < εC [22,23]. It follows from here that the uniform
EP-emulating configuration exists [i.e., Eqs. (6) and (7) yield
ψ2

0 ,φ2
0 > 0] provided that the chemical potential satisfies

conditions μ−
0 < μ < εC or μ > μ+

0 , at the lower and the
upper branch, respectively. Here, μ−

0 and μ+
0 are obtained

from Eq. (8) by setting ψ0 = 0:

μ±
0 = 1

2 (εX + εC ±
√

(εC − εX)2 + 4�2). (9)

Thus, for � = 0 one has μ−
0 = εX and μ+

0 = εC , while for
� �= 0 the relevant ranges are μ−

0 < εX and μ+
0 > εC . The

respective EP condensate density n0 (alias the energy density
of the optical signal in the dual-core waveguide) is

n0 = ψ2
0 + φ2

0 (10)
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FIG. 1. (Color online) Scaled effective densities of the uniform
exciton-polariton condensate versus the scaled chemical potential,
μ/εC , for the effective (emulated) Rabi coupling � = 0.75εC .
Dashed lines: effective exciton density ψ2

0 ; dot-dashed lines: the
respective cavity-photon density φ2

0 ; solid lines: total density n0.
Other parameters are the effective exciton-exciton repulsion strength
g, and the exciton and cavity-photon energies εX = 0 and εC (actually
emulated by the propagating-constant shifts in the dual-core wave
guide), at zero wave number. The curves below and above μ/εC = 1
correspond, respectively, to the lower and upper branches.

[cf. Eq. (3)]. Note that, due to Eq. (7), ψ0 and φ0 have opposite
signs on the lower branch, while on the upper one the signs of
ψ0 and φ0 are identical.

In the framework of the present model, for given φ2
0 one

can easily obtain the effective exciton and total densities ψ2
0

and φ2
0 , along with the chemical potential μ from Eqs. (6), (7),

and (8). In Fig. 1 we display ψ2
0 (dashed lines), φ2

0 (dot-dashed
lines), and n0 (solid lines) as functions of the scaled chemical
potential μ/εC for εX = 0 and a relevant value of the linear-
coupling strength � = 0.75εC . As previously stated, the curves
in the range of μ−

0 /εC = −0.38 < μ/εC < 1 correspond to
the lower branch, while the range of μ/εC > μ+

0 /εC = 1.4
pertains to the upper one.

B. MI of the uniform states

A central point of the analysis is the MI of the flat
state which was obtained above. For this purpose, small
perturbations ηX(r,t) and ηC(r,t) are added to the uniform
fields ψ0 and φ0 by setting

{ψ(r,t),φ(r,t)} = [{ψ0,φ0} + {η1(r,t),η2(r,t)}]e−iμt . (11)

The subsequent linearization of Eqs. (1) and (2) gives

i
∂

∂t
η1 =

(
− 1

2mX

∇2
⊥ + μX − 2

�2

μC

)
η1

+
(

μX − �2

μC

)
η∗

1 + �η2,

i
∂

∂t
η2 =

(
− 1

2mC

∇2
⊥ − μC

)
η2 + �η1, (12)
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where we have defined

μX ≡ μ − εX, μC ≡ μ − εC. (13)

Solutions to linearized equations (12) are looked for as

η1(r,t) = A1e
i(k·r−ωkt) + B1e

−i(k·r−ωkt), (14)

η2(r,t) = A2e
i(k·r−ωkt) + B2e

−i(k·r−ωkt), (15)

where k and ωk are the wave vector and frequency of the
perturbations. It is straightforward to derive a dispersion
relation from Eqs. (14) and (15):

ω±
k =

√
−β ±

√
β2 − 4γ , (16)

where additional combinations are defined:

β ≡ −(a2 − b2 + c2 + 2�2), (17)

γ ≡ a2c2 − b2c2 − 2ac�2 + �4, (18)

a ≡ k2/(2mX) + μX − 2�2/μC, (19)

b ≡ μx − �2/μC, (20)

c ≡ k2/(2mC) − μC. (21)

In the absence of the effective Rabi coupling, i.e., in the case
of the uncoupled waveguiding cores (� = 0), branch ω−

k in
Eq. (16) gives the familiar gapless Bogoliubov-like spectrum,

ωk =
√

k2

2mX

(
k2

2mX

+ 2 μX

)
, (22)

while ω+
k yields

ωk =
∣∣∣∣ k2

2mC

− μC

∣∣∣∣, (23)

which may be realized as a gapped spectrum. It is easy to
verify that branches (22) and (23) do not intersect, provided
that εX < μ < εC . Notice that for � = 0 one has εX = μ−

