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Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence
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We examine the distribution of the local dissipation scale η, Q(η), and its temporal evolution in two-dimensional
(2D) Rayleigh-Taylor (RT) turbulence using direct numerical simulations at small Atwood number and unit
Prandtl number. Within the self-similarity regime of the mixing zone evolution, distributions of η at small scales
are found to be insensitive to the large-scale anisotropy of the system and independent of position and of the
temporal evolution of the mixing zone. Our results further reveal that the present measured Q(η) agrees with those
previously observed in homogeneous isotropic turbulence and in turbulent pipe flows, at least for the smallest
scales around the classical Kolmogorov dissipation scale. However, the RT case seems to show a different trend
from the other two cases for large scales, which may attributed to the absence of the inertial-range intermittency
for the velocity field in 2D RT turbulence.
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I. INTRODUCTION

Dissipation is an omnipresent phenomenon in fluid tur-
bulence occurring in nature and technology. In the classical
theory of three-dimensional (3D) turbulence advanced by
Kolmogorov [1–4], viscous effects become significant and
energy is dissipated into heat at the scale, known as the
Kolmogorov dissipation scale ηK = (ν3/〈ε(x,t)〉)1/4. Here, ν

is the kinematic viscosity of the working fluid, ε(x,t) is the
local turbulent kinetic energy dissipation rate, and 〈·〉 denotes
an ensemble average. As a mean length scale, however, ηK

cannot reveal the ubiquitous intermittent nature of turbulence,
such as the intense spatiotemporal bursts of the instantaneous
velocity gradient field and the local energy dissipation rate
field [5,6]. To translate the intense and localized turbulent
events to the dissipation scale, one can define an instantaneous
fluctuating dissipation scale as η(x,t), by requiring that the
local Reynolds number associated with eddies of size η be
of order 1, i.e., Reη = η|δηv|/ν ∼ 1, where δηv = vi(xi +
η) − vi(xi) is the longitudinal velocity increment over a
separation η [7,8]. This yields the local cutoff scale η, where
viscous and inertial forces balance approximately with each
other [9].

In the past few years, some studies have focused on
the properties of probability density functions (PDF) of
η, Q(η). By assuming the Gaussian large-scale boundary
condition, the analytical predictions for Q(η) were derived
first by Yakhot [7] using Mellin transform of structure
functions, and then by Biferale [10] using the multifractal
formalism. Experimental results obtained from Princeton
University/ONR Superpipe [11] and numerical simulations
of homogeneous isotropic turbulence [12] both agree well
with the theoretical distributions, thus suggesting a universal
behavior of the smallest-scale fluctuations around ηK . Later,
Zhou and Xia [13] generalized the ideas of η into turbulent
Rayleigh-Bénard convection, a paradigm for the study of
buoyancy-driven turbulence. Their results confirmed that the
distributions of η are indeed insensitive to turbulent intensity
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and large-scale inhomogeneity and anisotropy of the system.
More recently, the universality of distributions of η was further
examined numerically in turbulent channel flow [14] and
experimentally in the strongly anisotropic flow past a backward
facing step [15]. These works suggest the universality of
Q(η) in turbulent flows with respect to different large-scale
turbulence production mechanisms.

In this paper, we want to push the universality of Q(η) one
step ahead by studying distributions of the local dissipation
scales, η, in nonstationary turbulent flows, which are often
encountered while starting or stopping a flow process. The
flow at hand is two-dimensional (2D) turbulent mixing
originated at the interface that separates two layers of fluids
of different densities and is accelerated against the den-
sity gradients, i.e., Rayleigh-Taylor (RT) turbulence [16,17],
which has many applications in atmospheric and environment
physics [18], astrophysics [19,20], and technological related
problems [21–23], and provides a natural framework for
the study of nonstationary turbulent flows [24,25]. Cascade
processes in such a system have been extensively investigated
in the past decade [26–34]. Here, two considerations prompted
us to restrict ourselves to the 2D simulations of RT turbulence:
(i) The numerical effort required for 2D simulations is much
smaller so that a superfine resolution for the sub-Kolmogorov-
scale statistics becomes feasible for high Reynolds numbers;
(ii) temperature becomes a fully active scalar in the 2D
RT system, and thus a new type of phenomenology, i.e.,
a Bolgiano-Obukhov-like (BO59) scaling [35], was theoret-
ically predicted [36,37] and numerically observed [38–40].
Indeed, results obtained by Zhou [40] revealed that buoyancy
overwhelms nonlinear energy transfer at all inertial scales. This
is in clear contrast to 3D cases, where temperature behaves as
a passive scalar, leading to the traditional Kolmogorov-like
(K41) phenomenology as those observed in homogeneous
isotropic turbulence [30]. There is the attraction of studying
properties of η in a turbulent system where a non-K41
phenomenology is expected. The remainder of this paper
is organized as follows. Section II provides the detailed
information about the numerical method adopted. The PDFs
of the local dissipation scales Q(η) are studied and discussed
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in Sec. III, and we summarize our findings and conclude in
Sec. IV.

