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Effect of correlation on viscosity and diffusion in molecular-dynamics simulations
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In the warm dense matter (WDM) regime, material properties like diffusion and viscosity can be obtained from
lengthy quantum molecular dynamics simulations, where the quantum behavior of the electrons is represented
using either Kohn-Sham or orbital-free density functional theory. To reduce the simulation duration, we fit the
time dependence of the autocorrelation functions (ACFs) and then use the fit to find values of the diffusion and
viscosity. This fitting procedure avoids noise in the long time behavior of the ACFs. We present a detailed analysis
of the functional form used to fit the ACFs, which is always a more efficient means to obtain mass transport
properties. We use the fits to estimate the statistical error of the transport properties. We apply this methodology
to a dense correlated plasma of copper and a mixture of carbon and hydrogen. Both systems show structure in
their ACFs and exhibit multiple time scales. The mixture contains different structural forms of the ACFs for each
component in the mixture.
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I. INTRODUCTION

The warm, dense matter (WDM) regime spans a broad
range of phenomena and conditions from solids around melt
to high-density, high-temperature plasmas. Earth-based exam-
ples include many high-energy density physics experiments
such as inertial confinement fusion [1] and laser-shocks [2]
while those extraterrestrial encompass stellar atmospheres
and planetary interiors such as ice giants like Neptune and
Uranus [3,4] as well as exoplanets [5,6]. These diverse environ-
ments consist of complex mixtures of an eclectic blend of ions,
atoms, and light electrons, which exhibit correlated liquid-like
behavior that can involve transient molecular formations at
the lower temperatures. The modeling and characterization
of these systems depend on various microscopic properties,
in particular diffusion and viscosity. To understand these
processes, we examine their transport properties with quantum
molecular dynamics simulations via various autocorrelation
functions (ACFs). We find diffusion and viscosity from the
long time value of the integrated velocity (VACF) and stress
tensor (STACF) ACFs. Even in classical MD, these ACFs
exhibit structure that details the behavior and correlation of
the particles. Noise from statistical sampling in the late time
behavior of the ACFs leads to fluctuations, which makes it dif-
ficult to accurately obtain results from the integrated ACFs, es-
pecially when the system has correlated time behavior. In clas-
sical MD, this can be overcome by using long simulation times.

However, in the WDM regime classical MD does not gener-
ically represent all the physics. To most efficiently incorporate
the electronic contribution, we use a Thomas-Fermi-Dirac
theory for electronic structure coupled with classical MD
motion of the ions, commonly called orbital free molecular
dynamics (OFMD). Yet this method is computationally costly
and thus prohibits long simulation durations, particularly in the
case of mixtures of ions requiring larger total particle number.
To avoid this obstacle, one can use functions that describe the
temporal behavior of the ACFs. These functions are physically
motivated from dense liquid theory and include structure in the
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ACFs. Then the long time behavior of the integrated functional
form yields the desired transport property.

In previous works [7–9] a simple, single exponential (or
Gaussian) model was used to fit the VACF and STACF. This
provided minimal fitting properties and a direct physical inter-
pretation of the constant in the exponential. The motivation of
this fitting scheme is based on the Enskog hard-sphere result
where the VACF decays exponentially in time [10,11]. In the
weakly interacting limit, this assumption is quite good and
produces accurate results [7–9].

Reference [12] noted that a single exponential function
might not lead to the correct diffusion and viscosity param-
eters. This is true for the cases analyzed, where the systems
were always strongly coupled. The plasma parameter �, which
measures the coupling strength, is given by

�ij = Z∗
i Z

∗
j /(rskBTion), (1)

where Z∗
i is the effective charge of the ith ion, rs is the single

ion sphere radius, and T is the temperature. When �ij is large,
the system is in the strongly interacting limit, and the motion of
the ions will be correlated. One example in Ref. [12] is Copper
(Cu) at a temperature of T = 100 eV and a density of ρ =
67.4 g/cm3, which gives � = 24. (The authors in Ref. [12] used
the value � = 167, but this uses the full atomic Z and not the
effective charge that the Cu ions would have in the hot, dense
plasma.) This is such a strongly coupled regime that we expect
correlated behavior as well as structure in both the VACF and
STACF. A conclusion drawn from these examples was the
need to use long simulations to arrive at the true values for the
properties, especially for viscosity [12]. Such simulations were
done with a small number of particles to reduce computational
demand. However, in many instances large particle numbers
might be necessary, and therefore accuracy in the simulations
will be sacrificed because long simulation runs are not feasible.

We further explore ACFs when more than one ion species
is present. A complication for multiple ion mixtures is the
lack of a unique � in that �ij depends on which two sample
ions are considered. For a CH mixture at T = 10 eV with a
density (ρ) of 1 and 16 g/cm3, we estimate �HH = 0.5 and 2,
�HC = 1.2 and 8, and �CC = 3.0 and 24, respectively, using the
methods of Ref. [13]. Even for this relatively simple example,
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many different physical processes (coupling strengths) occur.
Generally, the higher Z material, in this case C, will be more
strongly interacting and will exhibit more correlated behavior.
However, the mixed interactions between low and high Z

will be more correlated than the low Z alone. This variety
of behavior leads to multiple times scales in the ACFs.

In this paper, we develop and systematically study a fitting
procedure for ACFs to improve the accuracy and improve the
computational efficiency of obtaining the transport properties.
We derive a fitting form with multiple times scales, extending
the work of Refs. [14,15]. This physically motivated form can
then be used to fit correlated systems and mixtures which ex-
hibit multiple times scales. We study the error of the transport
properties from simulations. We show the fitting procedure
can be used to save time and understand the form of the ACFs.
Additionally, we study a CH mixture, relevant to inertially
confined fusion systems, and find that the mixture nature of the
system adds complex time dependence to the ACFs. Reference
[12] raises issues with using a single exponential fit to the ACFs
in correlated simulations. We address these issues with the
multitime scale functional forms found here. Reference [12]
was able to extract an accurate STACF with small numbers
of particles and simulations running for long durations. This
strategy may not be possible for mixtures because in order
to achieve statistical sampling of all constituents a large total
particle number is required. The ultimate intention of this work
is to study how to extract transport properties from correlated
systems and mixtures. We do not seek to study the mixtures
themselves, as many others have done this, for example, Refs.
[16–18]. Rather this work serves as a presentation of methods,
which we will then apply to more complex, multicomponent
mixtures.

