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Rotating stratified flows in thermal wind balance are at the center of geophysical fluid dynamics. Recently,
endeavors were put on studying the linear response of such flows to potential vorticity perturbations. It has
been shown that the initial potential vorticity (PV) distribution is fundamental and is responsible for important
transient growth of the perturbation and gravity-wave generation. Using Pfeiffer’s theorem [J. Differ. Equat.
11, 145 (1972)], we give the mathematical demonstration of the stability of asymmetric perturbations k1 �= 0
of a uniform, unbounded flow in thermal wind balance. Incidentally, we prove that both the wave mode (that
corresponds to a vanishing PV) and the vortex mode (corresponding to a nonzero PV) are stable. The emphasis
is put on the nontrivial behavior of inertia-gravity waves (IGWs) when deformed by a background shear.
In particular, we show that in the linear limit, sheared inertia-gravity waves asymptotically oscillate at the
inertial waves frequency, but their amplitude is sensitive to shear, stratification, and rotation. Last, we study
the development of the IGWs dynamics considering isotropic initial conditions. Computations indicate that both
the vortex mode and the wave mode generate IGWs, but the energy of the IGWs generated by the vortex mode
is more important than the energy of the IGWs generated by the wave mode. It is also found that, at large times,
the energy of the IGWs generated by the vortex mode increases as the ratio kv/kh (initial vertical wavenumber
over horizontal wavenumber) increases (like k2

v/k2
h), while the energy of the IGWs generated by the wave mode

oscillates in function of kv/kh.
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I. INTRODUCTION

Stability analysis of vertically sheared flows in rotating
stratified fluids has provided understanding of the large-scale
instabilities of the westerly winds in midlatitudes of the
atmosphere (e.g., see Refs. [1–3]). Because of its simplicity,
the Eady flow [4] has been used in several studies on baroclinic
instability. It consists of a parallel flow with uniform vertical
shear (with rate �) in the presence of a uniform vertical
buoyancy gradient (with strength N2

v ) and constant Coriolis
frequency f. Under the Boussinesq approximation, thermal
wind adjustment [5] imposes a uniform meridional buoyancy
gradient N2

h = −�f , and

∇ × U + 2� = (0,�,f ), � = −f �x2 + N2
v x3, (1)

where U = (�x3,0,0) and � are the basic velocity and
buoyancy scalar, respectively.

For a fluid confined between horizontal plates (at x3 = 0
and x3 = H ) there are unstable quasigeostrophic (QG) wave
solutions [4]. The unstable modes draw their energy from
the potential energy of the basic state. The mechanism of
energy transfer from the basic shear flow to perturbation
mediated by Reynolds stress is not captured by the QG theory
that is strictly valid in the limit of a small Rossby number,
Ro = �/f, and a large Richardson number, Ri = N2

v /�2 [6].
The nongeostrophic generalization of the Eady model by Stone
[7,8] shows the appearance of linear symmetric instability
(independent of the zonal coordinate, x1) for Ri < 1 (also
see Ref. [9]). Symmetric instability causes some physical
phenomena in the oceans and the atmosphere (for example,
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the generation of roll vortices, the origin of rainbands, and
squall lines [10,11]). It has also been suggested that this
instability is important in the atmospheres of Jupiter, Saturn,
and Venus [12,13]. In addition to symmetric instability, another
characteristic of the nongeostrophic baroclinic instability
problem is the existence of unstable modes beyond the
quasigeostrophic Eady cutoff [7]. We recall that in the Eady
model, the extent of the horizontal motion must be higher than
the Rossby-deformation radius LD = NvD/f for baroclinic
instability to occur, where D is a vertical length scale. This
constraint implies the existence cutoff wavenumber in spectral
space, filtering out the smallest scales. This ageostrophic
instability can be interpreted as a resonance between boundary
mode and inertiagravity mode (e.g., see Refs. [9,14,15]).

The flow Eq. (1) is a linear shear flow (i.e., it presents
no inflection point). According to theoretical analysis, linear
shear flows are linearly stable for all Reynolds numbers up to
infinity (see, e.g., Ref. [16]).

Nonetheless, these flows can exhibit significant transient
growth for suitable initial perturbations (see, e.g., Ref. [17]).

The transient growth results from the nonnormal char-
acter of the operators describing the linear dynamics in
linear sheared flows. The corresponding eigenfunctions are
nonorthogonal. Hence, when nonlinearities are taken into
account modes can strongly interfere for a finite time, limited
by phase detuning (see, e.g., Refs. [18–20]). This last mech-
anism is called bypass transition to turbulence and provides a
possible solution to the problem of explaining the occurrence
of turbulence in otherwise spectrally stable shear flows.

Heifetz and Farrell [6,21] used a generalized stability theory
(GST; for details on this energetic method, see Ref. [22])
to analyze the growth of the primitive equations (PE) in
response to disturbances of the base flow Eq. (1) in a
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domain that is unbounded horizontally and has planar vertical
boundaries. For large Richardson number regime, it is found
that the initial PE growth is due to both direct kinetic energy
growth mechanism (which is not captured by QG as indicated
previously) and interaction between QG modes and gravity
waves. For intermediate Richardson number regime, growth
rates in the PE greatly exceed those found in the QG analysis
only for eddies substantially smaller than the Rossby radius.

Stability analysis of the base flow Eq. (1) under plane
wave disturbances with time-dependent wave vector k in
an unbounded domain has been addressed by Salhi and
Cambon [23]. These advected plane wave disturbances (e.g.,
see Refs. [24,25]) are often called spatial Fourier harmonics
(SFH) [26] and sometimes Kelvin modes (e.g., from Ref. [27]).
The stability analysis by Ref. [23] proved that the pertur-
bations with an infinite streamwise wavelength (for which
the wavevector becomes time-independent) can exhibit an
exponential growth provided that Ri < 1, corresponding to
symmetric and baroclinic instability. The effect of the non-
linear interactions on symmetric instability has been recently
addressed by Pieri et al. [28], who performed direct numerical
simulations (DNS) for three-dimensional disturbances of the
base flow Eq. (1) considering isotropic initial conditions. In
the limit of low Ro, the linear bound for symmetric instability
Ri = 1 is recovered.

Time evolution of the linear dynamics of nonsymmet-
ric SFH perturbations that are governed by the following
nonhomogeneous second-order differential equations (see
Sec. IV C),

ψ̈ + ω2(t,k)ψ = s(t,k), (2)

has been recently addressed by Mamatsashvili et al. [29]
for Ri � 1. Here, ψ(t) is the amplitude of the SFH mode,
and both ω(t,k) and s(t,k) are time-dependent functions. For
nonsheared rotating gravity waves, the functions s(t,k) and
ω(t,k) become time-independent. In this case, ω represents
the frequency of these dispersive waves. Otherwise, the general
solution of the homogeneous equation associated to Eq. (2),
i.e., the solution corresponding to a zero value for PV,
represents the nongeostrophic IGW mode, while a particular
solution of Eq. (2) represents a vortex mode. Mamatsashvili
et al. [29] have considered an initial state corresponding to a
pure vortex mode (wave component set to zero) and observed
the generation of IGWs by the vortex mode. Their analysis
suggests that the dynamical activity of fronts and jet streaks at
Ri � 1 and Ro � 1 should be determined by the asymmetric
perturbations rather than by the symmetric ones, in agreement
with the analysis by Pieri et al. [30].

On the other hand, Lott et al. [31] investigated the genera-
tion of IGWs by three-dimensional PV anomalies considering
asymmetric perturbations of the base flow Eq. (1) at hydro-
static equilibrium via a Wentzel-Kramers-Brillouin (WKB)
approach. Note that close to PV anomalies, perturbations are
in nearly geostrophic balance, whereas beyond the inertia
critical levels they have the form of vertically propagating
IGWs with amplitudes rapidly decreasing as the Richardson
number increases [31]. In the model of Lott et al. [31],
the wavevector is not time-dependent anymore, and mean
shear advection in spectral space is treated as an additional
phase. Asymptotic results in terms of the Rossby number Ro

are obtained considering a localized quasihorizontal potential
vorticity distribution. It is stated that the amplitude of the
emitted gravity wave is strongly sensitive to the parameter
Ri(1 + ν2), where ν = k2/k1 is the ratio of the meridional
wavenumber to the zonal one. In the present study, we show
that this parameter also plays an important role in the dynamics
of the nonrotating sheared gravity waves.