II. NUMERICAL METHOD

The time-dependent incompressible Oberbeck-Boussinesq
equations of miscible RT turbulence in vorticity-stream func-
tion formulation, i.e.,

∂ω

∂t
+ (u · ∇)ω = ν∇2ω + βg

∂θ

∂x
, (1)

∇2ψ = ω, (2)

u = −∂ψ

∂z
, w = ∂ψ

∂x
, (3)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ, (4)

are solved in a 2D box of width Lx and height Lz with
uniform grid spacing �g . Here, θ (x,t) is the temperature field,
proportional to the fluid density ρ via the thermal expansion
coefficient β as ρ = ρ0[1 − β(θ − θ0)] (ρ0 and θ0 are reference
values), u(x,t) = u�x + w�z the velocity field (�x and �z are the
horizontal and vertical unit vectors, respectively), ω = ∇ × u
the vorticity, ψ the stream function, g the gravitational
acceleration, and κ the thermal diffusivity of the working
fluid. Periodic boundary conditions for both velocity and
temperature are applied to the horizontal direction, while
for the top and bottom walls, no-penetration and no-slip
velocity boundary conditions, which are recast in terms of ψ as
ψ |z=−Lz/2,Lz/2 = 0 and ∂ψ/∂z|z=−Lz/2,Lz/2 = 0, and adiabatic
(no flux) temperature boundary conditions are used. The direct
numerical simulations are based on a compact fourth-order
finite-difference scheme, proposed by Liu et al. [41], and the
accuracy, stability, and efficiency of the scheme have been
examined in great detail [41,42]. Recently, we have applied
the same numerical code to study, respectively, small-scale
properties in the 2D RT system [40] and turbulent heat
transport in 2D Rayleigh-Bénard convection [43]. In the
present study, the number of grid points is set to 4096 × 8193
in all the runs to achieve a sub-Kolmogorov-scale resolution.

The initial condition in our simulations is that the velocity
is zero everywhere u(x,t = 0) = 0, and the temperature varies
as a step function of the vertical coordinate z, θ (x,t = 0) =
−sgn(z)�0/2, with �0 being the initial temperature jump that
defines the Atwood number as A = β�0/2. RT instability
is seeded by perturbing the initial condition with respect
to the step profile. The interface θ = 0 is perturbed by
a superposition of cosine waves, cos(2πkx/Lx + φk), with
30 � k � 60, equal amplitude, and random phases φk [30,44].
To check the independence of the turbulent state from initial
conditions, we have also perturbed the initial condition by
adding 10% of white noise to the value of θ (x,z = 0,t = 0).
The obtained results suggest the robustness of the present
results. A total of 32 independent realizations have been
produced by generating different perturbed interfaces and all
statistical quantities studied in this paper are obtained by first
calculating for each individual simulation and then averaging
over all these realizations. In all the runs, Ag = 0.25, Lz = 1,
�0 = 1, ν = κ = 2.89 × 10−6, corresponding to the Prandtl
number Pr = ν/κ = 1. Simulations with the same parameters

but a lower resolution 2048 × 4097 have also been carried
out. Comparison between the two resolutions also suggests
the robustness of the results presented here.