II. FORMULATION

A. OFMD methods

We use OFMD as the basis for our studies of Cu and
CH at various temperatures and densities. We start with a
cubic volume V = L3, with L the side length, that has a
particular number of atoms Ni with mass mi yielding a density
ρ = ∑

i miNi/V . Individual concentrations are given by the
molar fraction xi = Ni/Ntot. The kinetic energy is considered
in a semiclassical approximation to first order in the partition
function of the electrons. The orbital-free procedure treats all
electrons equally and makes no distinction between bound and
ionized electrons.

Calculating the orbital-free electronic energy at ion position
R is given by

Fe[R,ne] = 1

β

∫
drne(r)�[ne(r)]

− 2
√

2

3π2β
5
2

∫
dr I 3

2
{�[ne(r)]} +

∫
d rVext(r)

+ 1

2

∫ ∫
d r d r′ ne(r)ne(r′)

|r − r′| + Fxc[ne], (2)

with β = 1/kBT , T the temperature, kB the Boltzmann
constant, and Iν the Fermi integral of order ν. The electrostatic
screening potential �[ne(r)] is related to the electronic density

ne(r) by [19]

∇2�[ne(r)] = 4πne(r) = 4
√

2

π2β
3
2

I 1
2
{�[ne(r)]}, (3)

with conservation of charge requiring the integral
∫

d rne(r) to
equal the total electronic charge. The first term in Eq. (2) is the
finite temperature Thomas-Fermi expression [20]. Other terms
represent the Hartree contribution to the electronic energy,
the external or electron-ion interaction, and the exchange-
correlation potential. We express this last term in the local
density approximation of Perdew and Zunger [21,22]. We omit
the von Weiszäcker correction and work in a Thomas-Fermi-
Dirac form using the formula developed by Perrot [23] to
represent the kinetic-entropic piece. We regularized the ionic
potential as done in Refs. [24–26] using a radial cut off of
0.3 aB .

At every time step the electronic energy is minimized in
terms of the local electronic density for a set of ion positions.
Then the forces acting on each ion due to this electronic
density are calculated, and the ions are then propagated
classically according to this electronic force as well as the ion-
ion repulsion. We assume local thermodynamic equilibrium
(LTE), which means the electronic and ionic temperatures are
the same. In our simulations we fix the electron temperature
and use an isokinetic thermostat applied to each ion species
[27].

Our static and transport properties such as pressure and
diffusion are calculated in the usual manner [28–30]. The total
pressure P is given by a sum of the ideal gas pressure of the
ions and the electron pressure Pe,

P = nkBT + Pe, (4)

with n = N/V the number density. Pe is computed from the
electronic forces from the DFT calculation and averaged over
the portion of the trajectory that represents equilibration.

The self-diffusion coefficient Di is given for species i in
terms of either the mean square displacement or the integral
of the velocity autocorrelation function. For the latter,

Di = lim
t →∞ D̄i(t), (5)

D̄i(t) = 1

3

∫ t

0
d t ′〈vj (t ′) · vj (0)〉, (6)

where vj (t) is the velocity of the j th particle of species i, and
the brackets represent an ensemble average.

Viscosity is computed from the autocorrelation of the off-
diagonal component of the stress tensor [28],

η = lim
t →∞ η̄(t), (7)

η̄(t) = V

kBT

∫ t

0
d t ′〈sij (t ′) sij (0)〉, (8)

where sij (t) is a particular component of the stress tensor
at time t . (The stress tensor is the negative of the pressure
tensor.) This is a global property that does not benefit from
more particles in the simulation. To gather better statistics,
we averaged the results of the five independent off-diagonal
components of the stress tensor sxy , syz, szx , (sxx − syy)/2, and
(syy − szz)/2.
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We also use pair distribution functions (PDFs) to determine
the role that structure may play. The PDF is given by

gab(r) = 1

NaNb

Na∑
i=1

Nb∑
j=1

〈δ(|ri − rj | − r)〉 (9)

and is an ensemble average. For a completely noninteracting
system of hard spheres, the value of g(r) is unity beyond the
single ion sphere radius. However, when interactions become
important, peaks and valleys emerge in the g(r), indicating the
presence of structure in the system.

B. Autocorrelation functions

Studies of correlated liquids have shown that a single
exponential function will not adequately describe the diffusive
properties of a dense system [31]. There are many techniques
for incorporating more physics into the fit of the VACF.
One such technique is the continued fraction method for
the memory kernel, where by keeping successive orders in
the continued fraction one arrives at ever more intricate
expressions for the VACF [31,32]. At third order, and for low
frequency oscillations, the VACF is given by [31]

〈v(t) · v(0)〉 = a0e
−t/τ0 + a1e

−t/τ1 [cos(ω1t) + α1 sin(ω1t)],

(10)

where v(t) is the velocity at time t , τ0 and τ1 are decay
times, and ω1 describes the frequency of collective motion (or
restorative forces) near the onset of solidification. (One can
derive this expression by using the itinerant oscillator model
of Sears [14], for which a generalization to multicomponent
is given in the Appendix.) We constrain the parameter α1 by
imposing the property of VACF that the first time-derivative
be zero at t = 0 vary freely. Additionally, the sum of a0 and
a1 (the t = 0 value of the VACF) is related to the mass of the
species and temperature and thus provides a second constraint.
Physically, as solidification occurs, the relative ratio of a0 to
a1 must go from a0/a1 
 1 to a0/a1 � 1. In fact, a0 → 0
corresponds to the second-order limit of the continued fraction
approach to the memory function [31,32]. Using Eq. (6) we
immediately find the diffusion constant

D = a0τ0 + a1τ1
1 + α1τ1ω1

1 + τ 2
1 ω2

1

. (11)