The main purpose of the present study is to demonstrate,
using Pfeiffer’s [32] theorem, that the flow Eq. (1) is neutrally
stable under asymmetric disturbances for vertically stable
stratification (Ri > 0).

We do not operate on Eq. (2) because the function ω2(t) is
not impulsively small, meaning that the integral

∫ ∞
t0

ω2(t)dt

does not converge except for k2 = 0, i.e., an infinite transverse
or meridional wavelength. We rather consider the third-order
differential equation

...
ψ + q(t)ψ̇ + r(t)ψ = 0, and we apply

Pfeiffer’s theorem [32] to demonstrate the stability of the
solution.

In addition, we analyze the transient growth of energy
for sheared baroclinic flows. We show that after the initial
phase, for which there is a transient growth of energy for
some orientations of the initial wavevector, the total energy
(kinetic + potential) of IGWs behaves like the square of the
ratio of the vertical wavenumber to the horizontal one, k2

v/k2
h,

as in the pure shear flow case. This transient growth is mainly
due to the vortex mode.

The paper is organized as follows. First, the mathematical
formulation of the problem is given in Sec. II. Second, a brief
review on nonrotating sheared gravity waves is presented in
Sec. III A. Symmetric instability of sheared rotating stratified
flows is then discussed in Sec. III B. The application of
Pfeiffer’s theorem is presented in Sec. III C to show that
the flow Eq. (1) is neutrally stable (intermediate results to
check that Pfeiffer’s theorem hypothesis are fulfilled are
gathered in the Appendix). Wave-vortex mode coupling and
its implication on the analysis of the transient growth of
energy are then addressed in Sec. IV. Last, Sec. V deals with
our concluding remarks.

II. MATHEMATICAL FORMULATION

A. Base flow

We consider a stratified linear shear flow in an unbounded
domain rotating uniformly (with rate � = f/2) about the
vertical axis in the inviscid limit. As in most previous studies on
baroclinic instability, we use the Boussinesq approximation,
which filters out the higher-frequency acoustic waves. In
the Boussinesq approximation, density (or temperature) can
fluctuate but the velocity field is assumed to be strictly
solenoidal (divergence free). Accordingly, in the inviscid limit,
the Euler-Boussinesq equations can be written as follows:

∇ · U = 0,

∂t U + U·∇U = −∇P ∗ − f e3 × U + �e3, (3)

∂t� + U·∇� = 0,

where

P ∗ = P

	0
− 1

2
�2

(
x2

1 + x2
2

)
,
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in which P is the pressure, 	0 is a reference density,
and (x1, x2, x3) denote the zonal, meridional, and vertical
directions, respectively, and where (e1, e2, e3) is the associated
canonical orthonormal basis.

The basic velocity field U and buoyancy field � under
consideration are of the form

U = S·x, Sij = �δi1δj3, � = N2
hx2 + N2

v x3, (4)

where �, Nh, and Nv are constants that represent, respectively,
the shear rate and the vertical and horizontal buoyancy
frequencies, and δij (i, j = 1, 2, 3) is the Kronecker δ. Due
to the misalignment of the spanwise basic vorticity vector
∇ × U = �e2 with the vertical system rotation � = (f/2)e3,
thermal wind adjustment (see, e.g, Ref. [1]) produces a span-
wise buoyancy gradient with N2

h = −f � (see Refs. [23,30]).
The potential vorticity (see, e.g., Ref. [2]),

� = (∇�)·(∇ × U + 2�) = (
N2

v − �2
)
f,

constitutes a Lagrangian invariant for the inviscid Boussinesq
equations, and its distribution is often relevant to characterize
possible flow instabilities (see Refs. [9,33,34]). Conservation
of potential vorticity is a direct consequence of Ertel’s theorem
and can be seen as a generalization of Kelvin’s circulation
theorem, which applies to barotropic flows (see, e.g., Ref. [2]).

B. The perturbed system

Let U, P ∗, � be replaced by U + u, P ∗ + p, � + b

in Eqs. (3) above and linearize. The resulting perturbation
equations are

∂t u + �x3∂x1 u = −∇p − S · u − 2� × u + be3,

(5)
∂tb + �x3∂x1b = f �u2 − N2

v u3,

with ∇ · u = 0. The linearized part of the potential vorticity
writes

� (x,t) = �∂x2b + f ∂x3b − f �ω2 + N2
v ω3, (6)

where ω = ∇ × u is the vorticity vector. At any time t,� (x,t)
is given explicitly in terms of the initial condition �0(x) =
� (x,t = 0) by (see Ref. [31])

� (x1,x2,x3,t) = �0(x1 − �x3t,x2,x3). (7)

Here we search for plane-wave solutions of the form

[u,p,b,� ] = [û,p̂,b̂,�̂ ] exp[ik(τ ) · x], (8)

where k is the wavevector and i2 = −1. For a given orientation
of the wavevector, the unknowns [û,p̂,b̂,�̂ ] are functions of
τ only. The substitution of Eq. (8) into Eq. (5) yields

˙̂u + i[(k̇ + �−1ST ·k)·x]û

= �−1(−ip̂k − S·û − f e3 × û + b̂e3),
(9)

˙̂b + i[(k̇ + �−1ST ·k)·x]b̂

= f û2 − �−1N2
v û3,

where ˙̂u = d û/dτ is the derivative with respect to the
dimensionless time τ = �t and the exponent T denotes
the transpose. The term proportional to x must vanish since
the above equations must be valid for any ‖x‖ due to the fact

that the fluid domain is assumed to be unbounded. This is
ensuredwhen (see, e.g., Ref. [25])

k̇i = −�−1Sjikj . (10)

Using the form of Sij given by Eq. (4) and integrating Eq. (10),
we obtain

k1 = k0
1, k2 = k0

2, k3 = k0
3 − k1τ, (11)

where k0 = (k0
1,k

0
2,k

0
3) is the wavevector at time τ = 0.

Therefore, only the vertical component of the wavevector
is time-dependent, while the horizontal component remains
unaffected by shear. Hereinafter, we denote by kh =

√
k2

1 + k2
2

the horizontal wavenumber, which is time-independent and by
kv = k0

3 the vertical wavenumber at τ = 0. Time dependency
of the vertical component k3(τ ) is induced by the presence
of the background shear, but when k1 = 0 (or equivalently,
at an infinite streamwise wavelength), k3 becomes time-
independent. Perturbations with k1 = 0 are often called sym-
metric perturbations in literature (see, e.g., Ref. [35]). Accord-
ingly, the linear differential system, Eq. (9), is rewritten as

˙̂u = �−1(−ip̂k − S·û − f e3 × û + b̂e3),
(12)

˙̂b = f û2 − �−1N2
v û3.

Due to the incompressibility condition, kiûi = 0, we rather
consider the following two modes:

u(1) = k2

kh

û1 − k1

kh

û2 = i
ω̂3

kh

, u(2) = − k

kh

û3, (13)

instead of (û1,û2,û3). Mode u(1), which is proportional to
the vertical vorticity mode ω̂3, is called toroidal mode, while
mode u(2), which is proportional to vertical velocity û3, is
called poloidal mode. As shown in the Appendix, we deduce
from Eq. (12) the following differential system for the toroidal
and poloidal modes and the normalized buoyancy mode
u(3) = −(�/N2

v )b̂,

u̇(1) = Ro−1

(
Ro

k2

k
+ k3

k

)
u(2),

u̇(2) = −Ro−1 k3

k
u(1) + k1k3

k2
u(2) + Ri

kh

k
u(3), (14)

u̇(3) = Ro−1Ri−1 k1

kh

u(1) −
(

kh

k
+ Ro−1Ri−1 k2k3

khk

)
u(2),

where

Ri = N2
v

�2
, Ro = �

f
(15)

are the Richardson number and the Rossby number,
respectively. The linearized part of PV, which is a Lagrangian
invariant for an inviscid and nondiffusive fluid as indicated
previously, can be expressed in terms of the modes
(u(1), u(2), u(3)), as follows

u�
0 ≡ i�̂

�f k0
= RiRo

k

k0
c12u

(3) + k

k0
c32u

(1) + k1k

khk0
u(2),

c12(τ ) = Ro−1

(
Ro

k2

k
+ k3

k

)
, (16)

c32(τ ) = k2k3

khk
+ RiRo

kh

k
.
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System Eq. (16) will be used in Sec. IV C to study vortex-wave
coupling.

