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Class of periodic and quasiperiodic trajectories of particles settling under gravity in a viscous fluid
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We investigate regular configurations of a small number of non-Brownian particles settling under gravity in a
viscous fluid. The particles do not touch each other and can move relative to each other. The dynamics is analyzed
in the point-particle approximation. A family of regular configurations is found with periodic oscillations of all the
settling particles. The oscillations are shown to be robust under some out-of-phase rearrangements of the particles.
In the presence of an additional particle above such a regular configuration, the particle periodic trajectories are
horizontally repelled from the symmetry axis, and flattened vertically. The results are used to propose a mechanism
of how a spherical cloud, made of a large number of particles distributed at random, evolves and destabilizes.
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I. INTRODUCTION

Periodic motions of a small number of particles attract
a lot of interest because of their fundamental significance
and their importance to understand the Stokesian dynamics
of many-particle systems at random configurations [1–5]. For
non-Brownian particles settling gravitationally in a viscous
fluid under low-Reynolds number, several classes of regular
configurations oscillating periodically have been found and
analyzed [6–17].

It turns out that periodic trajectories can be essential for the
dynamics of particles at random configurations. In Ref. [2],
the dynamics of three point-particles, initially at a random
configuration, has been analyzed, and a chaotic scattering has
been found. It has been shown that three close particles (both
point-like [2] and spherical [16]) circulate together before
destabilizing into a faster pair and a slower singlet, and the
interaction time is very sensitive to the initial conditions. In
Ref. [2], the observed chaotic scattering of point-particles
has been associated (without a proof) with the existence of
an unknown unstable periodic relative trajectory. For three
spherical particles, such periodic trajectories indeed have
been found [17]. For random initial configurations of three
particles, the shape of the relative trajectories has been shown
to resemble the shape of the periodic ones [17]. A group of
three particles at a random configuration destabilizes when the
system is sufficiently separated from such a periodic orbit.

The question arises if a similar mechanism—the existence
of a certain periodic relative trajectory—can be applied to
progress in understanding the dynamics of suspension drops
sedimenting in a viscous fluid, i.e., swarms of particles ran-
domly distributed in a spherical volume of the same fluid. The
particles inside a sedimenting suspension drop circulate and
stay together for a long time, with the average particle and fluid
velocity fields the same as in case of a more dense fluid drop
[18–21]. An initially spherical suspension drop later on slowly
flattens and expands, forming a torus, and occasionally leaving
single particles behind (which, as slower, form a thin long “tail”
above the drop). Then, suddenly, the drop breaks into two (or
sometimes more) fragments which repeat the same evolution
pattern. The lifetime of a suspension drop is very sensitive to
the initial conditions; it can vary by orders of magnitude [22].
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Dynamics of sedimenting swarms of particles has been
extensively investigated experimentally and numerically, with
the use of different methods [20,22–30]. However, it is still
not clear what is the reason for the observed evolution pattern.
Are particles left behind the drop (as “a tail”) if sufficiently
separated from a periodic orbit? Can the escaping particles
cause the change of shape of the drop as the result of the hy-
drodynamic interaction? Does the wide range of the observed
suspension-drop lifetimes result from a similar mechanism
as the wide range of the three-particle cluster lifetimes? To
address these open questions, the first step is to find and analyze
families of periodic or quasiperiodic motions of such a number
of particles, which can vary from a small to a very large value.

Therefore, the goal of this work is to construct such regular
arrays of point-particles (in a geometry which resembles the
shape of a sedimenting suspension drop), which oscillate while
falling downward, and then destabilize, and to analyze basic
properties of their periodic and quasiperiodic trajectories. In
addition to the fundamental aspects of the results, such simple
models can help to understand basic features of the sediment-
ing suspension-drop dynamics, related to the above questions.