In Eq. (10), the result is derived for a single species. Yet,
in a mixture, there can be multiple restoring forces or multiple
frequencies of collective motion, acting on a given ion because
there are multiple interacting species. For fitting purposes, it
may prove requisite to allow for multiple restoring forces.
Thus, in the binary fluid one might expect not one but two
such forces for each species. For our example, C-C and C-H
forces will affect the VACF for C. In that regard, a more general
fitting function is

〈v(t) · v(0)〉 = a0e
−t/τ0 +

j∑
i=1

aie
−t/τi [cos(ωit) + αi sin(ωit)],

(12)

where j is the number of restoring-type forces included.
A sketch of the derivation is in the Appendix. The first
term describes hard-sphere-like motion while the secondary

terms represent the correlated motions present in the system.
Applying Eq. (6) to Eq. (12) yields the diffusion constant

D = a0τ0 +
j∑

i=1

aiτi

1 + αiτiωi

1 + τ 2
i ω2

i

. (13)

We use a nonlinear least-squares fit to the VACF with the
functional form in Eq. (12) and then extract the value of the
diffusion constant using Eqs. (11) and (13). A pure exponential
fit is performed setting ai = 0 ∀ i > 0 for comparisons to the
older fit model [7–9]. Aside from the error associated with
each fitting parameter, we also need to know the error due to
statistics built up over the course of a simulation run.

For a single exponential, the idealized statistical error is
defined in the limit that the tw → ∞, where tw is time window,
and it is the duration over which the ACFs are analyzed. In
this case, the error is [28,33]

E =
√

2τ

Ni Ttraj
, (14)

where Ttraj is the total trajectory time, τ the single decay time,
and Ni the number of particles of species i in the simulation.
For bulk properties such as viscosity, N = 1 because there
is only one system. Therefore, we can get strong statistical
convergence in the diffusive properties, but not necessarily in
the viscosity, for a given Ttraj. This is in contrast to Ref. [12],
where (1) the diffusive and viscous properties are obtained
from different simulations and (2) a tw half the size of the Ttraj.
By using such a large tw other statistical errors can creep in
associated with a nonneglible fraction tw/Ttraj.

The statistical inefficiency [28] is dependent on tw, where
Mtw = Ttraj and M is the number of windows sampled in the
simulation. If tw is too large, then the extracted ACF will have
additional noise in the regime t � tw. (Likewise if tw is too
small then the decay time τ will be poorly fitted.) This noise
is due to the fact that as the correlation function approaches
the intrinsic value at t , the correlated value will take random
walks away from the true value. Therefore, as tw gets larger
and larger, the spread about the true value will increase, at
roughly a

√
tw/Ttraj spread. But, tw must be large enough to

capture the longest decay time, τ , of the system. Therefore, we
require at minimum τ < tw � Ttraj. Because we have multiple
time scales, we require

tw > c0τ0 +
j∑

i=1

ciτi

1 + αiτiωi

1 + τ 2
i ω2

i

, (15)

where the ci are the relative weights of the ai , ci = ai/
∑

i ai .
We can think of the weighted sum as being an average,
effective decay time. Yet, to accurately fit the longest decay
time requires tw > Max[τi], and thus this is our criterion for
the correct tw to use in the analysis of the data.

In a manner similar to deriving Eq. (14), we can write down
the idealized statistical error for Eqs. (10) and (12) as

E =
√√√√ 2

NTtraj

(
c0τ0 +

j∑
i=1

ciτi

1 + αiτiωi

1 + τ 2
i ω2

i

)
. (16)
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It is evident that the relative weight of each time scale is
important as are the restoring force parameters ωi . We note
that the parameters ai and αi in Eqs. (10) and (12) are
not independent of each other, as mentioned before. With
multiple αi we constrain one of them by requiring that the
first time-derivative of the VACF be zero at t = 0. We also
constrain one ai such that the normalized VACF be unity
at t = 0. As solidification becomes dominant (τiωi 
 1) the
number of particles freely diffusing will also tend toward zero.
Therefore, a0 will tend toward zero as well, thereby decreasing
its importance in the error estimate.

Systems that display multiple decay times in the VACF
often have multiple decay times in the STACF. One known
method for describing viscosity in these systems is to use a
Kohlrausch law [34]. In previous studies of liquids near a triple
point, a two-exponential fit was used to describe the VACF
[35]. A two-exponential fit is a limit of the general Kohlrausch
law which is given by

〈s(t) · s(0)〉 = b0e
−(t/τ0)β0 + b1e

−(t/τ1)β1 cos(ω1t), (17)

where s(t) is the stress-tensor at time t . It is often convenient to
use βi = 1, βi = 2, or a combination when fitting the two time-
scale STACF. In this paper we will solely use βi = 1 or 2 and
do not allow the parameter to vary. The presence of ω1 is again
attributable to some form of structure occurring in the system.
Using Eq. (8) we find the analytic expression when βi = 1:

η̄(t) = b0τ0 + b1τ1

1 + (τ1ω1)2
. (18)

The methods applied to analyze statistical error in the VACF
can be applied to the STACF. The integrals simplify for βi = 1
or βi = 2. For βi = 1 the idealized error is

E =
√

2

T

(
d0τ0 + d1

τ1

1 + ω2
1τ

2
1

)
, (19)

where di = bi/
∑

i bi . While a little more complicated when
βi = 2, the same method as outlined in Ref. [33] leads to a
similar idealized error estimate.

In arriving at an ideal error there is also a parameter
governing the steps skipped between successive boxes. It needs
to be large enough that each box can be considered statistically
independent. We used a sliding box method that skips roughly
a 1/e step in time between sampled boxes. This avoids error
effects that may arise due to correlations in short time evolution
of the system, thus giving a more robust statistical sampling
in a given simulation run. The fits allow us to use smaller tw,
which avoids sampling statistical fluctuations prevalent in the
late time behavior of the ACFs. This then allows us to have a
shorter Ttraj.

III. RESULTS AND DISCUSSION

A. Diffusive properties of strongly correlated systems

Diffusive properties can be difficult to understand in
a highly correlated plasma. However, results from dense
liquid studies [31] provide a tool for understanding how the
correlations manifest in the VACF. A consistent interpretation
is found by using the g(r) as an indicator of the existence
of these correlations and then fitting using the appropriate

functional form. As discussed in the Appendix, the coupling
term depends on the location of the peak in g(r).