III. STABILITY ANALYSIS

In relation with recent studies on baroclinic sheared
flows [29,31] we revisit both the case of nonrotating
sheared gravity waves and the symmetric instability be-
fore demonstrating that the system Eq. (14) is neutrally
stable.

A. Nonrotating sheared gravity waves

We briefly review the case of nonrotating sheared gravity
waves in an unbounded domain and we attempt to show the
role of the parameter Ri(1 + k2

2/k2
1) in characterizing the linear

dynamics of the gravity waves with or without background
rotation. By setting Ro−1 = 0 and ξ = i(kv − k1τ )/kh, we
deduce from system Eq. (14) the following differential
equations for the buoyancy mode u(3) and the vertical velocity
mode û3 = −(kh/k)u(2),

d

dξ

[
(1 − ξ 2)

du(3)

dξ

]
− Ri

k2
h

k2
1

u(3) = 0,

(17)
du(3)

dξ
− i

kh

k1
û3 = 0,

with solution (see Refs. [36–38])

u(3)(ξ ) = A0Pμ(ξ ) + A1Qμ(ξ ),
(18)

û3(ξ ) = −kh

k
u(2)(ξ ) = i

k1

kh

[A0P
′
μ(ξ ) + A1Q

′
μ(ξ )],

where the functions Pμ(ξ ) and Qμ(ξ ) are Legendre functions
of the first and second kind, respectively, and the order μ

μ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μr = 1
2

( − 1 +
√

1 − 4Ri k2
h

k2
1

)
if Ri < 1

4
k2

1

k2
h

,

μ� = − 1
2 if Ri = 1

4
k2

1

k2
h

,

μc = 1
2

(−1 + i

√
4Ri k2

h

k2
1

− 1
)

if Ri > 1
4

k2
1

k2
h

,

(19)

is the one of the two roots (μ = μ+ or μ = μ−) of the algebraic
equation μ(1 + μ) = −Rik2

h/k2
1, since μ− + μ+ = −1 and

Qμ− = P−1−μ− = Pμ+ , Qμ+ = P−1−μ+ = Pμ− . Due to the
relation

Pμ(ξ )Q′
μ(ξ ) − Qμ(ξ )P ′

μ(ξ ) = (1 − ξ 2)−1,

we can express the constants A0 and A1 in function of the
initial values u

(3)
0 = u(3)(0) and û30 = û3(0),

A0 = k2
h

k2
0

[
− i

kh

k1
Qμ(ξ0)û30 + Q′

μ(ξ0)u(3)
0

]
,

A1 = k2
h

k2
0

[
i
kh

k1
Pμ(ξ0)û30 − P ′

μ(ξ0)u(3)
0

]
, (20)

ξ0 = i
kv

kh

,

where the prime denotes differentiation with respect to ξ.

For |ξ | 	 1, the functions Pμ(ξ ) and Qμ(ξ ) behave as (see

Ref. [39])

Pμ(ξ ) = 2μ�
(
μ + 1

2

)
√

π�(μ + 1)
ξμ + �

(−μ − 1
2

)
2μ+1

√
π�(−μ)

ξ−μ−1,

(21)

Qμ(ξ ) =
√

π�(μ + 1)

2μ+1�
(
μ + 3

2

)ξ−μ−1,

where �(ξ ) is the γ function, |arg(ξ )| < π , and 2μ �=
±1,±3,±5,... Therefore, at large times the modes for which

0 < Ri <
1

4

k2
1

k2
h

, −1

2
< μ = μr < 0

undergo a power law decay, while the modes for which

Ri >
1

4

k2
1

k2
h

, μ = μc = 1

2

[
−1 + i

√
4Ri

k2
h

k2
1

− 1

]

exhibit a damped oscillatory behavior (see Refs. [36,38]). It
appears that the parameter [Ri(k2

h/k2
1)] plays an important

role in characterizing at least the linear dynamics of the
sheared gravity waves even with background rotation (see also
Sec. IV A). In fact, as mentioned in the Introduction, Lott
et al. [31] studied the stability of a homogeneous baroclinic
flow submitted to nonsymmetric perturbations at hydrostatic
equilibrium. In that study, the perturbed field is expanded in
(singular) normal modes parameterized by the phase speed
�x3,

u3(x,t) = k1�

f

∫∫∫ +∞

−∞
û30(k1,k2,x

′
3) exp

× i(k1x1 + k2x2 − k1�x ′
3t)W (ξc)dz′dk1dk2, (22)

where W (ξc) is the structure function of the variable ξc =
(k1�/f )(x3 − x ′

3) associated to the mode û3. It is found that

W (ξ ) ∼ Eξ 1+μc

c as ξc → ∞.

At large Ri, we have

|μc| ≈
√

Ri(1 + ν2), ν = k2/k1,

and according to the WKB approximation, the amplitude E

takes the form

|E| ∼ exp (−νπ/2)

2|μc|2 exp (−|μc|π/2) ,

signifying that the amplitude of the emitted IGWs is higher
for negative values of ν = k2/k1. The link between the
analysis by Lott et al. [31] and the present one, which uses
a decomposition of the perturbed field in terms of Fourier
modes with time-dependent wavevector, is outside the scope
of the present study, which rather focuses on demonstrating the
stability of a baroclinic flow under asymmetric disturbances
and in analyzing the transient growth of total energy. This topic
is addressed in Secs. III C and IV.

B. Case of an infinite streamwise—zonal—wavelength

As indicated in the introduction, Mamatsashvili et al. [29]
have shown that the transient amplification of nonsymmetric
perturbations prevails over symmetric instability (see also
Pieri et al. [30]). We briefly analyze the evolution of the
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dynamics of system Eq. (14) at an infinite streamwise (or
zonal) wavelength for which symmetric instability can occur.
At k1 = 0, the wavevector becomes time-independent and one
easily derives from system Eq. (14) the following dispersion
relation:

ω2
0�

2 = (
f 2 sin2 α + N2

v cos2 α
)︸ ︷︷ ︸

(I )

+ (2�f sin α cos α)︸ ︷︷ ︸
(II )

, (23)

where α = arctan(kv/k2). When Ri > 1, there are sheared
inertia-gravity waves,

u(2) = u
(2)
0 cos(ω0τ ) + (

u
(3)
0 Ri cos α − u

(1)
0 Ro−1 sin α

)
× sin(ω0τ )

ω0
, (24)

with frequency ω0�, propagating in the (x2, x3) plane. The
term (I ) in the latter relation represents the square of the
frequency of inertia-gravity waves in the absence of back-
ground shear, while the term (II ) characterizes the effect of
the simultaneous presence of rotation and shear. Therefore,
with respect to inertia-gravity waves, sheared inertia-gravity
waves propagate faster if 0 < α < π/2 or propagate slower if
π/2 < α < π.