There are a lot of biological, medical, geological, and
industrial contexts where Stokesian dynamics of sedimenting
clouds of particles is relevant; for example, colonies of bacteria
or algae (including their periodic motions [31]), clusters of
particles in wastewater [32], powders or sprays in human lungs
[33]. For groups of small non-Brownian particles sedimenting
in water-based systems, the Reynolds number is typically
much smaller than unity. For example, for a group of 100
particles, with the relative particle-fluid density equal to 1.3,
and particle radii equal to 5 μm, the Reynolds number, based
on the cluster diameter and velocity, Re ≈ 10−2.

The outline of the paper is as follows. Section II contains
a presentation of the theoretical framework (the point-particle
model). In Sec. III, the dynamics of regular configurations
of particles is evaluated. A new family of periodic relative
trajectories of the particles is analyzed. In Sec. IV, these
oscillations are shown to be robust under some out-of-phase
rearrangements of the initial positions. Section V illustrates
how a periodic motion of the particles, which form a regular
configuration, is influenced by the presence of an additional
particle above. Conclusions are presented in Sec. VI. In Ap-
pendix A, approximate dynamics of flat regular configurations
of 2N particles is constructed and solved analytically. In
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Appendix B, the point-particle oscillations are shown to well
reproduce the periodic motion of spheres.

II. THEORETICAL FRAMEWORK

Assume that K point-particles, located at r i(t), with i =
1, . . . ,K , move in a fluid of viscosity η under identical
gravitational forces F. The fluid velocity v and pressure p

satisfy the Stokes equations

η∇2v(r) − ∇p(r) = −F
K∑

i=1

δ(r − r i), (1)

∇ · v(r) = 0. (2)

In the reference frame moving with a single particle, the
particle positions ri(t), i = 1, . . . ,K , satisfy the following
evolution equations:

ṙ i(t) =
⎡
⎣ K∑

k �=i

μik

⎤
⎦ · F, i = 1, . . . ,K, (3)

where the mobility μik is given by the Oseen tensor [34],

μik = 1

8πηrik

(I + r̂ ik r̂ ik) for i �= k, (4)

with r̂ ik = (r i − rk)/rik and rik = |r i − rk|. The frame of
reference is chosen in such a way that the z-axis is antiparallel
to gravity, i.e., F/|F| = (0,0,−1).

Equations (3) are solved numerically by the Adams-
Bashforth-Moulton integration method (the ODE113 solver in
MATLAB).

III. FAMILY OF PERIODIC SOLUTIONS

Hocking analyzed oscillations of four point-particles set-
tling under gravity in a vertical plane [6]. His initial config-
urations can be modified to start from point particles located
at vertices of a rectangle with vertical and horizontal sides, all
located in the same vertical plane.

In this work, a generalized initial configuration (shown in
Fig. 1) is considered: 2N point-particles located at vertices of a
regular right prism, which consists of “twin” horizontal regular
N -polygons, with each particle exactly above or below another
one, separated by a distance c. The frame of reference is chosen
in such a way that the xz-plane contains the initial positions
of two or four particles, for N odd or even, respectively, and
z is along the rotational symmetry axis. The particle positions
are

rk(0) =
{(

1
2 cos 2π(k−1)

N
, 1

2 sin 2π(k−1)
N

,0
)

for k = 1, . . . ,N,(
1
2 cos 2π(k−1)

N
, 1

2 sin 2π(k−1)
N

,c
)

for k = N + 1, . . . ,2N.
(5)

Here, the length unit D is twice the initial distance of a particle
from the symmetry axis, and the time unit is 8πηD2/F .

Owing to the symmetry with respect to rotations by 2π/N

of the initial configurations specified in Eq. (5), the periodic
relative motion of the particles takes place in vertical planes
which include the center-of-mass of the whole group (in
particular, in the xz plane), and the shape of all the relative
trajectories is identical.

In the reference frame of the center of mass, a particle and
its twin follow the same periodic trajectory.

As an example, we consider evolution of the initial
configuration of 2N = 16 particles, shown in Fig. 1, with
c = 0.8. All the particle trajectories, observed during t = 25
in the laboratory frame of reference (which moves with a
single-particle velocity), are plotted in Fig. 2.