0
[see Eq. (8)]. In the presence of the effective Rabi coupling
(� �= 0), emulated by the coupling between the parallel cores,
frequencies (16) acquire a finite imaginary part under the
condition of μ > εC . This means that the uniform state
pertaining to the upper branch of the dispersion relation, i.e.,
μ+ in Eq. (8), is always unstable. Instead, for the uniform
state pertaining to the lower branch, characterized by μ− in
Eq. (8), perturbation eigenfrequencies (16) are always real.
Indeed, in the experiments with the EP condensates, only the
lower polariton branch is actually observed.

Dealing with the stability region, in Fig. 2 we plot the
effective exciton fraction, ψ2

0 /n0, of the EP-emulating state
as a function of the effective scaled cavity-photon density,
gφ2

0/(εC − εX), at four values of the scaled coupling: �/(εC −
εX) = 0.1,0.5,1,1.5 (solid, dotted, dashed, and dot-dashed
lines, respectively). The figure shows that the exciton fraction
decreases with the increase of φ2

0 , while at a fixed value of φ2
0 ,

this fraction slightly grows with �. In addition, from Fig. 2,
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2
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X
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FIG. 2. (Color online) Exciton fraction ψ2
0 /n0 in the exciton-

polariton condensate as a function of the scaled density of the cavity
photons, gφ2

0/(εC − εX). The four curves correspond to different
values of the scaled Rabi coupling, �/(εC − εX).

and also from Eqs. (6) and (7), one finds that the uniform state
has equal effective densities of excitons and cavity photons,
i.e., ψ2

0 /n0 = 1/2, at gφ2
0 = εC − εX.

C. Collective excitations

The uniform state is stable in the regime where frequen-
cies (16) are real, i.e., as said above, for the lower branch
of the nonlinear dispersion relation. Here we aim to analyze
dispersion relations for collective excitations on top of the
stable uniform state.

In the previous section, it was demonstrated that, in the
absence of the linear coupling (� = 0), frequencies (16) split
into two branches: the gapless Bogoliubov-like one (22), and
its gapped counterpart (23). In the presence of the coupling
(� �= 0), the two branches can be identified: the Bogoliubov-
like spectrum ω−

k given by Eq. (16), is gapless, i.e., ω−
0 = 0,

while Eq. (16) yields the gapped spectrum ω+
k , with ω+

0 �= 0.
As mentioned above, the effective exciton and cavity-

photon masses are widely different in the physically relevant
setting, mX � mC , therefore in many cases it is possible to
simplify the problem by setting 1/mX = 0 [22,23]. In this
limit case, Eq. (16) yields the first-sound velocity cs , obtained
by the expansion of the Bogoliubov-like spectrum, ω−

k , at small
k, ω−

k ≈ cs k, with

cs =

√√√√εC − μ

2mC

[
1 −

(
μ2

C + �2
)2

μ4
C + 2

(
μ2

C − μCμX

)
�2 + 3�4

]
. (24)

In the same case, the gap of branch ω+
k is

ω+
0 =

√
μ2

C + 2
εC − εX

εC − μ
�2 + 3

�4

μ2
C

. (25)

In Fig. 3 we plot the scaled energy, mCc2
s /(εC − εX), of

the first-sound mode (the upper panel), and the scaled energy
gap, ω+

0 /(εC − εX), of the gapped branch (the lower panel),
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FIG. 3. (Color online) Top panel: scaled energy mCc2
s /(εC − εX)

of the first-sound mode, with the sound speed cs , versus the
scaled effective cavity-photon density, gφ2

0/(εC − εX). Bottom panel:
scaled energy gap ω+

0 /(εC − εX) of the gapped branch versus the
scaled cavity-photon density. In each panel, four curves correspond
to different values of the scaled linear coupling, �/(εC − εX).

as functions of the scaled effective cavity-photon density,
gφ2

0/(εC − εX). Four curves in each panel correspond to
different values of the scaled linear coupling, �/(εC − εX):
0.1,0.5,1,1.5.