When 0 < Ri < 1 and the sign of the term (II ) in Eq. (23)
is negative and its magnitude exceeds that of the term (II), then
the sign of ω2

0 becomes negative, so that(
f 2 + N2

v

) + (
f 2 − N2

v

)
cos 2α < −2�f sin 2α,

signifying the triggering of a linear instability. This instability
is called symmetric instability (e.g., see Ref. [35]). Moreover,
from relation Eq. (23) one easily verifies that the maximal
growth rate, σmax, takes the following form (in f t units, see
Refs. [29,35,40,41]),

σ 2
max = 1

2

[
−(Br + 1) +

√
(Br + 1)2 + 4Br

(1 − Ri)

Ri

]
, (25)

where Br = RiRo2 is the Burger number [1]. It should be
remarked that one can recover relation Eq. (25) by using
the pressureless analysis; i.e., one assumes that the velocity,
pressure, and density disturbances are time-dependent, but
they do not depend on spatial coordinates; see Eq. (59) in
Ref. [42]. In the latter study, it is found that the growth rate γ

of the kinetic energy Ec,

γ = 1

Ec

dEc

dt
= −�u1u3

Ec

+ u3b

Ec

,

Ec = 1

2

∫∫∫ +∞

−∞
(u(1)u(1)∗ + u(2)u(2)∗)d3k,

u1u3 =
∫∫∫ +∞

−∞

[
k2

k
Re(u(1)u(2)∗) + k1k3

k2
u(2)u(2)∗

]
d3k,

u3b = N2
v

�

∫∫∫ +∞

−∞

kh

k
Re(u(2)u(3)∗)d3k,

(26)

yielded by the linear spectral theory (LST) follows relation
Eq. (25), i.e., γ = 2σmax, for large times τ 	 1 and 0 < Ri <

1 (see their Fig. 5). Here, ∗ denotes complex conjugate. The
term (−�u1u3) represents the energy production due to the

background shear, while the term (u3b) corresponds to energy
gain or loss due to the vertical buoyancy flux. We recall that
the QG framework excludes the mechanism of energy transfer
from the background shear to perturbations mediated by the
Reynolds number (e.g., see Ref. [6]). Obviously, the nonlinear
processes act to saturate the exponential instability growth rate
as illustrated by the study of Pieri et al. [28], who found that
the nonlinear growth rate remains less than the one given by
Eq. (25).

C. Stability for asymmetric disturbances

In the study by Pieri et al. [30] it was stated without giving
an exact demonstration that nonsymmetric perturbations are
asymptotically bounded. Moreover, the convergence of the
two nonzero eigenvalues of the LST system toward {−if, if }
suggested the convergence toward a purely oscillating “wave”
state at frequency f . The asymptotic amplitude reached by
such nonsymmetric modes was shown to depend on the amount
of potential vorticity in the flow. This phenomenon results from
a strong wave-vortex coupling in the presence of potential
vorticity anomalies. By applying Pfeiffer’s theorem to the
third-order differential Eq. (27), we provide the mathematical
demonstration that nonsymmetric perturbations of the thermal
wind are necessarily stable and asymptotically oscillatory,
completing the previous study by Ref. [30] with asymptotic
results.

In Sec. IV C 1 we explain why we consider the third-
order differential Eq. (27) to demonstrate the stability of
system Eq. (14) and not the nonhomogeneous second-order
differential Eq. (2).

From system Eq. (14), we deduce the following third-order
differential equation for y = ku(2),

...
y + q(τ )ẏ + r(τ )y = 0, (27)

with the following definition for the time-dependent coeffi-
cients:

q(τ ) = Ro−2

(
Ro

k2

k
+ k3

k

)2

+ (Ri − 1)
k2
h

k2
+ k2

1

k2
, (28a)

r(τ ) = −4Ro−1 k1k2k
2
h

k4
− 2(Ro−2−Ri)

k1k3k
2
h

k4
−2Ro−2 k1k3

k2
,

ẏ = −Ro−1k3u
(1)+Rikhu

(3),

ÿ = 2Ro−1k1u
(1) −

(
2Ro−1 k2k3

k2
+ Ro−2 k2

3

k2
+ Ri

k2
h

k2

)
y.

(28b)

When Ri > 1, the function q(τ ) has a positive sign for any
value of τ, while, when Ri < 1, its sign is positive only for
τ > max(0,d0), where

d0 = max(d1 − d2,d1 + d2),

d1 = kv

k1
+ Ro

k2

k1
, (29)

d2 = Ro

√
(1 − Ri)

k2
h

k2
1

− 1.
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Both q(τ ) and r(τ ) are continuous in [a,∞), where a >

max(0,d0) if 0 < Ri � 1 and a > max(0,d1) if Ri > 1.

1. Pfeiffer’s theorem

In the framework of oscillation theory, Pfeiffer [32] gives
five theorems providing estimates on the asymptotic behavior
of the solutions of the third-order differential Eq. (27). In the
present paper we make use of what is referred to as

Theorem 8. If

q̈q− 3
2 , ṙq− 3

2 and r2q− 5
2 (30)

are in L1(a,∞) and

D(τ ) = ±(q̇ − 2r)/q (31)

satisfies condition I (see below), then there are three linearly
independent solutions zi = [yi,ẏi ,ÿi] (i = 1, 2, 3) of Eq. (14)
and a τ0 � a, such that for τ � τ0

Tz1q
− 3

4 exp

[ ∫ τ

τ0

r(s)

q(s)
ds

]
→ p1,

Tz�q
− 3

4 exp

[
−η�

∫ τ

τ0

√
q(s)ds−1

2

∫ τ

τ0

r(s)

q(s)
ds

]
→ p�, (32)

(� = 2,3),

as τ → ∞, where

T = diag
(
q

3
4 , q

1
4 , q− 1

4
)
,

(33)
p� = (

1, η�,−η2
�

)
, (� = 1, 2, 3),

with η1 = 0, η2 = i, η3 = −i.

Condition I. The function D(τ ) defined on [a,∞) satisfies
Condition I if for some positive constant C0 either

(i)
∫ τ

a

D(s)ds → ∞ as τ → ∞ and∫ τ2

τ1

D(s)ds > −C0 for τ2 � τ1 � a or (34)

(ii)
∫ τ2

τ1

D(s)ds < C0 for τ2 � τ1 � a.

As shown in Appendix B, the functions (q̈q− 3
2 ), (ṙq− 3

2 ), and
(r2q− 5

2 ) are in L1(a,∞). This corresponds to the first set of
hypotheses asked by the above theorem. We also prove in
Appendix B that the function D(τ ) satisfies Condition I.

2. Application of Pfeiffer’s theorem

According to Pfeiffer’s theorem, each zi (i = 1, 2, 3) obeys
the following asymptotic behavior:

k(τ )u(2)
1 (τ ) exp

[ ∫ τ

a

r(s)

q(s)
ds

]
→ 1,

k(τ )u(2)
2 (τ ) exp

[
− i

∫ τ

a

q(s)
1
2 ds − 1

2

∫ τ

a

r(s)

q(s)
ds

]
→ 1,

k(τ )u(2)
3 (τ ) exp

[
i

∫ τ

a

q(s)
1
2 ds − 1

2

∫ τ

a

r(s)

q(s)
ds

]
→ 1,

(35)

where we have used the initial change of variables yi = ku
(2)
i .

To conclude on the stability of the solutions we need bounds
on the exponential function involved in the asymptotic limits
Eq. (35). The computation of such estimates is reported
in Appendix C. The final result characterizing the upper
bound is given by inequality Eq. (C8), while the final
result characterizing the lower bound is given by inequality
Eq. (C12). These bounds can be used to derive a stability result
for the solutions of Eq. (27). Indeed, applying the exponential
function to inequality Eqs. (C8) and (C12) we finally obtain
that for all τ > a,

|Q(τ )| 1
2 � exp

[ ∫ τ

a

r(s)

2q(s)
ds

]
� |P(τ )| 1

2 , (36)

where the notation � means lower than the compared ex-
pression normalized by a constant. P(τ ) is a second-order
polynomial function defined by Eq. (C4) and Q(τ ) = P(τ ) +
4C0

q , where C0
q is a constant Appendix B [an estimation of C0

q

is given by (B3)]. In the same way, we obtain

|Q(τ )| � exp

[ ∫ τ

a

r(s)

q(s)
ds

]
� |P(τ )|. (37)

Because Q(τ ) = P(τ ) + 4C0
q , we have that for τ > a

|P(τ )| 1
2 � exp

[ ∫ τ

a

r(s)

2q(s)
ds

]
� |P(τ )| 1

2 , (38)

|P(τ )| � exp

[ ∫ τ

a

r(s)

q(s)
ds

]
� |P(τ )|. (39)

It can be inferred from Eqs. (38) and (39) that

k(τ )|P(τ )|− 1
2 � k(τ ) exp

[ ∫ τ

a

− r(s)

2q(s)
ds

]
� k(τ )|P(τ )|− 1

2 , (40)

k(τ )|P(τ )| � k(τ ) exp

[ ∫ τ

a

r(s)

q(s)
ds

]
� k(τ )|P(τ )|. (41)

Since k(τ ) ∝ τ and P(τ ) ∝ τ 2, we have that u
(2)
2,3 are asymp-

totically bounded and oscillates at frequency
√

q(τ ) and
that u

(2)
1 ∝ τ−3 asymptotically vanishes. Therefore, all the

nonsymmetric disturbances of the baroclinic equilibrium are
stable and generate inertia-gravity waves that asymptotically
degenerate into pure inertial waves. This last feature is due to
alignment of the mean shear with the rotation axis. We now
complete this result giving further details on the role of the
initial potential vorticity distribution.