There appear two characteristic stages of the evolution.
In the first one, for t � 3 (five periods), the particles perform
periodic oscillations while falling downward. Then, the cluster
destabilizes, and the motion is not regular any more. One by
one, the particles are lost behind the cluster. This process is
slow: at t = 25, still a half of the particles stay relatively close
to each other.

In the computations, the relative �r and absolute �a error
tolerances in the numerical integration routine were equal
to 10−12. It has been checked that the destabilization time,
period of the oscillations and particle periodic trajectories are
independent of error tolerances, providing that they are small
enough, i.e., �r � 10−3 and �a � 10−6. On the contrary, the
destabilization pattern is very sensitive to tiny perturbations,
even as small as a small change of the error tolerance in

the numerical solvers. The pattern shown in Fig. 2, with
the center of mass moving towards positive y values, is just
an example of many possible ways of the system break-up,
observed numerically for different parameters of the numerical
procedure, or small perturbations (including, e.g., the center
of mass moving towards positive or zero y values).

We now adopt the center-of-mass frame and a vertical
plane in which the motion of four particles takes place. The
characteristic parameters of the group trajectories are their
height c, and the group maximal and minimal width, dmax and
dmin, respectively (twice the maximal and minimal excursion
from the symmetry axis), as shown in Fig. 3. We also evaluate
the aspect-ratio of the group trajectories,

p = c/dmax. (6)

In Figs. 3, 4, and 5, we investigate how shapes of pe-
riodic trajectories depend on c � 3.5. In Figs. 4 and 6,
we illustrate that when c decreases down to c ≈ 0.2, the
width dmax and the aspect ratio p of group trajectories
get smaller. The total arc length L of a closed trajectory
decreases, and a successive trajectory is located inside the
previous one. When c still decreases, dmin, “the diame-
ter of the hole”, increases up to one (the upper limit
determined by the initial conditions) and the width dmax

of the group trajectories increases rapidly, see Figs. 5
and 6.

Different behavior for small and large values of c is also
seen in Fig. 7. In the whole range of c, the aspect ratio p of
the group trajectories decreases when c is decreased, but for
c � 0.3, the slope is less steep than for smaller values of c.
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FIG. 1. (Color online) Initial positions of 16 particles (dots) for
c = 0.8: side, top and 3D views. Solid lines at the middle panel:
trajectories.

The qualitative change of the dynamics takes place for
such initial configurations, for which the distance c between a
particle and its twin just above or below it (e.g., the particles
1 and 9), is of the same order as the distance sin(π/8) ≈ 0.38
between the closest particles from the same horizontal polygon
(e.g., the particles 1 and 2).
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FIG. 2. (Color online) Trajectories of 16 particles initially lo-
cated as shown in Fig. 1, with c = 0.8 (side view).
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FIG. 3. (Color online) Trajectories in the center-of-mass frame
for c = 0.1.
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FIG. 4. (Color online) Trajectories in the center-of-mass frame,
for c = 2.2,1.4,0.9,0.6,0.2. The smaller c, the shorter the trajectory
and the smaller its width, (dmax − dmin)/2.
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FIG. 5. (Color online) Trajectories in the center-of-mass frame, for small values of c = 0.1,0.05,0.047. The smaller c, the longer and wider
the trajectory. Note a different scale on each axis.
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FIG. 6. (Color online) The maximal and minimal width of the
group trajectories, dmax and dmin, versus c, for c � 0.044 81. Inset:
for c � 0.8, the ratio dmin/dmax (symbols) scales as 0.095/p + 0.22
(solid line).
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FIG. 7. (Color online) The aspect ratio p of the group trajectories
as a function of c (symbols). Straight lines: dashed red, p = 0.44c +
0.09, and solid blue, p = c − c0.

To explain the reason of the dynamics change, in Fig. 8
we compare the time-dependent interparticle distance r19

between the twin particles to the distance r12 between
the closest neighbors from the same polygon (with rij =
|r i − rj |), for a small and a large value of c. For larger
values of c, e.g., c = 0.9, at most of the times, r19 > r12,
but it also happens that r19 < r12. On the time-average,
the hydrodynamic interactions between the closest particles
from the same polygon are stronger than between the twin
particles.