III. RESULTS AND DISCUSSION

First of all, we study the growth of the mixing zone. We
define here the width of the mixing zone h(t) as a z zone where
−0.4�0 � 〈θ (x,t)〉x � 0.4�0 with 〈θ (x,t)〉x being the mean
vertical temperature profiles and 〈·〉x a horizontal average. This
threshold-based definition has been widely used in previous
works [31]. The measured mixing zone width h(t) is plotted
as a function of t/τ in Fig. 1, where τ = √

Lz/Ag is the
characteristic time of the RT evolution. The dashed line in
the figure marks the self-similar prediction of the t2 growth
law [23,24]. It is seen clearly that in the range 1.6 � t/τ �
4 two types of lines collapse roughly on top of each other,
indicating a quadratic growth of h(t). Further studies show that
the power spectra (not shown here) of both the velocity and
temperature files obtained within the self-similar range cover
a broad range of scales [40], indicating that a turbulent state
has been well developed. Therefore, we shall later analyze the
temporal evolution of Q(η) within this time range. In the insets
of Fig. 1, we display two snapshots of the temperature field
obtained at the two ends of this time range, i.e., t/τ = 1.6 and
4, and one sees that large-scale turbulent structures (plumes or
spikes) dominate the flows within the self-similar regime of
h(t).

To see whether or not the present resolution can resolve the
sub-Kolmogorov-scale statistics, we examine in Fig. 2(a) the
temporal evolution of the Kolmogorov scale ηK (t), normalized
by the computational grid spacing �g . Two features of the
graph are worth noting. First, ηK > 3�g for all the simulation
times (see the horizontal dash-dot line) and ηK is even larger
than 4�g at the late stage of the evolution. This guarantees
the adequate resolution for small-scale turbulent structures.
Secondly, within the self-similarity regime 1.6 � t/τ � 4, ηK

increases slightly with the temporal evolution. The dashed line
in the figure indicates the dimensional scaling t1/8 for refer-
ence, which describes well the temporal behavior of ηK (t).
This is inconsistent with previous theoretical predictions [36]
and numerical results [40].

The adequacy of the numerical resolution adopted in
our simulations can also be checked from the behavior of
longitudinal velocity structure functions, S2n(�) = 〈(δ�v)2n〉,
as the spatial separation � approaches the smallest value
allowed in the simulation, i.e., the grid spacing �g . In the limit
of vanishing �, it is expected from Taylor expansion of S2n(�)
that S2n(�) ≈ �2n〈(∂vi/∂xi)2n〉 ∼ �2n. To recover this analytic
behavior, a superfine resolution is required, particulary for
high Reynolds numbers and large n (Schumacher, Sreenivasan,
and Yakhot, 2007 [46]). Figure 2(b) shows the longitudinal
structure functions of the horizontal velocity u, for increasing
orders n, from n = 1 to 5, obtained at a late stage t/τ = 4 of
the self-similarity regime. The structure functions have been
divided by �2n such that the analytic behavior can be indicated
by asymptotic plateaus corresponding to 〈(∂u/∂x)2n〉 (shown
by horizontal dashed lines) for small enough �. As expected,
S2n(�)/�2n ≈ const. holds approximately in the dissipative
range up to n = 5.
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FIG. 1. (Color) The temporal evolution of the mixing layer width h(t). The blue dashed line indicates the quadratic law h(t) = αAgt2 with
α = 0.05 obtained from the compensated plot of h(t)/(Agt2) (not shown here) for reference. Two snapshots of the temperature fields are shown
at t/τ = 1.6 (top left inset) and t/τ = 4 (bottom right inset). Red and blue areas identify hot and cold regions, respectively. The dark-green
triangles indicate the times of the eight examined fields in Fig. 6. The corresponding movie about the temporal evolution of the fields of the
temperature, kinetic energy, and energy dissipation rate can be found in the Supplemental Material [45].