IV. TRANSIENT GROWTH OF ENERGY

A. General considerations

Although the base flow Eq. (4) is neutrally stable (i.e., there
are no exponentially growing solutions) for asymmetric dis-
turbances as demonstrated previously, it can exhibit significant
“transient growth” in energy because of the nonnormality of
perturbation dynamics due to shear. In the bypass transition to
turbulence, which has been developed by the hydrodynamic
community for spectrally stable shear flows, perturbations
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undergo a transient growth. If they have an initially finite
amplitude, they may reach an amplitude that is sufficiently
large to allow positive feedback through nonlinear interactions
that repopulate the growing disturbances. This mechanism
could plausibly sustain turbulence for large enough Reynolds
numbers. This concept was adopted for unmagnetized strat-
ified accretion disks, since there is irrefutable observational
evidence that Keplerian disks have to be turbulent (e.g., see
Refs. [43,44]).

Because atmospheric flows are generally nonnormal, the
study of the dynamics of the transient growth has been
addressed by several authors (e.g., see Refs. [6,21,29,30,45]).
As already noticed, in the study by Mamatsashvili et al.
[29] for baroclinic shear flows with Ri � 1 and Ro � 1,

it is found that (SFH) asymmetric perturbations undergo
substantial transient amplification much larger than the growth
of symmetric instability (see also Ref. [30]), and the largest
transition amplification occurs for negative ν = k1/k2.

By setting v = [u(1),u(2),
√

Riu(3)]T , the spectral density of
total energy can be seen as the scalar product

2ET (τ ) = 〈v(τ ),v(τ )〉 = 〈v(0),gAg·v(0)〉,
where gA = gT ∗ is the transconjugate matrix of the Green
matrix g, such that

v(τ,k/k) = g(τ,k/k)·v(0,k0/k0),

where gij (0) = δij . The maximum energy growth G(τ ) ob-
tainable at time τ over all possible initial conditions v̂(0) is
(see, e.g., Ref. [46]),

Gmax(τ ) = max
v(0)

〈v(0),gAg·v(0)〉
〈v(0),v(0)〉 .

In this study, we rather focus on particular initial conditions
corresponding to isotropic initial conditions with zero helicity,
zero initial potential energy, and zero initial density fluxes (see
Appendix A5 in Ref. [44]),

u
(1)∗
0 u

(1)
0 = u

(2)∗
0 u

(2)
0 = Ek(0),

(42)
u

(3)∗
0 u

(3)
0 = 0, u

(i)∗
0 u

(j )
0 = 0 (i �= j ),

with (i,j = 1,2,3), so that ET (0) = Ek(0). This choice would
be justified by the fact that the turbulence is initially nearly
isotropic in usual laboratory experiments on grid turbulence
and in direct numerical simulations (DNS). Under the above
initial conditions, ET can be expressed in terms of components
of the matrix g as

G ≡ ET (k,τ )

ET (k0,0)
= Gk + Gp,

Gk ≡ Ek(k,τ )

ET (k0,0)
= 1

2

2∑
i=1

2∑
j=1

|gij |2, (43)

Gp ≡ Ep(k,τ )

ET (k0,0)
= Ri

2

2∑
j=1

|g3j |2,

where Gk, Gp, and G characterize the transient growth of
kinetic energy, potential energy, and total (kinetic + potential)
energy, respectively.

B. Results and discussion

Computations were used to determine the time evolution
of the spectral densities for 0 � Ri < 10. A fourth-order
Runge-Kutta scheme with time step δτ = 10−3 has been used
to perform the numerical integration of the system Eq. (14) for
gij with the initial conditions Eq. (44) for g

(w)
ij (respectively,

g
(v)
ij (0) = δij − g

(w)
ij (0); see Ref. [44]),

g
(w)
ij (0) =

⎛
⎜⎝

1
1+ψ2

0
− ψ0

1+ψ2
0

0

− ψ0

1+ψ2
0

ψ2
0

1+ψ2
0

−ψ1

0 0 1

⎞
⎟⎠ . (44)

Accuracy was easily assessed by evaluating both the deter-
minant of g, det(g) = k0/k (see Ref. [38]) and the following
relation deduced from Ref. [16]:

RiRo
khk

k1k0
c12g3j + khk

k1k0
c32g1j + k

k0
g2j

= ψ1δ3j + ψ0δ1j + δ2j , (45)

(j = 1,2,3), in almost every case examined. Here,

ψ0 = kh

k1
c32(0), ψ1 = RoRi

kh

k1
c12(0). (46)

1. Pure shear flow

We now focus on the growth amplification of nonsymmetric
disturbances in baroclinic shear flows. Theoretical insights
can be gained by examining the case of the pure shear flow
(Ri = 0,Ro−1 = 0) for which the matrix g is 2 × 2 and found
as (e.g., see Ref. [47])

g11 = 1, g21 = 0, g22 = k0

k(τ )
,

(47)

g12 = k0k2

k1kh

[
arctan

(
kv

kh

)
+ arctan

(
−kv

kh

+ k1

kh

τ

)]
.

We note that, when kv and k1 have opposite signs, the vertical
wavenumber k3(τ ) is either negative or positive and both g12

and g22 have a monotonic behavior. In particular, g22 decreases
with time [g22(0) = 1], approaching zero as τ → ∞, while
|g12| grows with time [g12(0) = 0], approaching the limit∣∣∣∣ k0k2

k1kh

[
arctan

(
kv

kh

)
± π

2

]∣∣∣∣,
as τ → ∞. Hence, the contribution of the horizontal kinetic
energy to the eventual growth of the kinetic energy prevails
over the contribution of the vertical kinetic energy, since

Ev(τ )

Ek(0)
≡ 1

2

û3û
∗
3

Ek(0)
= 1

2

k2
h

k2

2∑
j=1

|g2j |2

= 1

2

(
1 + k2

v

k2
h

)
[
1 + (

kv

kh
− k1

kh
τ
)2]2 (48)

decays with time.
When k1kv > 0, the vertical wavenumber takes a zero

value at τ0 ≡ kv/k1. During the initial phase, 0 � τ < τ0,

the vertical kinetic energy grows with time and reaches
a maximum value at τ = τ0, Ev(τ0) = (1 + k2

v/k2
h)Ek(0)/2.
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Accordingly, one may conclude that the transient growth
of the vertical kinetic energy due to nonsymmetric distur-
bances in the pure shear case becomes larger for |kv|/kh 	
1. Moreover, for |k2/k1| � 1 and in a neighbourhood of
τ = τ0, the contribution of the vertical kinetic energy is
not dominated by the contribution of the horizontal kinetic
energy,

Eh(τ )

Ek(0)
= Ek(τ )

Ek(0)
− Ev(τ )

Ek(0)
= 1

2
+ k2

0k
2
3

2k4
+ k2

0k
2
2

2k2
1k

2
h

×
[

arctan

(
kv

kh

)
− arctan

(
k3

kh

)]2

. (49)

After the initial phase, i.e., τ > τ0, the spectral density of the
vertical kinetic energy decays with time approaching zero for
long times. The long-time behavior of kinetic energy is then
mainly due to horizontal motions,

lim
τ→∞ Gk = lim

τ→∞
Ek(τ )

Ek(0)
= ν2

(
1 + k2

v

k2
h

)

×
[

arctan

(
kv

kh

)
+ π

2

]2

. (50)

Therefore, at |kv|/kh 	 1, the spectral density of kinetic
energy behaves like Ek = Ev + Eh ∼ (kv/kh)2, as illustrated
by Fig. 1(a). In the next paragraph, we examine the long-
time behavior of the spectral density of total (kinetic +
potential) energy in baroclinic shear flows and we show
that it also behaves like ET = Ek + EP ∼ (kv/kh)2 for large
|kv|/kh.