For smaller values of c, e.g., c = 0.1, the twin parti-
cles are always much closer to each other than to any
other particle, and therefore, they interact with each other
much stronger; in a sense, they are hydrodynamically
“teamed-up”.

For so small values of c, we observe in Fig. 5 that the
arc length L and width dmax of a closed center-of-mass
trajectory, and also period T of the oscillations increase
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FIG. 8. (Color online) The time-dependent interparticle distance
between the twin particles, r19, and between the closest particles from
the polygon, r12. Top: c = 0.9. Bottom: c = 0.1.
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FIG. 9. (Color online) The period T and the cluster width dmax

versus c − c0 (symbols). Straight lines: T = 0.0013/(c − c0)1.5

(solid) and dmax = c0/(c − c0) (dashed).

significantly when c decreases even a little. The pairs of
“teamed-up” twin particles tend to escape, but eventually
are stopped by interactions with the other particles. Is there
a critical value c = c0 of the aspect ratio, where they
all become infinite? To check, we assume a power-law
divergence,

T ∼ A/(c − c0)α and dmax ∼ B/(c − c0)β, for c → c0,

(7)

and search for c0,α,β by plotting T and dmax versus (c − c0)
in the log-log scale, see Fig. 9.

In this way, we find the critical exponents,

α ≈ 1.50, β ≈ 1.00, (8)

and the critical value of the aspect ratio c,

c0 = 0.044 788 . . . . (9)

For all the investigated values of 2N (including the
benchmark solution for 2N = 4), the relations (7) are also
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FIG. 10. (Color online) Two types of the particle trajectories:
periodic oscillations (c = 0.05,0.049,0.045) and separation into pairs
without oscillations (c = 0.04,0.03,0.02).

valid, with the same α and β, but different values of c0. In
Appendix B, the power-law scalings (7)–(8) and values of the
critical aspect ratios c0 are derived from approximate dynamics
of the regular prisms with 2N particles.

For c < c0, there are no periodic motions; the group from
the beginning splits into N pairs of particles. The comparison
of the trajectories without and with periodic oscillations is
performed in Fig. 10. For c < c0, the slope of a trajectory
monotonically decreases to a constant value, which is smaller
than the minimal slope reached at periodic trajectories.

IV. PERTURBATIONS

In this section, we perturb the initial particle configura-
tions given by Eq. (5) and investigate what is the resulting
change of the dynamics. We analyze two examples of
perturbations.

First, we rotate the upper polygon by π/N , leaving it in its
original plane; the perturbed initial positions are

rk(0) =
{(

1
2 cos 2π(k−1)

N
, 1

2 sin 2π(k−1)
N

,0
)

for k = 1, . . . ,N,(
1
2 cos π(2k−1)

N
, 1

2 sin π(2k−1)
N

,c
)

for k = N + 1, . . . ,2N.
(10)

The number of trajectories and the number of vertical planes
of the motion increase by a factor of two in comparison to
the unperturbed case. In the reference frame moving with
the center of mass of the system, each particle moves along
its own trajectory, in contrast to the solutions presented in
Sec. III, for which a pair of particles moves along the same
trajectory.

The shape of the particle trajectory in the center-of-mass
frame is the practically same as for the unperturbed solution
if c is large, and significantly different when c is small,
as illustrated in Fig. 11 for 2N = 16. For small values of

c, the perturbed initial condition does not lead to such a
strong hydrodynamic coupling of the twin particles as for the
unperturbed solution, and as the result, the group trajectories
are less wide.