It is relevant to simulate the evolution of the stable
uniform state excited by a small circular perturbation, which
corresponds to an experimentally relevant situation. In Fig. 4
we display the evolution produced by simulations of Eqs. (1)
and (2), using a 2D real-time Crank-Nicolson method with
the predictor-corrector element and periodic boundary condi-
tions [51]. For this purpose, we choose the following initial
conditions:

ψ(x,t = 0) = ψ0, (26)

φ(x,t = 0) = φ0 + Ae−(x2+y2)/σ 2
, (27)

where ψ0 and φ0 are solutions of Eqs. (6) and (7), while A

and σ are parameters of the perturbation, which represents
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FIG. 4. (Color online) The evolution of the initial circular pertur-
bation in the form of a small hole produced on top of the stable uniform
state, per Eqs. (26) and (27). Each panel displays contour plots of the
total density, n0(x,y,t), at fixed values of the propagation distance
(effective time), t. The top, middle, and bottom panels correspond
to t = 9, t = 15, and t = 21, respectively. Parameters are εX = 0,
εC = 1, g = 1, � = 0.75. Initial conditions are taken as in Eqs. (26)
and (27) with ψ0 = 1, φ0 = −1, A = 0.1 and σ = 2.

a small circular hole. We here set εX = 0, εC = 1, g = 1,
� = 0.75, mX = 1000, and mC = 1. Figure 4 displays the
spatial profile of the perturbed condensate density, n0(x,t) =
|ψ(x,t)|2 + |φ(x,t)|2, at different values of the propagation
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distance (time, in terms of EP), t = 9, t = 12, t = 21, for
initial perturbation (27) with A = 0.1 and σ = 2. In the case
shown in Fig. 4 the unperturbed amplitudes are ψ0 = 1 and
φ0 = −1, which correspond in Fig. 1 to μ = 0.25 (the lower
branch). As observed in Fig. 4, the initial perturbation produces
a circular pattern which expands with a radial velocity close
to the speed of sound, cs (for further technical details, see
Ref. [53]).

We have also simulated the evolution of unstable
configurations—for instance, with unperturbed amplitudes
ψ0 = 1 and φ0 = 1, which correspond to μ = 1.75, i.e., the
upper branch in Fig. 1. The evolution is initially similar
to that shown in Fig. 4, but later a completely different
behavior is observed, with the formation of several circles
whose amplitude strongly grows in the course of the unstable
evolution.

IV. THE UNIFORM CONDENSATE WITH
A PHASE GRADIENT

We now analyze the existence and stability of a uniform
state with a phase gradient (effective superflow), which
corresponds to setting

{ψ(r,t),φ(r,t)} = {ψ0,φ0}ei(q·r−μt) (28)

in Eqs. (1) and (2), where q = (qx,qy) is the wave vector of
the gradient, with ψ0 and φ0 given by

ψ2
0 = 1

g

(
μ̃X − �2

μ̃C

)
, (29)

φ0 = − �

μ̃C

ψ0, (30)

where

μ̃X = μ − εX − q2

2mX

, μ̃C = μ − εC − q2

2mC

. (31)

Following the same procedure as developed in the previous
section, we derive the quartic dispersion equation

α4ω
4
k + α3ω

3
k + α2ω

2
k + α1ωk + α0 = 0, (32)

for frequencies ωk of small excitations on top of the uniform
state. Here we define

α0 = a1a2c1c2 − b2c1c2 − a1c1�
2 − a2c2�

2 + �4,

α1 = a1a2c1 − b2c1 − a1a2c2 + b2c2 + a1c1c2

− a2c1c2 + a1�
2 − a2�

2,

α2 = −a1a2 + b2 + a1c1 − a2c1 − a1c2

+ a2c2 − c1c2 − 2�2,

α3 = −a1 + a2 − c1 + c2,

α4 = 1,

a1 = k2/(2mX) + μ̃X − 2�2/μ̃C + q · k/mX,

a2 = k2/(2mX) + μ̃X − 2�2/μ̃C − q · k/mX,

b = μ̃X − �2/μ̃C,

c1 = k2/(2mC) + μ̃C + q · k/mC,

c2 = k2/(2mC) + μ̃C − q · k/mC.
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FIG. 5. (Color online) Frequencies of small excitations ω(k,0)

above the stable uniform state with wave vector q = (q,0) of the phase
flux. Parameters are εX = 0, εC = 1, g = 1, � = 0.75, mX = 1000,
mC = 1, and μ = 0.25. Each line corresponds to a different solution
(branch) of Eq. (32).