Figure 3 shows the normalized dissipation spectra,
2νk2Eu(k)/ε2/5

θ [47], measured at ReL = 370, 1100, 3200,
and 6500, respectively, corresponding to t/τ = 1.6, 2.26,
3.18, and 4 in the self-similar regime of the RT evolution.
Here, εθ (t) ≡ 〈κ[∂iθ (x,z,t)]2〉V is the thermal dissipation rate
where 〈· · · 〉V means a volume average inside the mixing
zone, and Eu(k) is the kinetic energy spectrum, which is
calculated by fast Fourier transforming of the velocity fields
on one-dimensional horizontal planes and then averaging over
different z inside the mixing zone. Note that the expression
2νk2Eu(k)/ε2/5

θ is applicable only at small scales where the
field is expected to be isotropic. Nevertheless, we adopt this
expression here since it has been widely used in previous
studies [47]. One sees that in the intermediate range of k,
corresponding to inertial scales, all these spectra collapse
almost perfectly on top of each other, while the evolution
of the spectra at small wave numbers reflects the growth of the
integral length scale, a dynamical quantity representing the
typical size of the large-scale turbulent eddies.

Let’s now turn to distributions of η, Q(η). The PDF Q(η)
is calculated from the simulation data in the following way.
For a given time t in the self-similarity regime of the RT
evolution, we first fix a length � that is an integral multiple of
the grid spacing �g , i.e., � = m�g . The longitudinal velocity
increments across the separation �, δ�v, are then calculated at
each grid site within the mixing zone. If the obtained value

of �|δ�v|/ν is between 0.9 and 2 [11], it contributes to the
occurrence of local dissipation at a scale � = η. Q(η) is then
computed as Q(η) = qn(η)/N(η), where N (η) is the total
number of the calculated velocity increments over a separation
η, n(η) is the count of events among N (η) that satisfy the
local balance at scale η, and q is a normalization parameter
determined from

∫
Q(η)dη = 1. This calculating approach is

identical to those described in previous numerical [12] and
experimental [13,15] studies. For the present 2D RT flows,
either horizontal, δ�u = u(x + �,z,t) − u(x,z,t), or vertical,
δ�w = w(x,z + �,t) − w(x,z,t), longitudinal velocity incre-
ments can be used to obtain Q(η), denoted as Q(ηx) and Q(ηz),
respectively.

The local dissipation scale η is usually rescaled by the
scale η0 [12] that can be evaluated as follows. According to
the theory of Refs. [48] and [7], the matching scale between the
dissipative and inertial parts of S2n(�), η2n, is order dependent
and can be give by

η2n = LRe
1

(ζ2n−ζ2n+1−1)

L , (5)

where ζ2n are the scaling exponents of S2n(�) in the inertial
range, and ReL = v′L/ν is the integral-length-scale-based
Reynolds number, with v′ =

√
〈(u − 〈u〉)2〉 + 〈(w − 〈w〉)2〉.

In 2D RT turbulence, as revealed by previous numerical
studies [38–40], the statistics of velocity differences obeys
the BO59 scaling and is nearly self-similar, i.e., ζ2n = 6n/5,
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FIG. 2. (Color online) (a) The temporal evolution of the Kol-
mogorov scale ηK (t), normalized by the computational grid spacing
�g . The red dashed line marks the dimensional scaling t1/8 and the
horizontal dash-dot line indicates the value of 3 for reference. The
dark-green triangle symbols indicate the times of the eight examined
fields in Fig. 6. (b) Test of analyticity for the compensated longitudinal
velocity structure functions S2n(�)/�2n, normalized by (uL/L)2n, for
n = 1, 2, 3, 4, and 5, obtained within the mixing zone and at t/τ = 4
and ReL = 6500. Here, uL = 〈δLu2〉1/2 is the typical velocity over the
integral scale L. Horizontal dashed lines show the exact analytical
form, corresponding to S2n(�)/�2n = const., and the vertical dashed
line indicates the Kolmogorov scale �/ηK = 1.

at least for orders n ≤ 5. Inserting this into (5) yields

η2n = LRe−5/8
L = ηK, (6)

for 2D RT turbulence. Therefore, the relation,

η0 = ηK = LRe−5/8
L , (7)

is used to determine the value of η0 in the present study.
Equation (7) is a natural accompaniment of the BO59 scenario
and it is different from the situations in other types of flows,
such as homogeneous isotropic turbulence and turbulent pipe
flows, where ηK = LRe−3/4

L and η0 = LRe−0.72
L are expected

due to the K41 cascades and the intermittency correction. Note
that the relation (7) for ηK can also be obtained from the point
of view of the temporal evolution of the RT system. According
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FIG. 3. (Color online) Dissipation spectra 2νk2Eu(k), compen-
sated with ε