The second type of the perturbation is applied to the initial
configuration (5) with even N. We use values of dmax and
dmin evaluated in Sec. III to construct a new initial condition,
by shifting every second particle in the polygon to a position
where it would be expected after one fourth of the period of
the unperturbed solution. In this way, we want to test if there
exist “out-of-phase” periodic oscillations. Explicitly, the initial
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FIG. 11. (Color online) In the center-of-mass frame, the particle
trajectories with the perturbed initial positions, Eq. (10), (solid
lines), and with the unperturbed ones, Eq. (5), (dashed lines), are
superimposed for c = 0.9 and differ from each other significantly for
c = 0.1.
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FIG. 12. (Color online) The time-dependent distance between
the slower twin particles, r19, (solid line) and between the faster
twin particles, r2,10, (dashed line), for the initial positions given by
Eq. (11) with 2N = 16 and c = 0.1.

conditions are

rk(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1
2 cos 2π(k−1)

N
, 1

2 sin 2π(k−1)
N

,0
)

for k = 2,4, . . . ,N,(
1
2 cos 2π(k−1)

N
, 1

2 sin 2π(k−1)
N

,c
)

for k = N + 2,N + 4, . . . ,2N,(
dmax

2 cos 2π(k−1)
N

, dmax
2 sin 2π(k−1)

N
, c

2

)
for k = 1,3, . . . ,N − 1,(

dmin
2 cos 2π(k−1)

N
, dmin

2 sin 2π(k−1)
N

, c
2

)
for k = N + 1, . . . ,2N − 1,

(11)

with even N .
For example, we show the results for the initial positions of 2N = 16 particles, and in Eq. (11) we use dmax = 1.8468 and

dmin = 0.8028 for c = 0.9 and dmax = 1.9686 and dmin = 1.7720 for c = 0.1.

For smaller values of c, e.g., c = 0.1, the configura-
tion from the very beginning separates into two groups:
slower particles with odd indices (those which have been
shifted) and faster particles with even indices (unperturbed).
The reason is that the distance between those twin par-
ticles, which have been shifted, after a time becomes
larger than between the unperturbed ones, as illustrated in
Fig. 12.

For larger values of c, the particles interact hydrodynam-
ically with each other with a comparable strength, and form
a single group for a long time (e.g., for c = 0.9, almost 4
times longer than in the unperturbed case). The relative motion
is quasiperiodic. For c = 0.9, the particle trajectory in the
center-of-mass frame is shown in Fig. 13. Compare with the
unperturbed trajectory in Fig. 11 (the scale in both figures is
the same).

Concluding, it has been shown that there exist perturbations
of the regular configurations from Sec. III, which lead to
out-of-phase long-lasting quasiperiodic oscillations of all the
particles. Such solutions are good candidates as seeds for a
next, more complex and realistic generation of models of the
dynamics of a random suspension drop.
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FIG. 13. The quasiperiodic particle trajectory in the center-of-
mass frame, obtained for the initial positions given by Eq. (11) with
2N = 16 and c = 0.9, during time 0 � t � 10.
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V. A GROUP OF PARTICLES WITH “A TAIL” ABOVE

We will now illustrate how periodic motions of particles in a
regular configuration, investigated in Sec. III, are modified by
the presence of “a tail” made of an additional particle above.
Such a system is supposed to model a suspension drop and
a tail of particles gradually lost from it. It is known that the
particles, which will later separate out from a suspension drop,
circulate along the exterior trajectories up to the top of the drop,
become slower than the drop, and therefore are left behind the
drop as “a tail” along the symmetry axis above the drop [20].

In our model, the drop is represented by the regular
configuration, which consists of 16 particles, and the tail
from a singlet just above the center of mass of the group.
The initial positions of 16 particles are given by Eq. (5) with
c = 0.9, and shown in Fig. 1. At t = 0, the 17th particle is
placed at the symmetry axis of the regular group, at a small
distance z0 = 1.25 above its center of mass. The question
is how the trajectories of the 16 particles, evaluated in their
center-of-mass frame (and shown as the middle curves in
Fig. 4), are modified by the presence of the 17th particle.
Can a single particle significantly change periodic trajectories
of all 16 particles?