In order to get statistically converged results for diffusive
properties using the standard error in Eq. (14), one can run the
simulation to very long Ttraj (as done in Ref. [12]), increase
particle number N , or both. When the value of � is large,
it is very instructive to look at both the g(r) and the VACF
instead of just numerically integrating the VACF. There is
much information to be gleaned by investigating the structural
properties of the VACF [31]. In cases where glassy or solid-like
behavior is setting in, secondary time scales emerge, which
make using a single exponential function inadequate, e.g.,
studies near the triple point of water [35].

To study the emergence of structure in the VACF, we
will analyze two systems at a fixed temperature and varying
densities. For the case of Cu we use 54 ions at T = 100 eV and
densities 1, 10, 30, and 67.4 g/cm3. The final density is that
used in Ref. [12]. Our smallest time step is 7 a.u. (where 1 a.u.
corresponds to 0.024 fs) in the highest density simulation. For
the case of CH, we use 24 C and 30 H ions at T = 10 eV and
densities 1, 4, 8, 12, and 16 g/cm3. Our smallest time step
was 0.80 a.u. In a mixture, it is difficult to get particle number
statistics and large Ttraj. Thus, having a fitting routine based
on the physics of the interactions is essential for determining
accurate transport parameters.

1. Copper

In Fig. 1, we show fits to the VACF for Cu at ρ =
67.4 g/cm3 as well as the numerically integrated results. Using
Eq. (10), we fit the numerical data in the top panel in Fig. 1.
The solid, light-red line goes smoothly through the data points.
Both the fit to the VACF and its analytic integral yield results
for Cu diffusion, which are in statistical agreement with each
other using the standard error in Eq. (16). Additionally, both
values are within the error bars associated with the method
used in Ref. [12]. We also calculate the error in the fit using
the covariance matrix of the fit parameters.

We also include an example of the fit using a single
exponential (the solid black line), which is done by setting
ai ≡ 0 ∀ i > 0. The values for Dexp extracted from fitting to
the VACF and its integral are statistically different. In the top
panel, the single exponential tends to zero quickly and in so
doing, settles on an intermediate time scale for decay yielding
a 16% smaller D. However, in the bottom panel we note that
the agreement between the more complex fit and the single
exponential is good given that the exponential tends to the same
long-time limit (dashed lines). The difference between the
single-exponential decay times in the top and bottom panels is
another indicator that necessary physics has not been included.
We give the values of the parameters and their associated total
error in Table I. Constrained parameters are not given an error
bar. The total error in the diffusion constant is the sum of
the statistical and fit errors. The adjusted R̄2 value for the
exponential fit is 0.95 while it is 0.999 for the fit using Eq. (10).
This is a small difference in the quality of the fit.

Another way to understand the onset of structure is to
examine the PDF in Fig. 2(a). This PDF is indicative of a
correlated liquid because peaks and valleys emerge as the
density is increased. At ρ = 67.4 g/cm3, the Cu ions have a
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FIG. 1. (Color online) Computer-generated data from an OFMD
run on Cu at T = 100 eV and ρ = 67.4 g/cm3. (a) The green “x” are
the numerical data, while the light-red solid line is the fit to Eq. (10).
(b) The numerically integrated data represented by green “x” and the
fit to the analytic integral of Eq. (10) is the light-red solid line. In both
panels, the solid black line is the example of a single exponential fit,
which is given by ai ≡ 0 ∀ i > 0.

tendency to be around 2.2a0 from one another. The narrowing
of the peak as density increases is a tell-tale sign of correlated
behavior becoming more important.

In Fig. 2(b) we study the impact on the VACF of varying
the density in Cu. Clearly there is structure as the density is
increased. Even at the lowest density, evidence of a secondary
time scale exists, though weakly. As the density increases a
plateau forms in the VACF, which indicates a restorative force
is causing the Cu ions to diffuse in a nonexponential manner.
This can be understood on the basis of the itinerant oscillator
model put forth by Sears [14] and expanded in Ref. [15].
The ion interacts with the medium around it. When the
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FIG. 2. (Color online) (a) Pair correlation function for Cu at T =
100 eV at various densities. The strong peak around r = 2.2a0 is
indicative of transient, collective motion. It is this correlation that
gives rise to structure in the VACF. (b) The VACF for various densities
of 1 (solid green), 10 (dashed purple), 30 (dotted light-red), and
67.4 (dash-dot violet) g/cm3, and all are at T = 10 eV. There is a
clear emergence of structure as the density goes up.

medium is diffuse, there is less interaction and thus a smaller
restoring force, hence a single exponential is adequate for
lower densities. As the density increases so does the influence
of the medium on the ion, and the restorative force that acts on
the ion increases or stiffens. We see this since ω1 grows with
increasing density. The values of τi and ωi can be found in
Table II along with our Ttraj for each system. We also include
the relative weights (the ci) values.

To properly analyze the VACF we need to use a tw, which is
larger than our decay times τi but vastly smaller than our Ttraj.
If instead we try to use a large tw to find a one-σ spread, as

TABLE I. Parameters given in the fits to the VACF in Eq. (12) for Cu at T = 100 eV and ρ = 67.4 g/cm3. We also include the exponential
(Exp.) fit results, which have ai ≡ 0 ∀ i > 0. The error includes both statistical error according to Eq. (16) as well as errors associated with
each parameter via standard propagation of errors techniques.

Method a0(cm2/s2)×10−5 τ0 (fs) a1(cm2/s2)×10−5 τ1 (fs) ω1 (fs−1) α1 D (cm2/s)×10−3

Eq. (12) 1.70 ± 0.04 3.80 ± 0.07 1.97 2.44 ± 0.04 0.998 ± 0.006 0.64 3.84 ± 0.04
Exp. 4.1 ± 0.1 1.7 ± 0.1 3.29 ± 0.12
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TABLE II. The values of the decay times and restorative frequencies in Cu as a function of density at T = 100 eV. We get the value of D

from Eq. (12). The diffusion error is the sum of both statistical and fit contributions.