2/5
θ , measured at ReL = 370, 1100, 3200, and 6500,

respectively, corresponding to t/τ = 1.6, 2.26, 3.18, and 4.

to the phenomenological theory of 2D RT turbulence [36], the
growth of the mixing zone width h(t), a geometrical quantity,
is accompanied by the growth of the integral scale L(t), a
dynamical quantity representing the characteristic scale of the
production of turbulence, i.e.,

L(t) ∼ h(t) ∼ t2, (8)

which further implies

v′(t) ∼ L(t)

t
∼ t and ReL(t) = v′(t)L(t)

ν
∼ t3. (9)

Temporal scalings (8) and (9) have been numerically vali-
dated [40] and combining these and the scaling ηK ∼ t1/8

from Fig. 2(a) can recover the relation (7).
In Fig. 4(a), direct comparison is made between Q(ηx/η0)

(open circles) and Q(ηz/η0) (solid triangles) for three different
Reynolds numbers, ReL = 610, 3200, and 6500, which are
obtained within the self-similarity regime of the RT evolution.
It is seen that at each Reynolds number, distributions obtained
in horizontal and vertical directions are almost identical to
each other within nearly all the studied scales. To see this
more clearly, we plot in Fig. 4(b) the corresponding ratios
between Q(ηx) and Q(ηz). For clarity, the ReL = 3200 and
6500 data have been shifted upwards by the values of 1 and
2, respectively, with respect to the ReL = 610 data. Again one
can see the growth of the integral length scale which is similar
to that revealed by Fig. 3. One also sees that Q(ηx) agrees
excellently with Q(ηz) for small scales. This suggests that
the dynamics of turbulent dissipation at small scales is nearly
isotropic in RT turbulence. As the present flow is driven by
buoyancy in the vertical direction and previous studies have
shown that the forcing due to gravity induces anisotropy to
the flow at large scales [40], the results shown in Fig. 4 reveal
that at small scales distributions of ηx and ηz for velocity
components along different directions are insensitive to such
buoyancy-induced large-scale anisotropy. For large scales,
however, it is seen in Fig. 4(b) that Q(ηx) is a little larger
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FIG. 4. (Color online) (a) The measured PDFs of the local dis-
sipation scales for the horizontal and vertical velocity components,
Q(ηx/η0) (open circles) and Q(ηz/η0) (solid triangles), for ReL =
610, 3200, and 6500 (corresponding to t/τ = 1.88, 3.18, and 4,
respectively). For clarity, the ReL = 3200 and 6500 data have been
shifted upwards by one and two decades, respectively, with respect to
the ReL = 610 data. (b) The corresponding ratio between Q(ηz) and
Q(ηz). For clarity, the ReL = 3200 and 6500 data have been shifted
upwards by the values of 1 and 2, respectively, with respect to the
ReL = 610 data.

than Q(ηz), which may be a manifestation of the large-scale
anisotropy.

Some recent works have shown that in turbulent passive
and active scalar mixing fields, the flow structure across the
interface shows on one side to be highly influenced by the
outer environment of the evolution [49], and on the other side
to contain two layers of high intermittency aside the initial
interface [50]. To reveal the former effect requires performing
additional simulations while changing the outer environments
and this will be the objectives of our future studies. For the
latter effect, we examined the PDFs of the dissipation scales
in horizontal planes at different vertical positions z. Figure 5
shows Q(ηx) measured at different z for ReL = 3200 and 6500.
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FIG. 5. (Color online) PDFs of the local dissipation scales,
Q(ηx), for horizontal velocity components obtained at different
vertical positions z for ReL = 3200 and 6500 (corresponding to
t/τ = 3.18 and 4, respectively). To acquire accurate statistics, Q(ηx)
for each z was calculated within a horizontal layer of width 0.0025Lz

around z. For clarity, the ReL = 6500 data have been shifted upwards
by a value of 4 with respect to the ReL = 3200 data.