The trajectories in the center-of-mass frame of the regular
configuration (CM,1–16) are shown in Fig. 14. The trajectories
of five particles are shown—all those which move in the
yz-plane. In the description of the axes, we indicated that
the reference frame is moving with the center of mass of
the 16 particles. It is clear that with time, the shape of each
closed trajectory changes. It becomes less high, wider, and its
distance from the symmetry axis increases. The same features
are observed when the long-time part of the trajectory from
Fig. 14 is compared to the corresponding trajectory in the
absence of the 17th particle, see the curve with c = 0.9 in
Figs. 4 and 11.
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FIG. 14. (Color online) Evolution of 17 particles, initially at the
positions (indicated by dots) described by Eq. (5) with c = 0.9
plus r17 = (0,0,1.7), in the center-of-mass frame of the regular
configuration made of 16 particles. Trajectories of the other 12
particles look the same in their planes of the motion.

FIG. 15. (Color online) Schematic explanation of the horizontal
expansion and vertical flattening of the particle trajectories inside the
group. Arrows (sketch): this part of the group-particle velocity, which
comes from its interaction with the tail-particle.

The explanation is that the tail particle interacts hydrody-
namically with the particles in the group above. The additional
velocity of a particle from the group, gained owing to its
interaction with the tail (the Oseen velocity generated by the
single point-force), is schematically indicated by arrows in
Fig. 15. As the result, the particles inside the group are repelled
horizontally from the group center, and attracted vertically to
the central plane: the closer the tail, the larger the effect.

VI. CONCLUSIONS

A new class of unstable periodic relative motions has
been found: initially, 2N point-particles form a regular prism
(two mirror horizontal regular polygons) with a vertical-to-
horizontal aspect ratio c larger than a critical value c0. For
c < c0, the system from the beginning separates into pairs of
the twin mirror particles. Such periodic motions have been
observed for different values of N , with a smaller c0 for a
larger N .

For moderate value of c and larger N , each particle is
stronger coupled to the closest neighbors in the polygon
than to its twin particle. For smaller c and smaller N , the
inverse ordering of the coupling is observed, and in this case,
approximate analytic solutions have been found.

From the point of view of relevance to spherical systems
of randomly distributed particles, the most interesting is
the intermediate case, when all the particles interact with
each other with a comparable strength, and the interparticle
distances are of the same order of magnitude. Therefore,
we focused on computing evolution of systems made of
2N = 16,32,64 particles.

By perturbing the regular configurations described above
we obtained another family of periodic solutions, and a class
of quasiperiodic, long-lasting, out of phase oscillations of
particles. We demonstrated that a single particle above the
center of mass of the regular configuration repels particles
horizontally from the center and attracts them vertically to the
central horizontal plane of the configuration.

The results can be used as basic models to study a
mechanism of deformation and destabilization of initially
spherical suspension drops. The hypothesis to be checked
is the following. The particles inside the drop “stay close”
to a periodic or quasiperiodic trajectory. Owing to statistical
fluctuations, particles which are too far from such an orbit,
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stop circulating and are left behind the drop as a tail above the
center of mass of the drop. The tail interacts hydrodynamically
with the particles inside the drop and causes the drop to flatten
and expand horizontally, with a characteristic time scale τt

of the drop deformation. The larger time, the smaller value
of c for the corresponding model periodic or quasiperiodic
solution of a regular configuration. Destabilization time of
a suspension drop can be associated with the characteristic
growth time τd � τt of a certain periodic-orbit perturbation.
Such a mechanism is consistent with a wide range of the drop
destabilization times, observed in experiments and simulations
[22], just as it is in case of three particles only [2,16].
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APPENDIX A: POWER-LAW SCALING DERIVED
FROM APPROXIMATE DYNAMICS

To justify the power-law scalings (7)–(8), we will now
construct an approximate dynamics of the regular right prisms
with 2N particles, assuming for simplicity that N is even.
The basic observation is that for small aspect ratios c, the
distance between the twin particles (i.e., those which move
along the same relative trajectory) is practically constant
during the motion (see the plot of the distance r19 in the bottom
panel of Fig. 8 and both curves in Fig. 12). Therefore, the key
point of the approximation is to recover the constant distance
between each pair of the twin particles.