ρ (g/cm3) c0 c1 τ0 (fs) τ1 (fs) ω1 (fs−1) D (cm2/s)×10−3 Ttraj (ps)

1 0.790 ± 0.004 0.210 ± 0.004 22.5 ± 0.1 9.8 ± 0.1 0.148 ± 0.001 34.7 ± 0.3 7.54
10 0.682 ± 0.007 0.318 ± 0.007 8.7 ± 0.1 4.52 ± 0.05 0.335 ± 0.003 12.1 ± 0.2 11.7
30 0.563 ± 0.008 0.437 ± 0.008 5.5 ± 0.1 3.08 ± 0.05 0.635 ± 0.001 6.61 ± 0.15 7.03
67.4 0.462 ± 0.011 0.558 ± 0.011 3.8 ± 0.1 2.44 ± 0.07 0.994 ± 0.002 3.85 ± 0.15 60.4

done in Ref. [12], we would find it computationally prohibitive
to study lower density systems. As the density decreases,
the decay times increase requiring an even larger tw, which
means even longer simulations. A factor of 10 increase in
the decay times τ would require ten times as many steps to
reach the same statistical convergence. We conclude that the
simulations in Ref. [12] would require around 60 000 time
steps at lower densities. While feasible, it is not advantageous
to pursue for mixed-species systems where each time step is
computationally expensive.

In our simulations of Cu, we had a time skip of τ between
boxes. This was to prevent errors from correlations in the
evolution of the system from creeping in. In Ref. [12] (Fig. 3) it
is unclear whether they skipped any steps between successive
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FIG. 3. (Color online) (a) VACF for C in the CH mixture using
Eq. (12) with i = 2, and (b) VACF for H in the CH mixture using
Eq. (10). The green “x” marks are the simulation data, and solid
light-red line is the fits using the respective equations. The solid
black line is the single exponential fit, ai ≡ 0 ∀ i > 0 in Eq. (12).

boxes. However, given that their tw is about half their Ttraj,
there cannot be many boxes in total. Hence, they see a spread
that grows roughly as

√
tw/Ttraj. There is a prevalence of

fluctuations above their diffusion average line that could be
a consequence of this correlated evolution.

To test the ability of the fitting procedure to save computa-
tional resources, we reduce the number of time steps sampled
and reanalyze the VACF. We are able to get statistically similar
diffusion coefficients with only 750 steps (reduced from
22 000) with error increasing from 1% to 5%. A more stringent
test of this method is with viscosity, as discussed below.

2. Carbon-hydrogen mixture

In Fig. 3(b) we give the VACF and its fits from the
simulation for carbon at 16 g/cm3 and T = 10 eV. The C
VACF shows structure and evidence of a secondary restoring
force, which if included gives a better fit via the R̄2 criteria.
Mixtures offer more complexity and therefore require more
care in analyzing the simulation data. In Fig. 3(a) we show
the VACF for the hydrogen atom in the CH mixture; where
slight evidence of structure exists. We need to only include the
C-H restoring force because the H-H interactions are weak.
However, in both H and C it is clear that a single exponential
model (ai ≡ 0 ∀ i > 0) is insufficient to correctly describe the
diffusive motion. There are clearly different time scales and
structure appearing in the same simulation.

Additionally, we fit the integral of Eq. (10) to compare the
two methods. We find that the integrated fits yield very similar
time constants τi and restoring frequencies ωi as the VACF
fits. This provides a check on our fitting methods.

In the fits we also include an example of a single exponential
(ai ≡ 0 ∀ i > 0), given by the solid black line in Fig. 3. The
value of Dexp for Hydrogen is comparable and within statistical
and fitting noise of the fit using Eq. (12) with i = 1. However,
for carbon diffusion, the value of Dexp is smaller than that of the
fit using Eq. (12) with i = 2 by about 16%. This emphasizes
that a single exponential can be sufficient for one component
in a mixture but not the other. Details of the fit can be found
in Table III.

We also ran simulations on the CH mixture at different
densities. This illustrates the onset of structure as we go to
higher densities, where correlated motion is likely to emerge.
In Fig. 4 we present the normalized VACF for H and C
(Figs. 4(a) and 4(b), respectively). At low densities the VACF
is a simple exponential. As the density increases a bump begins
to form, indicating structure in both H and C VACFs. Again, as
the density is increased we see a stiffening of the ωi . We give
the values of the ωi in Table IV. Densities less than 8 g/cm3

have ωi that are effectively zero.
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TABLE III. Parameters given in the fits to the VACF in Eq. (12) that lead to the diffusion constant as given in Eq. (6) for C and H ions in a
near equal mixture of CH. For C we need to use a1 and a2 terms to get a better fit and reduce the overall fitting error.

Species Method a0(cm2/s2)×10−5 τ0 (fs) ai(cm2/s2)×10−5 τi (fs) ωi (fs−1) αi D (cm2/s)×10−3

H Eq. (12) 1.2 ± 0.1 4.8 ± 0.3 22.2 ± 0.1 0.86 ± 0.01 0.63 ± 0.01 1.88 ± 0.07 14.6 ± 0.4
H Exp. 27.4 ± 0.3 1.28 ± 0.02 14.6 ± 0.3
C Eq. (12) 0.73 ± 0.03 8.1 ± 0.2 1.10 ± 0.04 1.80 ± 0.04 0.64 ± 0.01 1.11 ± 0.04 3.4 ± 0.1

0.10 ± 0.01 12.3 ± 0.8 0.26 ± 0.01 0.7 ± 0.2
C Exp. 2.08 ± 0.02 3.36 ± 0.04 2.9 ± 0.1

Because H is lighter than C, the diffusion occurs on a shorter
time scale. The abscissa in Figs. 4(a) and 4(b) differ. We must
use a larger tw in the simulations to describe carbon diffusion,
indicating that Ttraj must be based on time scales associated
with C diffusion, not H.

For the CH mixture we again test the fitting procedure
as a means to save computational resources. We are able to
get statistically similar diffusion coefficients for C with only
2 × 104 steps (down from 4 × 104) with error of about 4%
error. If the number of steps is reduced further, the fit becomes
more inaccurate and dominates the error estimates. The issue
is that we still have to propagate the system on the light mass
time scale but evolve long enough for the heavy mass time
scale to extract C results.