In the absence of the linear coupling (� = 0), Eq. (32) gives
the q-dependent gapless Bogoliubov-like spectrum,

ωk = q · k
mX

±
√

k2

2mX

[
k2

2mX

+ 2

(
μX − q2

2mX

)]
, (33)

and the q-dependent gapped one,

ωk = q · k
mC

±
∣∣∣∣k2 + q2

2mC

− μC + q2

2mC

∣∣∣∣. (34)

In the presence of the linear coupling (� �= 0) one must solve
Eq. (32) numerically. We direct the x axis along q, hence
q = (q,0). In Fig. 5 we plot frequencies ω(k,0) of longitudinal
perturbations, with wave vector k = (k,0), for three different
values of the flux wave number, q. For these values of q,
the imaginary part of frequencies ω(k,0) is zero, hence the
state is stable. In the first two panels of Fig. 5 (with q = 0
and q = 0.5) one clearly sees gapped and gapless modes, that
are (approximately) symmetric for k > 0 and k < 0, which
corresponds to excitation waves moving in opposite directions
with equal speeds. By increasing q one reaches the Landau
critical wave number, qL 
 0.72, at which the gapless mode
has zero frequency at a finite value of k, and above which there
is a finite range of k’s where two gapless modes propagate in
the same direction, i.e., the phase velocity, ω(k,0)/k, has the
same sign for both modes. This is shown in the lower panel of
Fig. 5 (for q = 1), where, according to the Landau criterion,
the system is not fully superfluid [52]. A further increase of q
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FIG. 6. (Color online) Real and imaginary parts, Re[ωk] and
Im[ωk], of excitation frequencies ωk on top of the unstable uniform
state with wave vector q = (1.5,0) of the phase flux. Parameters
are εX = 0, εC = 1, γ = 1, � = 0.75, mX = 1000, mC = 1, and
μ = 0.25. Each line corresponds to a different solution (branch) of
Eq. (32).

leads to the dynamical instability of the gapless modes through
the appearance of a nonzero imaginary part of ω(k,0), as shown
in Fig. 6, where both real and imaginary parts of ω(k,0) are
displayed for q = 1.5. Actually, the sound velocities of the two
gapless modes moving in the same direction become equal, so
that they may exchange energy and therefore become unstable,
at the critical flux wave number qc 
 1.15. The results reported
in Figs. 5 and 6 are obtained from calculations performed at
constant μ. We have verified that the same phenomenon occurs
as well at fixed values of the total density.

V. REDUCTION TO THE ONE-DIMENSIONAL SYSTEM

As said above, the 1D lossless EP system may be straight-
forwardly emulated by the dual-core optical fiber, in which one
core is nonlinear, operating near the zero-GVD point, while the
other one is linear, carrying nonzero GVD. The accordingly
simplified version of Eqs. (1) and (2) is written as

i
∂

∂t
ψ̃ = [εX + g|ψ̃ |2]ψ̃ + � φ̃, (35)

i
∂

∂t
φ̃ =

[
− 1

2mC

∂2

∂x2
+ εC + V (x)

]
φ̃ + � ψ, (36)

where the tildes stress the reduction to 1D, cf. Ref. [54].

A. Stability of the uniform 1D state

The results shown in Figs. 1 and 2 are also valid in 1D,
taking into regard that ψ2

0 and φ2
0 are now 1D densities. In

Figs. 7 and 8, we show the evolution of small perturbations
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,t)
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x

1.8

2

2.2

t = 0

t = 3

t = 9

t =15

FIG. 7. The evolution of a small hole produced, as a perturbation,
on top of a stable uniform 1D state. In each panel, density profiles
n(x,t) are displayed. Parameters are εX = 0, εC = 1, g = 1, and � =
0.75. Initial conditions are given by Eqs. (26) and (27) with ψ0 = 1,
φ0 = −1, A = 0.1, and σ = 2.

on top of the uniform stable and unstable states, respectively.
For this purpose, Eqs. (1) and (2) were simulated by means of
the 1D real-time Crank-Nicolson algorithm with the use of the
predictor-corrector element [51]. The initial conditions were
taken as

ψ̃(x,t = 0) = ψ0, (37)

φ̃(x,t = 0) = φ0 + Ae−x2/σ 2
. (38)

In both Figs. 7 and 8, the same parameters of the system
are used: εX = 0, εC = 1, g = 1, and � = 0.75. Both Figs. 7
and 8 display spatial profiles of the condensate density,
n0(x,t) = |ψ̃(x,t)|2 + |φ̃(x,t)|2, at different values of the
propagating distance (alias time, in terms of the EP system),
t = 0, t = 3, t = 9, and t = 12, generated by the initial
perturbation (38), with A = −0.1 and σ = 2. In Fig. 7,
the unperturbed amplitudes are ψ0 = 1 and φ0 = −1, which
correspond to μ = 0.25, i.e., the lower branch in terms of
Fig. 1, while in Fig. 8 the initial amplitudes are ψ0 = 1 and
φ0 = 1, corresponding to μ = 1.75 on the upper branch.