2. Baroclinic shear flow

For a baroclinic shear flow, the matrix g is computed
numerically, as already indicated. Computations indicate that,
after the initial phase defined by 0 � τ < τ0 = kv/k1, for
which there is a transient amplification, all the elements of the
matrix g exhibit an oscillatory behavior with large amplitude.
The time—in f t units, which is normalizing by the rotation
time 1/f —between two successive maximums (or minimums)
is 2π. The amplitude of the oscillations depends on both the
Richardson and Rossby numbers and also on the orientation
of the initial wavevector k0/k0. Physically, these oscillations
correspond to the generated IGWs (e.g., see Ref. [29]). In the
following, we examine the long-time behavior of the IGWs
energy for 0 < Ri � 10, and we show that, at sufficiently large
kv/kh, it behaves like Ek ∼ (kv/kh)2, as in the pure shear flow
case.

Figure 1(b) shows the time evolution of the spectral density
of the kinetic energy normalized by its initial value,

Gk = Ek(τ )

Ek(0)
= 1

2

(
g2

11 + g2
12 + g2

21 + g2
22

)
,

for ν = k2/k1 = 0.2, kv/k1 = 80, Ro = 10, and Ri =
0.3, 0.9, 1.5, 5. We note that the case with Ri = 0.3 and
Ro = 10 may occur for fronts and jets (e.g., see Ref. [48]). As
shown by Mamatsashvili et al. [29], the maximal dominance
of asymmetric disturbances over symmetric exponential in-
stability occurs at Ri = 0.9 and Ro = 10. As it can be seen
from Fig. 1, at sufficiently large time, there are no significant

Eq. (50)

FIG. 1. (Color online) Time evolution of Gk = Ek(τ )/Ek(0) in
pure shear flow (Ri = 0, Ro−1 = 0, upper panel) and in baroclinic
shear flow (Ro = 10 and Ri = 0.3, 0.9, 1.5, 5.0, lower panel) for
ν = k2/k1 = 1 and kv/k1 = 30 (a) and kv/k1 = 100 (b). The figure
shows that, at large times, there is no appreciable variation of Gk and
the level of energy decreases as Ri increases.

variations for the development of Gk(τ ). This is a consequence
of the fact that the trajectory in the two-dimensional phase
spaces {g11,g21} and {g12,g22} has a “circular” shape for long
times. Note that when considering the long-time limit of the
right-hand side of the two first equations in Eq. (14), we obtain
the following system:

g11ġ11 + g21ġ21 = 0,

g12ġ12 + g22ġ22 = 0,

for which the trajectory, in the two-dimensional phase space
{g1j , g2j }, is indeed circular. Obviously, the radius of the
circular trajectory is intimately tied to the dynamics of system
Eq. (14) during the transient phase. The shear would also play
an important role since we show that, at sufficiently large
kv/kh, the growth of the IGWs energy behaves like (k2

v/k2
h)

for large times.
The variation of Gk at large time (τ = 8τ0 = 8kv/k1) in

function of the ratio kv/kh for fixed values of the triplet
(Ri, Ro, ν) is shown in Fig. 2. Figures 2(a), 2(b), and
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Eq. (50) Eq. (50)

Eq. (50)

FIG. 2. (Color online) Variation of the long-time limit (τ = 8τ0 = 8kv/kh) of the IGWs kinetic energy Gk = Ek(t)/Ek(0) versus kv/kh

in baroclinic shear flows. (a) Ri = 0.3, Ro = 0.1, 1.0, 5.0, 10.0, and k2/k1 = 1. (b) Ri = 1.5, Ro = 0.1, 1.0, 5.0, 10.0, and k2/k1 = 1.

(c) Ri = 5.0, Ro = 0.2, 1.0, 5.0, 10.0, and k2/k1 = 1. (d) Ri = 100, Ro = 0.05, and k2/k1 = 0. The figure reveals that, when kv/kh 	 1, Gk

behaves like k2
v/k2

h as in the pure shear flow.

2(c) display the results obtained for ν = k2/k1 = 1.0, Ro =
0.1, 0.2 1.0, 5.0, 10.0, and Ri = 0.3 (a), Ri = 1.5 (b), and Ri =
5.0 (c). As can be expected, at fixed kv/kh, the long-time limit
of Gk decreases as Ro (or Ri) increases. The present numerical
results (performed for Ro � 10) show that, with respect to the
pure shear case, there is an increase of the kinetic energy
when shear and rotation are simultaneously present (Ro �= 0
and Ri = 0). Stable vertical stratification acts to reduce this
increase when shear, rotation, and vertical stratification are
simultaneously present. For some values of Ro, Ri, and ν,

there is a balance between rotation and vertical stratification
on the kinetic energy of the IGWs, so that it approximately
follows Eq. (50) for a pure shear flow. This explains the
fact that some curves in Fig. 2 are located above the curve
associated with Eq. (50). It clearly appears from Figs. 2(a),
2(b), and 2(c) that, at sufficiently large kv/kh, the long-time
limit of the spectral density of the kinetic energy behaves like
Ek ∝ (kv/kh)2 as in the pure shear case. Computations indicate
that for large Ri(�100), Gk also behaves like (kv/kh)2,

provided 0 < RoRi = N2
v /(f S) = N2

v /|N2
h | � 5 and ν � 1 as

illustrated by Fig. 2(d) obtained for Ri = 100, Ro = 0.05, and
k2 = 0 (so that ν = 0).

In the two-dimensional phase space {g31, g32} the trajectory
(for long times) has an elliptical shape and accordingly
the spectral density of the potential energy of the IGWs
[see the third relation in Eq. (43)] exhibits an oscillatory
behavior for long times. Therefore, the spectral density of

total energy (kinetic + potential) of the IGWs also exhibits
an oscillatory behavior as illustrated by Fig. 3 obtained for
Ri = 0.3, Ro = 10, ν = 1, and kv/kh = 100. For a given value
of the quadruplet (Ri, Ro, ν, kv/kh) such that kv/kh 	 1 and
ν is not very large, the total energy of IGWs oscillates about
a constant value ET and the amplitude of these oscillations
approximatively equalizes the amplitude of the potential
energy Ep; see Fig. 3(a). As for the variation of ET versus
kv/kh for sufficiently large kv/kh, it behaves like k2

v/k2
h,

or equivalently, ET ∝ L2
h/L

2
v, where Lh and Lv such that

Lhkh ∼ 1 and Lvkv ∼ 1 are characteristic horizontal and
vertical length scales, respectively, as illustrated by Fig. 3(b).

C. Wave-vortex mode coupling

In this section we attempt to show that the important
transient growth of the IGWs energy occurring for some
orientations of the initial wavevector is mainly due to the vortex
mode.

1. The solution associated to the wave mode
and the vortex mode is stable

In view of relation Eq. (16), which translates the fact that PV
is a Lagrangian invariant, an alternative formulation of system
Eq. (14) into an inhomogeneous second-order differential
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FIG. 3. (Color online) (a) Time evolution of G = ET (t)/ET (0) in
baroclinic shear flow with Ri = 0.3, Ro = 10, kv/k1 = 300, and ν =
k2/k1 = 1. At large time, the IGWs kinetic energy is approximately
constant, while the total energy (kinetic + potential) oscillates about a
constant value ET . (b) Variation of G versus kv/kh at large time (τ =
2kv/k1) for Ri = 1.5, Ro = 5.0, and three values of ν = k2/k1 =
arctan(ϕ). The figure shows that, at sufficiently large kv/kh, there is
an important transient growth rate of energy and G = ET (t)/ET (0)
behaves like k2

v/k2
h as in the pure shear flow case (Ri = 0,Ro−1 = 0).

equation yields

ü(1) + h(τ )u̇(1) + q(τ )u(1) = Ro−1 khk0

k2
u�

0 , (51)

where

h(τ ) = 2k1

(k3 + Rok2)
− 2k1k3

k2

= d

dτ
log

[(
Ro

k2

k
+ k3

k

)−2]
, (52)

and q(τ ) is described by Eq. (28a). The functions h(τ ) and
q(τ ) are continuous in [a,∞) and q ′′(τ )/q3/2 and h(τ ) are
in L1[a,∞). Therefore, according to corollary 2 (p. 200) in
Rovder [49], the homogeneous Eq. (51) has the fundamental
system u

(1)
w±(τ ), such that

u
(1)
w±(τ ) = q(τ )−

1
4 exp

[
± ı

∫ τ

a

q(s)
1
2 ds

]
[1 + o(1)]. (53)

It follows that the particular solution u(1)
v = u(1) − u(1)

w of
Eq. (51) is bounded as τ → ∞ since u(1) is bounded as τ →
∞, as shown in Sec. III C. The couple (uw,uv) characterizes

the wave-vortex mode coupling as first shown by Chagelishvili
et al. [26],

u(i)(k,τ ) = u(i)
w (k,τ )︸ ︷︷ ︸
wave

+u(i)
v (k,t)︸ ︷︷ ︸
vortex

. (54)

Moreover, according to the decomposition Eq. (54), one may
write

u(i)
w (τ,k) = g

(w)
ij (τ )u(j )(0,k0), u(i)

v (τ,k) = g
(v)
ij (τ )u(j )(0,k0),

and hence,

gij (τ ) = g
(w)
ij (τ ) + g

(v)
ij (τ ), (55)

for any time, where g
(w)
ij and g

(v)
ij are the Green functions

characterizing the “wave” and “vortex” regimes, respectively,
i.e., the regimes respectively corresponding to a zero value or
a nonzero value for PV.