At the lowest densities, the diffusion for both H and C atoms
is exponential as with Cu. As the density increases, a single
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FIG. 4. (Color online) VACF for H (a) and C (b) for densities
1 (solid green), 4 (dash purple), 8 (short-dash light-red), 12 (dotted
light-blue), and 16 (dash-dot violet) g/cm3, all at T = 10 eV.

exponential begins to fail. However, the density at which it
fails for H is higher than that for C. Different species within a
mixture can have different physically motivated VACFs. Thus,
we have to include the appropriate physics for each species and
not enforce the physics in the model onto a system that is not
exhibiting a specific behavior. Recall that �CC > �HC > �HH,
and thus we expect C ions to experience restoring forces due
to correlated motion before H ions as density is increased.

In Fig. 5 we have plotted the VACF as a function of
time rescaled by τ0. This places the ACFs on the same scale
highlighting clearly that a single exponential works at low
density but fails at high density.

We note that in Fig. 5(b) the limit seems to be above the
simulation data, indicating that D has been over-estimated.
However, there are fluctuations about zero in the VACF for
low density, shown in Fig. 5(a). If we extend the viewing
window, we find that the integrated value also fluctuates about
the limit of the fit. This is why we want to fit with a smaller tw
as we vastly improve the counting statistics and do not have to
run for restrictively long Ttraj.

Had we insisted on an exponential fit, we would have used
a value of tw that is longer than the longest time scale in the
problem. Using a longer tw implies using a longer Ttraj. For
example, if we increase tw by a factor of 2, then to reach the
same level of statistical accuracy would require us to double
Ttraj. However, by using the more complex fit, which accounts
for the physics, we have a window which meets the criteria in
Eq. (15).

B. Viscosity in strongly correlated systems

Viscosity is a more challenging property to extract from
OFMD simulations due to the global nature of the stress tensor.
Increasing particle number does not reduce the statistical error,
only increasing Ttraj does. In addition, when there are two
time scales involved one needs to run the simulation such
that Ttraj 
 tw, which has to satisfy Eq. (15). Therefore, when
computational time is a premium, robust fitting routines allow
for shorter Ttraj without diminishing the quality of the viscosity
extracted.

We use Eq. (17) with fixed βi . Some studies allow the βi

to vary [34] while others keep them fixed [35]. Physically, β

controls how quickly the system relaxes to 1/e. In the limit
β → 0 the system instantaneously relaxes to 1/e and then
remains unrelaxed at this value. Ref. [34] hinted that this might
be an example of an ideal glass transition. The other limit
of β → ∞ represents a system that suddenly relaxes to 1/e

completely after a time τ but stays at this value infinitely long.
We fix β1 = 1 in all examples to keep the integral of Eq. (17)
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TABLE IV. The values of the restorative frequencies in CH as a function of density. Below 8.0 g/cm3 the ωi are zero.

ρ g/cm3 ω1(H) (fs−1) ω1(C) (fs−1) ω2(C) (fs−1) DH (cm2/s)×10−2 DC (cm2/s)×10−3

8.0 0 0.24 ± 0.1 0 26.3 ± 0.4 5.6 ± 0.1
12.0 0.49 ± 0.05 0.65 ± 0.01 0 17.9 ± 0.6 3.9 ± 0.2
16.0 0.63 ± 0.01 0.64 ± 0.01 0.26 ± 0.01 14.6 ± 0.4 3.4 ± 0.1

simple. For β0 we use either 1 or 2, whichever yields a better
fit.

1. Copper

In Fig. 6 we present both the STACF and the numerically
integrated STACF. The solid lines are fits using Eq. (17) and its
integral with β0 = 2 and β1 = 1. The simulation data beyond
about 18 fs oscillates about zero in the STACF and therefore
about the final viscosity value in the integrated data. Fitting
over the whole range samples the large random walks that the
simulation takes around the true value of η, thus distorting it.
Both the fit to the STACF and its integrated form yield values
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FIG. 5. (Color online) (a) VACF for H in CH at 1 and 16 g/cm3.
τ

1g/cc

0 = 33.6 fs and τ
16g/cc

0 = 12.6 fs. In (b) and (c) we plot the
integrated value and fit of the 1 and 16 g/cm3 simulation, respectively.
The 16 g/cm3 fit is to Eq. (12) with i = 1 while 1 g/cm3 is a fit to
Eq. (12) with ai ≡ 0 ∀ i > 0.

of η that are in statistical agreement with each other as well as
within the error quoted in Ref. [12].

In using Eq. (17) to fit the STACF we have to account for
the fitting error as well as the statistical error. The fit is not
as robust as in the case Eq. (12). We find that the STACF
simulation data yield η = 39.8 ± 1.3 mPa s. The analytic fit
to the integrated simulation data yields η = 40.6 ± 5.8 mPa s.
The fit to the integrated data is noisier given the fluctuations
about the limiting value to which the exponential functions
are trying to reach. The Gaussian coefficient b0 is much larger
than the exponential, indicating its importance in the fit.

To test the ability of the fitting procedure to save computa-
tional resources, we reduce the number of time steps sampled
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FIG. 6. (Color online) The STACF for Cu at T = 100 eV and
ρ = 67.4 g/cm3. (a) The STACF simulation data (denoted by a green
“x”) and the solid light-red line is the fit using Eq. (17). (b) The
numerically integrated simulation data with the fit (solid light-red
line) the fit to the analytic integral of Eq. (17). The two values obtained
are statistically the same.
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FIG. 7. (Color online) (a) STACF simulation data and (b) numer-
ical integral (given by green “x”) for the CH system at T = 10 eV
and ρ = 16 g/cm3. The fits are to Eq. (17) and its analytic integral.
The numbers are statistically the same.

and reanalyze the STACF. We are able to get statistically
similar viscosity with only 750 steps (reduced from 22 000)
with error increasing from 2% to 10%. For 5% error, we
need about 5 000 steps. Note this is the same simulation that
produces the diffusion coefficients.