As seen in Fig. 7, the initial perturbation hole splits into
two holes traveling in opposite directions with a velocity
close to the speed of sound cs (see further technical details
in Ref. [53]). In Fig. 8, the dynamics is initially (at t � 6)
similar to that in Fig. 7, but at t > 6 it displays a completely
different behavior, namely, formation of strong oscillations,
which increase their amplitude in the course of the evolution,
indicating a dynamical instability.
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FIG. 8. The evolution of a small hole produced, as a perturbation,
on top of an unstable 1D state. Parameters are εX = 0, εC = 1, g = 1,
and � = 0.75. Initial conditions are given by Eqs. (26) and (27) with
ψ0 = 1, φ0 = 1, A = −0.1, and σ = 2.

B. One-dimensional dark solitons, and a possibility
of the existence of vortices in the 2D system

In the case when the 1D uniform background is stable, it
is natural to look for solutions in the form of dark solitons
(DSs). As well as in other systems, the node at the center of
the DS is supported by a phase shift of π between the wave
fields at x → ±∞ [55] (as shown below, in the present system
the node and the phase shift by π exist simultaneously in both
fields, ψ and φ).

To demonstrate the possibility of the existence of the DS,
we substitute the general 1D ansatz for stationary solutions
into Eqs. (35) and (36):

{ψ̃(x,t),φ̃(x,t)} = {�(x),�(x)}e−iμt , (39)

with functions �(x) and �(x), which may be assumed real,
obeying the coupled stationary equations:

� � = (μ − εX)� − g �3, (40)

(μ − εC)� + 1

2mC

�′′ − � � = 0, (41)

where approximation 1/mX = 0 is adopted, and �′′ ≡
d2�/dx2. It is straightforward to check that Eqs. (40) and (41)
admit a solution with �(x) = −�(x) only if �′′ ≡ 0 for any
x, i.e., DS solutions do not obey this constraint.

For the analytical consideration, we assume that the second
derivative in Eq. (41) may be treated as a small term. Then, an

approximate solution of Eq. (41) is

� ≈ − �

εC − μ
� − �

2mC(εC − μ)2
� ′′, (42)

and the substitution of expression (42) into Eq. (40) leads to
the following equation for �(x):

− �2

2mC(εC − μ)2
� ′′+g�3−

[
(μ − εX) + �2

(εC − μ)

]
� = 0.

(43)
Equation (43) yields a commonly known exact dark-soliton
solution:

�(x) = ±
√

1

g

[
(μ − εX) + �2

(εC − μ)

]

× tanh

(
1

�

√
mC(εC − μ)[(μ− εX)(εC − μ)+�2]x

)
.

(44)

On the other hand, in the special case of μ = εX, Eq. (40)
can be used to eliminate � in favor of �:

� = −(g/�)�3, (45)
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FIG. 9. (Color online) The dark soliton for εX = μ = 0, εC = 1,
γ = 1, and � = 0.75. The exact solution (solid line) is produced
by Eq. (48), and its approximate counterpart (dashed line) is given
by Eq. (44). The top and bottom panels display the excitonic and
photonic density profiles, |�(x)|2 and |�(x)|2, respectively.
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the remaining equation for χ ≡ �3 being

1

2mC

d2χ

dx2
= (εC − εX)χ − �2

g
χ1/3. (46)

If x is formally considered as time, Eq. (46) is Newton’s
equation of motion for a particle in an effective external
potential,

Ueff(χ ) = 3�2

4g
χ4/3 − 1

2
(εC − εX)χ2. (47)

It is obvious that this potential gives rise to a heteroclinic
trajectory which connects two local maxima of potential (47),
χ0 = ±{�2/[g(εC − εX)]}3/2. An implicit analytical form of
χ (x) for the corresponding solution is given by

x =
∫ χ(x)

0
dξ

√
2(

4s3
1/27s2

0

) + s0ξ 2 − s1ξ 4/3
, (48)

where s0 = mC(εC − εX) and s1 = 3mC�2/(2g). From χ (x)
one obtains �(x) = [χ (x)]1/3 and �(x) = −(g/�)χ (x). In
Fig. 9 we compare the exact implicit DS solution (solid line),
produced by Eq. (48), and its approximate counterpart (dashed
line) given by Eq. (44).