The reader could ask why we do not operate directly on
Eq. (51) to demonstrate the stability of the complete solution.
The response is that the term h(τ ) is not impulsively small (see
theorem 6 p. 117 in Ref. [50]) and hence one cannot conclude
on the stability of the complete solution even if the term in the
right-hand side of Eq. (51) is impulsively small and the solution
of the homogeneous equation is bounded. We also remark that
an alternative transformation of Eq. (51) yields Eq. (2) or
ψ̈ + ω2(τ )ψ = s(τ ), as in the study by Mamatsashvili et al.
[29], where

ω2(τ ) = q(τ ) − 1
2 ḣ(τ ) − 1

4h2(τ ).

2. The energy associated to the wave mode and the vortex mode

The dynamics of the wave-vortex mode coupling in neu-
trally stable stratified barotropic or baroclinic shear flows has
been studied by some authors [29,30,44,51], as indicated in
the introduction.

In view of the decomposition Eq. (54), we introduce
the energy E (w)

T (respectively, E (v)
T ) associated to the wave

(respectively, vortex) mode by replacing in Eq. (43) gij by
g

(w)
ij (respectively, g

(v)
ij ), and we obtain

ET (k,τ ) = E (w)
T (k,τ ) + E (w−v)

T (k,τ ) + E (v)
T (k,τ ), (56)

where E (w−v)
T (k,τ ) is the mutual energy, i.e., the en-

ergy characterizing the interaction between the vortex and
wave modes. To compute G(w) = E (w)

T (τ )/ET (0) [respectively,
G(v) = E (v)

T (τ )/ET (0)], which is described by Eq. (43), pro-
vided we replace gij by g

(w)
ij (respectively, g

(v)
ij ), we use the

following initial condition for g
(w)
ij (respectively, g

(v)
ij (0) =

δij − g
(w)
ij (0); see Ref. [44]),

g
(w)
ij (0) =

⎛
⎜⎝

1
1+ψ2

0
− ψ0

1+ψ2
0

0

− ψ0

1+ψ2
0

ψ2
0

1+ψ2
0

−ψ1

0 0 1

⎞
⎟⎠ , (57)

which satisfies Eq. (45),

ψ1g
(w)
3j (0) + ψ0g

(w)
1j (0) + g

(w)
2j (0) = 0,

ψ1g
(v)
3j (0) + ψ0g

(v)
1j (0) + g

(v)
2j (0) = ψ1δ3j + ψ0δ1j + δ2j

�= 0, (58)
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FIG. 4. (Color online) (a) Time evolution of G(v), G
(v)
k , G(w), and

G
(w)
k for Ri = 0.3, Ro = 10, kv/k1 = 100.0, and ν = 1. This panel

illustrates the generation of IGWs by the development of both the
vortex mode and the wave mode. (b) Time evolution of the ratio
G

(w)
k /G

(v)
k for Ri = 0.3, Ro = 10, kv/k1 = 100.0, and ν = 1. This

panel illustrates that, after the transition period, the energy of the
IGWs generated by the vortex mode is more important than the energy
of the IGWs generated by the wave mode.

(j = 1,2,3). Therefore, the initial condition for the wave mode
is

u(1)
w (0) = 1

1 + ψ2
0

u
(1)
0 − ψ0

1 + ψ2
0

u
(2)
0 ,

u(2)
w (0) = − ψ0

1 + ψ2
0

u
(1)
0 + ψ2

0

1 + ψ2
0

u
(2)
0 − ψ1u

(3)
0 , (59)

u(3)
w (0) = u

(3)
0 .

In view of relation Eq. (43), the above initial conditions yield

E (v)
T (0) = E (w)

T (0) = 1
2ET (0), E (v−w)

T (0) = 0,

signifying that the initial state for which g(w)(0) = 0 mutual
energy is initially zero. We note that the initial state for
which g

(v)
ij (0) = 0, so that g

(w)
ij (0) = gij (0) = δij , does not

satisfy condition Eq. (58). However, an initial state for which
g

(w)
ij (0) = 0, so that g

(v)
ij (0) = gij (0) = δij , satisfies condition

Eq. (58). Consequently, one can consider that the analysis
for the development of the growth amplification presented
in Sec. IV B corresponds to an initial state for which the
initial velocity is a purely vortex mode (i.e., without IGWs).
Accordingly, we may conclude that there is a generation of
IGWs even if the velocity and density fields are initially
a purely vortex mode, in agreement with the analysis of
Mamatsashvili et al. [29], who considered an initial state
corresponding to a pure vortex mode.

Also in the case where the wave mode is not initially zero
there is a generation of IGWs by both the vortex mode and
the wave mode as illustrated by Fig. 4(a) obtained for Ri =
0.3, Ri = 10, ν = 1, and kv/k1 = 100. After the transient
phase, the energy of the IGWs generated by the vortex mode
is more important than the energy of the IGWs generated by
the wave mode as illustrated by Fig. 4(b), displaying the time
development of E (w)

k /E (v)
k . An important difference between

the IGWs generated by the vortex mode and those generated
by the wave mode is that, at asymptotically large times, the
energy of the former ones grow with the ratio kv/kh [i.e.,
G(v) behaves like (k2

v/k2
h)], while the energy of the latter ones

oscillates in function of (kv/kh) about a constant value as
shown by Fig. 5.

V. CONCLUDING REMARKS

Eady’s model has been used in several past studies either
for a fluid confined between planar vertical boundaries or
for a fluid in an unbounded domain. We can consider it as
a paradigm to study the dynamics of sheared baroclinic flows
occurring in the oceans or in the midlatitude atmosphere.
According to the previous stability analysis, there are QG
unstable modes, ageostrophic unstable modes (including the
symmetric/baroclinic instability), and a generation of IGWs
due to potential vorticity anomalies. Because atmospheric

FIG. 5. (Color online) Variation of (a) G(v) and (b) G(w) versus kv/kh at large times (τ = 8τ0 = kv/k1) for Ri = 0.3, Ro = 10, and ν = 1.

Panel (a) shows that G
(v)
k (the energy of the IGWs generated by the vortex mode) behaves like (k2

v/k2
h) for sufficiently large kv/kh. Panel (b)

shows that G
(w)
k (the energy of the IGWs generated by the wave mode) is a periodic function of (kv/kh).
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flows are generally nonnormal (large scale shear is often
present in the atmosphere or in the ocean), the study of
the transient dynamics is of capital interest and has been
also addressed by some authors. In fact, disturbances may
reach an amplitude that is sufficiently large to allow positive
feedback through nonlinear interactions that repopulate the
growing disturbances. This mechanism could plausibly sustain
turbulence for large enough Reynolds numbers.