To acquire accurate statistics, Q(ηx) for each z was calculated
within a horizontal layer of width 0.0025Lz around z. [Note
that 0.0025Lz corresponds to 0.0049h(t) and 0.0033h(t) for
the ReL = 3200 and 6500 data, respectively.] For clarity, the
ReL = 6500 data have been shifted upwards by a value of 4
with respect to the ReL = 3200 data. One sees that for either
data set Q(ηx) obtained at different z collapse roughly on
top of each other, although the distributions seem to scatter a
little, which may be due to the limited statistics. This suggests
that the distribution of the local dissipation scales is position
independent.

Figure 6 shows Q(η/η0) obtained at eight different evo-
lution times in the self-similarity regime, corresponding to
ReL varying from 370 to 6500. Here, Q(η/η0) was computed
by averaging over both horizontal and vertical directions of
separations. Excellent collapse of Q(η/η0) can be seen for
all studied Reynolds numbers, suggesting that distributions
of η are independent of the mixing zone evolution. Note
that the numerical data from homogeneous isotropic box
turbulence [12] showed that the left tail of Q(η) exhibits a slight
Reynolds number dependence, which indicates an increasing
probability that very fine sub-Kolmogorov scales will appear.
However, in the present study we do not observe such a weak
Reynolds number dependence for small η.

For comparison, we also plot in Fig. 6 the numerical
results from homogeneous isotropic box turbulence at Taylor-
microscale Reynolds number Reλ = 151 [12] (solid line)
and the experimental results measured in the anisotropic log
layer of turbulent pipe flows at Reλ = 155 [11]. It is seen
that there is a very good agreement between the present
and previous results, at least for the smallest scales around
the classical Kolmogorov dissipation scale. This result is
somewhat unexpected and surprising, as the phenomenology
of 2D RT turbulence is completely different from that of
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FIG. 6. (Color online) The measured PDFs of the local dissipa-
tion scales Q(η/η0) for ReL = 370, 610, 1100, 2100, 3200, 4400,
5600, and 6500. Here, Q(η/η0) was computed by averaging over both
horizontal and vertical directions of separations. For comparison,
numerical results from homogeneous isotropic turbulence (HIT) at
Taylor-microscale Reynolds number Reλ = 151 [12] (solid line) and
experimental results measured in the anisotropic log layer of turbulent
pipe flows at Reλ = 155 [11] (dashed line) are also shown. (The two
data sets were both taken from Fig. 4 of Ref. [11] using data capturing
software.)

3D turbulence. While in 3D turbulence the fluctuations of
dissipation scale η are due to the intermittent nature of the
cascade process which transfers the energy from the large
injection scales toward the small dissipative scales, in 2D RT
turbulence the transfer of kinetic energy is reversed, i.e., it
proceeds from small scales toward the large-scale structures
of the flow. Therefore, the results shown in Fig. 6 suggest that
the dynamics of turbulent dissipation at the smallest scales is
insensitive to the details of the flows at large scales, as well as
to the cascade process of kinetic energy. We further notice that
the agreement between the present and previous results is not
so good for large scales η/η0 � 30, i.e., the RT case seems to
show a different trend from the other two cases. As the shape

of the right tail of Q(η) is dominated by the inertial-range
intermittency [13], the observed disagreement in the right tails
may be due to the lack of the inertial-range intermittency for
the velocity field in 2D RT turbulence [40].

IV. CONCLUSION

To conclude, we have performed a very careful investigation
of distributions of the local dissipation scale η, Q(η), in RT
turbulence in two dimensions, by means of direct numerical
simulations. We present results from an ensemble of 32
independent realizations carried out at small Atwood number
and unit Prandtl number with a spatial resolution of 4096 ×
8193 grid points that can resolve the sub-Kolmogorov-scale
statistics. Our results show that at small scales Q(η) is
insensitive to the large-scale anisotropy of the flow induced by
the forcing due to gravity. This result is not surprising, since the
system’s energy (information) is transferred from small scales
to large scales, the opposite direction for dissipation-related
scale η. The measured Q(η) is also found to be independent
of position and of the mixing zone evolution. Comparison
between the present results and those obtained previously
in homogeneous isotropic box turbulence [12] and turbulent
pipe flows [11] shows that the three data sets agree with each
other at the smallest scales around the classical Kolmogorov
dissipation scale. However, the RT case seems to show a
different trend from the other two cases for large scales,
which may be attributed to the absence of the inertial-range
intermittency for the velocity field in 2D RT turbulence.
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