Finally, getting back to the full 2D system of
Eqs. (1) and (2), and substituting there {ψ(r,t),φ(r,t)} =
{�(r),�(r)}e−iμt [cf. Eq. (39)], we note that the existence of
2D vortices can be predicted by means of the approximation
similar to that in Eq. (42), i.e.,

� ≈ − �

εC − μ
� − �

2mC(εC − μ)2
∇2

⊥�. (49)

The substitution of this into the stationary version of Eq. (1)
with 1/mX = 0 yields

− �2

2mC(εC − μ)2
∇2

⊥� + g|�|2�

−
[

(μ − εX) + �2

(εC − μ)

]
� = 0 (50)

[cf. Eq. (43)]. It is the usual 2D nonlinear Schrödinger equation
with the self-defocusing nonlinearity, which gives rise to
commonly known vortex states [56].

VI. CONCLUSIONS

The objective of this work is to propose the dual-core
optical waveguide, with one linear and one dispersive core,
as an emulator for the EP system in the lossless limit, which
is not currently achievable in semiconductor microcavities.
In terms of this model, the first fundamental issue is the
MI of the uniform state. As might be expected, it is found
that the uniform states corresponding to the upper and lower
branches of the nonlinear dispersion relation are, respectively,
unstable and stable. This analytical result is confirmed by direct
simulations, which demonstrate the evolution of localized
perturbations on top of stable and unstable backgrounds. The
excitation modes supported by the stable background are
analyzed too, demonstrating two gapless and gapped branches
in the spectrum. The stability investigation was generalized for
the uniform background with the phase flux, demonstrating
that the lower-branch state loses the stability at the critical
value of the flux wave number. Finally, approximate and exact
analytical solutions for stable dark solitons supported by the
1D setting are produced too.

The analysis may be extended in other directions. In
particular, a challenging problem is an accurate investigation
of 2D vortices, the existence of which is suggested by the
approximate equation (50).
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was supported by the Erasmus Mundus EDEN Grant No. 2012-
2626/001-001-EMA2. L.S. thanks F. M. Marchetti for useful
e-discussions.

[1] P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and
M. Lewenstein, Rep. Prog. Phys. 75, 082401 (2012).

[2] C. J. Pethick and H. Smith, Bose-Einstein Condensation
in Dilute Gases (Cambridge University Press, Cambridge,
2008).

[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008); X.-W. Guan, M. T. Batchelor, and C. Lee, ibid.
85, 1633 (2013).

[4] Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[5] Y. Zhang, L. Mao, and C. Zhang, Phys. Rev. Lett. 108, 035302
(2012).

[6] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[7] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V.

Porto, and I. B. Spielman, Phys. Rev. Lett. 102, 130401 (2009);
Y.-J. Lin, R. L. Compton, K. Jiménez-Garcı́a, J. V. Porto, and
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and I. B. Spielman, arXiv:1308.6533v1.

[9] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature
(London) 446, 52 (2007); Y. Lahini, A. Avidan, F. Pozzi, M.
Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg,
Phys. Rev. Lett. 100, 013906 (2008).

[10] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D.
Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature
(London) 453, 891 (2008); G. Roati, C. D’Errico, L. Fallani, M.
Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and
M. Inguscio, ibid. 453, 895 (2008).

[11] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. H. Song, Z. G.
Chen, A. Szameit, and M. Segev, Phys. Rev. Lett. 111, 103901
(2013).

[12] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

043202-9

http://dx.doi.org/10.1088/0034-4885/75/8/082401
http://dx.doi.org/10.1088/0034-4885/75/8/082401
http://dx.doi.org/10.1088/0034-4885/75/8/082401
http://dx.doi.org/10.1088/0034-4885/75/8/082401
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://arxiv.org/abs/arXiv:1308.6533v1
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066


LUCA SALASNICH, BORIS A. MALOMED, AND FLAVIO TOIGO PHYSICAL REVIEW E 90, 043202 (2014)

[13] A. Ruschhaupt, F. Delgado, and J. G. Muga, J. Phys. A 38, L171
(2005); K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008); S.
Longhi, Phys. Rev. A 81, 022102 (2010); C. E. Rüter, K. G.
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