Consider first a simpler example of 2N = 4 particles only.
It will later become clear that the solution for this special case
is generic for an arbitrary number of particles 2N . In analogy
to Ref. [6], we denote relative coordinates of the twin particles
1 and 3 as follows:

x = x1 + x3, y = x1 − x3, z = z3 − z1, (A1)

with the particle positions ri = (xi,0,zi).
Starting from flat initial configurations given by Eq. (5)

with a small aspect ratio,

c � 1, (A2)

and assuming that the twin particles stay closer to each other
than to other particles,

y,z � x, (A3)

we approximate Eqs. (3) as

dx

dt
= 2

yz

c3
, (A4)

dy

dt
= 2

z

x2
, (A5)

dz

dt
= −2

y

x2
. (A6)

Equations (A5) and (A6) result in

y2 + z2 = c2. (A7)

Combining Eqs. (A4) and (A5) to a single ODE, and solving
it, we obtain the relation

x =
(

1 − y2

2c3

)−1

. (A8)

The time-dependence can be found by solving, e.g., the
ODE for λ = y/z, with λ = 0 at t = 0,

dλ

dt
= 2

(
c − c0

c

)2(
λ2 + c

c − c0

)2 1

1 + λ2
, (A9)

where

c0 = 0.5. (A10)

The solutions are

t = (1 − a2)a2λ

4(λ2 + a2)
+ a(1 + a2)

4
arctan

λ

a
, for c > c0,

(A11)

t = λ

2

(
1 + λ2

3

)
, for c = c0,

(A12)

t = (1 + a2)a2λ

4(−λ2 + a2)
+ a(1 − a2)

4
arctanh

λ

a
, for c < c0,

(A13)

where |λ/a| < 1 and

a =
√∣∣∣∣ c

c − c0

∣∣∣∣. (A14)

Periodic solutions exist only for c > c0. Otherwise, the
horizontal positions (i.e., λ → ∞), are not reached. For
c = c0, they would correspond to t → ∞, and for c < c0,
the limit of t → ∞ results in a finite positive value λ = a.
For c < c0, the system separates into two groups, in which the
particle line-of-center with time approaches the inclination
determined by λ

√
(c0 − c)/c.

Therefore, two different types of the dynamics exist, and
they are separated from each other by a critical initial aspect
ratio c0 = 0.5.

For c > c0, the limit λ → ∞ takes place when t → T/4,
with the period of the oscillations,

T = π

2

√
c

c − c0

(
c

c − c0
+ 1

)
. (A15)

The maximal width of the trajectory, x = dmax is observed at
T/4 when y = c. Therefore, from Eq. (A8) we obtain

dmax = c

c − c0
+ c. (A16)

The power-law divergence of the approximate dynamics
in the limit of c → c0, seen in Eqs. (A15) and (A16), is in
agreement with the analogical scalings (7)–(8), observed for
the original equations of motion (3).
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For 2N = 4, the approximate value of c0, given by
Eq. (A10), is underestimated by around 10%. This is reason-
able taking into account that the exact value is only slightly
smaller than unity, and therefore one cannot expect the adopted
approximation to be very precise. We are now going to
demonstrate that the higher N , the better the accuracy.

Generalization of the approximate dynamics for a larger
number of particles 2N is straightforward (for simplicity, we
assume that N is even). For the positions of the twin particles
1 and N + 1 we now keep the same symbols as in Eq. (A1)
for the particles 1 and 3 (in the case of 2N = 4), but with the
primes added,

x ′ = x ′
1 + x ′

N+1, y ′ = x ′
1 − x ′

N+1, z′ = z′
N+1 − z′

1, (A17)

and the particle positions are denoted as r′
i = (x ′

i ,0,z′
i).