By using 10x fewer particles in their viscosity simulations
as in the diffusion one, Ref. [12] ran the simulation for a factor
of 10x longer. This strategy obfuscates the accuracy of the
respective simulations, given that one benefits from the extra
1/

√
N reduction of error in self-diffusion and the other runs

for a much longer Ttraj. Additionally, by using such a large
window size in their Fig. 10 they are subject to the random
fluctuations associated with the statistical sampling. Perhaps
this is why the authors used a smaller averaging window in
viscosity compared to diffusion. The noise introduces too
much error, and this is why a smaller tw should be used as
well as a fitting function.

2. Carbon-hydrogen mixture

In studying a mixture, using a fit is requisite given the
computational demand due to the large number of particles
needed for adequate statistics for each species. In Fig. 7 we
show the STACF and its integrated value for the CH mixture.

Solid lines are fits using Eq. (17) with both βi = 1 and its
integral. We are able to reduce the oscillations about zero in
the STACF (top panel) and the final viscosity value (bottom
panel) by using a smaller time window. This in turn allows
the gathering of more statistics in the full simulation, which
reduces the effects of random walks.

As in the case of Cu, the fitting routine is not as robust
for viscosity. However, both the fit for the STACF and its
analytic integral yield results that are in statistical agreement
with each other. We find that η = 6.5 ± 1.7 mPa s and
η = 6.5 ± 1.3 mPa s for the STACF and integrated STACF,
respectively. The larger error bars are due primarily to the
fitting error. This is largely due to the fluctuations in the STACF
data at longer times. Without the 1/

√
N benefit, viscosity

is a much tougher parameter to nail down. In examining
the structure in the top panel of Fig. 7, we see clearly an
increase in the STACF around t = 3.6 fs. A single exponential
underestimates the value of viscosity unless we use a rather
large tw, which in turn reduces our statistics and confidence in
the value because

√
tw/Ttraj becomes larger.

The time scales associated with our fits in the CH vis-
cous system are all comparable. At the highest density, the
oscillatory term becomes very important in the fit. Without
it, we would not correctly describe the system. Note that if
there is considerable noise in the system, extracting ω can be
fruitless since the noise washes out any such frequency. Long
Ttraj are requisite to allow for better statistics. Thus, a simple
two-exponential fit might be of better use if the oscillatory
contributions are not overly pronounced.

As we reduce the density of the CH mixture, thus moving
toward less correlated systems, we find that the time scale of
τ0 becomes longer, as does τ1. However, the importance of
τ1 is many orders of magnitude below that of τ0 given the
weights di . d0 increases with decreasing density while the d1

decreases. This further emphasizes that a single exponential
captures the essential physics at lower densities, or more aptly,
for systems where �ij < 1. In such systems the correlations
are much smaller as there is less structure.

Once again we look at how the fitting procedure can be
used to save computational time, this time for the CH viscosity.
This is the most costly set of simulations we ran. For the full
simulation, we used 4 × 104 time steps, which resulted in error
of about 14%. We can use the fitting procedure and run 2 × 104

steps to 17% error. Once again further reducing the number of
time steps used in the analysis the fit error becomes large.

IV. CONCLUSIONS

We have studied the behavior of correlated warm dense
matter systems with OFMD simulations. We focused on
extracting the diffusion and viscosity properties from ACFs. In
the correlated regimes, the ACFs have structure and multiple
time scales. Such behavior is anticipated in dense liquid theory
[31], and interpreted using standard fitting forms. These fitting
forms offer a means to include more physics in the functional
form of the ACFs, thus allowing a reduced computational
burden to determine the transport properties. In addition to
looking at a strongly interacting single species system, we
also looked at a CH mixture. Such a system implicitly has
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multiple times scales since the lighter protons (H) move more
quickly than the heavier carbon ions.

We further studied the behavior of these systems as the
density is varied from weakly interacting (� < 1) to strongly
interacting (� > 1). We study how structure emerges as
density is increased. The mixtures have a more complex
behavior, where the C VACF behaves in a distinctly different
manner than H over a wide parameter range.

We extended previous work [8] where either exponential
or Gaussian fits to ACFs were used in the determination of
transport properties. Such fits reduce the computational cost
of an MD simulation significantly. One can use a shorter tw,
which allows for more statistical sampling of the trajectory and
arrive at statistically and physically sound transport property.
The original use of the fitting form in Ref. [8] was for weakly
interacting systems (� < 1); i.e., hard sphere physics well-
describes the interactions. In a more highly correlated system,
this approximation is no longer applicable. For diffusion, we
extended the formulation beyond the standard Enskog theory
by including extra terms, which act on various time scales
and a frequency associated with restorative forces in the
system. For viscosity, we use a variation of the Kohlrausch
law.

Future work will be to explore the temperature and density
dependence of the mass transport parameters D and η of com-
plex and correlated mixtures. For example, four component
mixtures relevant to exoplanet systems, and systems of much
greater mass imbalance, such as third-row metals paired with
hydrogen, will be explored in the WDM regime.
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APPENDIX: DERIVATION OF VAC FIT FORMS

We start with the itinerant oscillator model of Sears [14] as
modified by Damle, Sjölander. and Singwi [15]. Instead of one
fictitious center, we allow for two. This leads to the following
set of coupled equations

R̈RR0[t] +
∫ t

0
μ0[t − t ′]ṘRR0[t ′]dt ′ + α2

01

M0
(RRR0[t] − RRR1[t]) + α2

02

M0
(RRR0[t] − RRR2[t]) = FFF 0[t], (A1)

R̈RR1[t] +
∫ t

0
μ1[t − t ′]ṘRR1[t ′]dt ′ + α2

10

M1
(RRR1[t] − RRR0[t]) + α2

12

M1
(RRR1[t] − RRR2[t]) = FFF 1[t], (A2)

R̈RR2[t] +
∫ t

0
μ2[t − t ′]ṘRR2[t ′]dt ′ + α2

20

M2
(RRR2[t] − RRR0[t]) + α2

21

M2
(RRR2[t] − RRR1[t]) = FFF 2[t], (A3)

where the subscript 0 indicates the atom of interest, while 1 and 2 are the fictitious centers. We cast this into a more amenable
matrix form (using V̇VV [t] = R̈RR[t]):