The initial conditions are given by Eq. (5) in the adjusted
notion, i.e., r′

i rather than ri and c′ rather than c. We start from
flat configurations with the aspect ratio much smaller than the
size of the polygon side,

c′ � sin
π

N
, (A18)

and assume that the twin particles team up and all time stay
separated from the other neighbors,

y ′, z′ � x ′ sin
π

N
, (A19)

The resulting approximate dynamics of the relative coordinates
has the form

dx ′

dt ′
= 2

y ′z′

c′3 , (A20)

dy ′

dt ′
= 2

z′

x ′2 (1 + α), (A21)

dz′

dt ′
= −2

y ′

x ′2 (1 + α), (A22)

where

α = 2
√

2
N/2∑
k=2

1√
1 − 2x ′

k(0)
, (A23)

and

x ′
k(0) = 1

2
cos

2π (k − 1)

N
. (A24)

From Eqs. (A21) and (A22) it follows that the distance between
the twin particles is constant,

y ′2 + z′2 = c′2. (A25)

We now substitute

x ′ = x, y ′ = y

1 + α
, z′ = z

1 + α
, t ′ = t

1 + α
, (A26)

and recover for x,y,z,t the same dynamics as in Eqs. (A4)–
(A6), but with the parameter c rescaled as

c′ = c

1 + α
. (A27)

The solution immediately follows from the benchmark
Eqs. (A8), (A10)–(A14), and the scalings (A26)–(A27). In
particular, it is easy to find the general expression for the

critical aspect ratio, which separates two different types of the
dynamics: with and without periodic oscillations,

c′
0 = 1

2(1 + α)
. (A28)

For example, we consider 2N=16. In this case,

α = 2
√

2[1 + 21/4(

√√
2 + 1 +

√√
2 − 1)], (A29)

and

c′
0 ≈ 0.0446, (A30)

in a very good agreement with the numerical value given in
Eq. (9).

APPENDIX B: SPHERICAL PARTICLES

The results presented in the previous sections have been
obtained within the point-particle model. In this Appendix,
we will show that this approximation well reproduces generic
features of the dynamics of spherical particles, even in case
when d is only slightly smaller than c.

Consider now K identical spheres moving in a viscous
fluid under gravitational forces F. The fluid velocity v and
pressure p satisfy the Stokes equations with the stick boundary
conditions at the sphere surfaces. Dynamics of the translational
motion of the spheres reads

ṙ i(t) =
[

K∑
k=1

μik

]
· F, i = 1, . . . ,N, (B1)

where r i(t) are time-dependent positions of the sphere centers
and the mobility matrices μik (which depend on relative
positions of all the particles) are evaluated numerically by
the multipole expansion [35,36] with the use of the HYDRO-
MULTIPOLE numerical code [37].

0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

xi,CM,1−16

z i
,C

M
,1
−

1
6

FIG. 16. (Color online) Trajectories of centers of two twin
spheres from the regular group. Dashed line: without a tail. Solid
line: in the presence of a tail-sphere, initially centered at the distance
1.25 above the group center of mass. The sphere diameter d = 0.19.
The group center-of-mass frame is taken.
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To illustrate periodic gravitational settling of 2N identical
spheres, we consider the initial configuration of their centers
given by Eq. (5) with 2N = 16 and c = 0.9. A rather small
diameter d = 0.19 is chosen to keep in balance hydrodynamic
interactions between the twin particles and between the closest
neighbors from the polygon.

In the center-of-mass frame, the trajectory of the spheres
(dashed line in Fig. 16) is very close to the point-particle
trajectory (solid line in Fig. 11). Similarly as in Sec. V,
we now investigate how the shape of the relative trajectory
changes in time in the presence of an additional identi-

cal sphere (“tail”), initially located above the group at its
symmetry axis at (0,0,1.25), see the solid lines in Fig. 16.
The initial positions of the sphere centers are indicated
by dots.

Time evolution of the solid lines in Fig. 16 shows that,
owing to the hydrodynamic interaction with the tail, the
width of the configuration becomes larger, the height smaller,
and the hole radius increases, both in comparison to the
initial condition and to the periodic trajectory without the tail
(dashed line), in agreement with our findings in Sec. V for the
analogical point-particle system.
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and T. A. Kowalewski, Phys. Fluids 21, 073302 (2009).
[30] A. Myłyk and M. L. Ekiel-Jeżewska, Colloids Surf. A 365, 109
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