V̇VV +
∫ t

0
���[t − t ′] · VVV [t ′] dt ′ = FFF [t]. (A4)

We absorb the frequencies αij into the friction matrix ��� and its form is given by

���[t] =

⎛
⎜⎜⎝

μ0[t] + ω2
01 + ω2

02 −ω2
01 −ω2

02

−ω2
10 μ1[t] + ω2

10 + ω2
12 −ω2

12

−ω2
20 −ω2

21 μ2[t] + ω2
20 + ω2

21

⎞
⎟⎟⎠ , (A5)

where ω2
ij = α2

ij /Mi �= ω2
ji . Sears [14] gave an expression for

ω2
ij in the case of one atom of interest in a sea of others. Here,

the same ideas and methods can be applied to arrive at an
expression for ω2

0i ,

ω2
0i = 4πNi

3miV

∫ ∞

0

[
φ′′

0i(a) + 2
φ′

0i(a)

a

]
g0i(a)a2da, (A6)

where g0i(a) is the pair correlation function, φ0i(a) is the
interaction potential, and Ni the number of particles of type
i that the particle of interest (0) interacts. We note that in
the screened Coulomb interaction this integral requires the
screening length to be larger than where g0i(a) turns on and/or
peaks, hence in a plasma regime where interactions are strong.

In the case of molecular interactions when g0i(a) peaks at the
minimum of the φ0i(a) then we get out the molecular vibration
constant. Thus, this method can be applied to the high pressure
and temperature cores in planets such as Neptune and Uranus
as well.

Using the methods in Ref. [15] and defining p as our
Laplace space variable,

φφφ[p] = [pIII + ���[p]]−1φφφ0, (A7)

���[p]φφφ0 = FFF [p], (A8)

φ0
ij = δij

kBT

Mi

, (A9)
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where φi[p] and �[p] are the Laplace transforms of 〈Vi[t] ·
Vi[0]〉 and 〈μi[t]μi[0]〉, respectively. III is the unit matrix.
Equation (27) is the fluctuation-dissipation relation for this
system. From here on out we will assume the centers do
not interact with each other, which does not violate the
fluctuation-dissipation relations. It merely amounts to setting
ω21 = ω12 = 0.

After a bit of algebra we get to the following expression for
the VAC of the particle of interest:

φ00[p] = φ0
00

{
p + μ0[p] + ω2

01 (p + μ1[p])

p (p + μ1[p]) + ω2
10

+ ω2
02 (p + μ2[p])

p (p + μ2[p]) + ω2
20

}−1

. (A10)

It is straightforward, though tedious, to find the N -center
relation as well:

φ00[p] = φ0
00

{
p + μ0[p] +

N∑
i=1

ω2
0i (p + μi[p])

p (p + μi[p]) + ω2
i0

}−1

.

(A11)

We now split each Fi into two terms: a friction term and a
restoring force term. The friction terms correspond to the Fi

in Eq. (27), while the second term is the same for all and must
adhere to Newton’s third law. Thus,

Fi[t] = Ai[t] + α

Mi

√
3kBT A′. (A12)

The A′ satisfy the properties 〈A′〉 = 0 and 〈A′ · A′〉 = 1. Then
the fluctuation-dissipation relations yield

3kBT

Mi

μi[p] = Ai[p], (A13)

with Ai[p] the Laplace transform of 〈Ai[t] · Ai[0]〉. The
nondiagonal pieces of Eq. (27) tell us that 〈Ai[t] · Aj [0]〉 = 0
for j �= i. The fluctuation-dissipation relation as well as
Newton’s third law tell us that ω2

ij φ
0
jj = ω2

jiφ
0
ii .

We now assume that 〈Ai,α[t] · Aj,β[0]〉 = δij δαβ〈A2
α〉δ(t −

t ′), and α and β are the Cartesian coordinates x, y, and z. This
leads to

μi[p] = γi, (A14)

γi = Mi

3kBT

∑
α

〈
A2

α

〉
. (A15)

With this choice of correlation, we find the general form for
φ00[p] is

φ00[p]

φ0
00

=
∏N

k=1

[
p (p + γk) + ω2

k0

]
∑N

i=0

{
ω2

0i (p + γi)
∏N

k=1,k �=i

[
p (p + γk) + ω2

k0

]}
= R[p]

Q[p]
, (A16)

and ω2
00 = 1. We see that we have a polynomial of order 2N

in the numerator and of order 2N + 1 in the denominator.
Provided there are no shared roots between R[p] and Q[p],
and that each root of Q[p] is distinct, the general solution for
φ[t] is

φ[t]

φ0
00

=
∑

λ

R[pλ]

Q′[pλ]
epλt , (A17)

where pλ are the roots of the polynomial Q[p] and Q′[pλ]
is the derivative of Q[p] with respect to p evaluated at the
roots pλ.

In general, this is not a simple expression in time. However,

if we let λi =
√

4ω2
i0 − γ 2

i as well as make the approximation
that ω0i (not ωi0) is small, then we find the much more tractable
equation

φ00[p]

φ0
00

≈ 1

(p + γ0)
−

N∑
i=1

ω2
0i

p + γi

(p + γ0)2

1(
p + γi

2

)
2 + (

λi

2

)2 .

(A18)

Using standard relations for the inverse Laplace transform we
arrive at

φ00[t]

φ0
00

= e−tγ0

[
1 +

N∑
i=1

(κi + δi t)

]

+
N∑

i=1

χie
−γi t (Cos [tλi] + αiSin [tλi]) , (A19)

where κi , δi , χi , and αi are complicated algebraic combinations
of γ0, γi , and λi . This is how we arrive at Eqs. (10) and (12),
but we do not include the linear term in t . We exclude the linear
term in t because it does not improve the adjusted R2 value of
the fit in the cases we studied. Using an exponential memory
kernel, or a continued fraction approach, for the stochastic
forces can also be done since it leads to the ratio of two
polynomials with the denominator of higher order than the
numerator. However, the complexity of the expressions gives
neither a more meaningful nor more physical fitting function
than Eq. (38).
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