In the present study, we have considered the Eady like
flow described by Eq. (4) in an unbounded domain. Then, we
have studied the development of plane-wave disturbances with
time-dependent wavevector in the linear limit of an inviscid
and nondiffusive Boussinesq fluid. The linear dynamics of the
disturbances in the k space is governed by a three-dimensional
differential system, v̇ = L· v [see Eq. (12)], where the 3 × 3
matrix L is time-dependent and parameterized by the ori-
entation of the wavevector (k/k) and both the Richardson
(Ri) and Rossby (Ro) numbers. Using oscillation theory and
applying Pfeiffer’s theorem [32] to the third-order differential
Eq. (27) derived from the system Eq. (12), we have rigorously
proved that the flow Eq. (4) is neutrally stable to asymmetric
disturbances provided that the vertical stratification is stable
(0 < Ri). The analytical developments needed for the proof of
this result constitutes an important part of the present study.
With the aid of corollary 2 in Rovder [49], this result allows
us to prove that the two parts of the solution, i.e., the part
corresponding to the wave mode and the part corresponding to
the vortex mode, are asymptotically neutrally stable. In fact,
the use of PV, which is a Lagrangian invariant for the Euler-
Boussinesq equations, allows one to obtain a nonhomogeneous
second-order differential equation [see Eq. (2) or Eq. (51)] as
an alternative formulation of system Eq. (12). To prove the
stability of the solution from this nonhomogeneous second-
order differential equation remains a difficult task.

The second part of the present study concerns the
characterization of the generated IGWs and the analysis of
the transient growth of their energy. As recently shown by
Lott et al. [31], the IGWs produced by PV anomalies are
sensitive to the Richardson number (Ri) and the orientation of
the horizontal wave vector (ν = k2/k1). The parameter ν2Ri
would play an important role, at least, in the linear dynamics
of sheared gravity waves with or without rotation as we have
shown in Sec. III A.

Due to the nonnormality of linear shear flows, nonsym-
metric disturbances (i.e., the disturbances that correspond to
a finite streamwise/zonal wavelength k1 �= 0) can reach an
important level of energy at large times. In the pure shear
flow case (Ri = 0, Ro−1 = 0), we have found that, at large
times, the energy of the asymmetric disturbances behaves
like k2

v/k2
h [i.e., the square of the ratio of the initial vertical

wavenumber to the horizontal one; see Eq. (50)]. Therefore, the
amount of energy gained during the transient phase (0 � τ =
�t � τ0 = kv/k1) becomes important for large kv/kh (i.e.,
the initial wavevector is near the vertical axis). For baroclinic
shear flows (0 < Ri, Ro �= 0), the transient phase is also
characterized by the amplification period 0 � τ � τ0, as in
the pure shear flow case. The IGWs are generated at the
beginning of the amplification period and gain energy during
this period and eventually maintain it beyond this phase (i.e.,
at large times; see Ref. [29]). The present numerical results,

which were obtained by integrating the system Eq. (12) for
several values of the quadruplet (Ri, Ro, ν, kv/kh), including
the case with Ri = 0.3 and Ro = 10 that can occur in fronts
and jets, indicate that, at large times, the level of the IGWs
energy is sensitive to shear, stratification, and rotation. In fact,
at sufficiently large times, the IGWs energy oscillates with
period π (in f t units), but the amplitude of the oscillations
is sensitive to shear, stratification, and rotation in addition to
the orientation of the initial wavevector. In other words, the
amplitude of the oscillations is conditioned by the dynamics of
the disturbance during the transient phase. Due to the isotropic
initial conditions [see Eq. (42) used in the present paper], it
is found that kinetic energy of the IGWs has no appreciable
variations at asymptotically large times [see Fig. 1(b)] and
for sufficiently large kv/kh it behaves like (kv/kh)2 as in the
pure shear flow (see Fig. 2). The shear signature on the IGWs
dynamics would signify that shear plays an important role, and
not a minor role. For a fixed value of (Ri, Ro, kv/kh, ν) and
at large times, the total energy (kinetic + potential) oscillates
(with period π in f t units) around a constant value, ET . Also
the variation of ET versus kv/kh behaves like (kv/kh)2 (see
Fig. 3). This behavior of the IGWs energy is mainly due to
the vortex mode. In fact, for an initial state at which there
is a balance between the energy associated to the wave and
the energy associated to the vortex mode, we found that, at
large times, the energy of the IGWs generated by the vortex
mode is more important to the energy of the IGWs generated
by the wave mode (see Fig. 4). In addition, it is found that
the energy associated to the vortex mode grows with kv/kh

(like k2
v/k2

h), while the energy associated to the wave mode
oscillates with respect to the ratio kv/kh (see Fig. 5). Also, it
is found that the energy of the IGWs generated by the wave
mode is more sensitive to the ratio ν = k2/k1 than the energy
of the IGWs generated by the vortex mode. Concerning the
role the parameter ν2Ri would play in the dynamics of the
IGWs, as shown by Lott et al. [31], we note that a perturbative
method applied to Eq. (51) for sufficiently small Ro−1 would
allow one to better clarify the role of this parameter. In fact, at
Ro−1 = 0, Eq. (51) reduces to Eq. (17) which solutions are the
Legendre functions Pμ(ξ ) and Qμ(ξ ), as indicated in Sec. III
A. This last aspect will be addressed in a subsequent paper.
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APPENDIX A: LINEAR DIFFERENTIAL SYSTEM FOR
THE POLOIDAL, TOROIDAL VELOCITY MODES AND

THE BUOYANCY MODE

Consider the orthonormal local basis (e(1), e(2), e(3)) defined
by

e(1) = k × e3

‖k × e3‖ =
(

k2

kh

,
−k1

kh

, 0

)
,

(A1)

e(2) = k × e(1)

k
=

(
k1k3

khk
,

k2k3

khk
,

−kh

k

)
,
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and e(3) = k/k, where k = ‖k‖. In that basis the incompress-
ibility constraint, k· û = 0, is satisfied by construction, and û
has only two components: the toroidal mode u(1) = û· e(1) and
the poloidal mode u(2) = û· e(2),

u(1) = k2

kh

û1 − k1

kh

û2, u(2) = − k

kh

û3.

Because the unit vector e(1) is time-independent and the local
basis is orthonormal, the equation governing modes u(α) (α =
1,2) is simply obtained by projecting the first equation in
Eq. (12) on e(α),

u̇(α) = −e
(α)
1 e

(β)
3 u(β) + Ro−1

[
e

(α)
1 e

(β)
2 − e

(α)
2 e

(β)
1

]
u(β)

+�−1b̂e
(α)
3 , (A2)

(α, β = 1, 2). Using Eq. (A1) for e
(α)
i , we express modes

û2 and û3 in the right-hand side of the second equation in
system Eq. (12) in terms of modes u(1) and u(2) [see Eq. (13)].
Replacing b̂ by u(3) = −(�/N2

v )b̂, we finally obtain system
Eq. (13).

APPENDIX B: APPLICATION OF THE PFEIFFER’S
THEOREM

In this appendix, we show that the functions (q̈q− 3
2 ),

(r̈q− 3
2 ), and (rq− 5

2 ) are in L1[a,∞), where a =
max[0,(Rok2 + kv)/k1], and the function D(τ ) = (q̇ − 2r)/q
satisfy Condition I in theorem 8 by Pfeiffer [32].

For the sake of clarity, we report here the expression of the
functions q(τ ) and r(τ ) that are given by Eqs. (28a) and (28b),
respectively,

q(τ ) = Ro−2

(
Ro

k2

k
+ k3

k

)2

+ (Ri − 1)
k2
h

k2
+ k2

1

k2
,

r(τ ) = −4Ro−1 k1k2k
2
h

k4
− 2(Ro−2 − Ri)

k1k3k
2
h

k4

− 2Ro−2 k1k3

k2
.

We remark that q(τ ) > 0 for all dimensionless time τ =
�t provided that Ri > 1. From the above equations, we
state that there exist two positive constants—which de-
pend only on the wavevector k—(C0

q ,C
0
r ) ∈ R∗

+ and a
time a > max[0,(Rok2 + kv)/k1] (see Sec. IV A), such that
∀τ � a ∣∣∣∣q(τ ) − Ro−2 + 2Ro−1 k2

k1

1

τ

∣∣∣∣ �
C0

q

τ 2
, (B1)

∣∣∣∣r(τ ) − 2Ro−2 1

τ

∣∣∣∣ � C0
r

τ 2
, (B2)

where,

C0
q ≈

∣∣∣∣−2Ro−1 k2kv

k2
1

+ Ro−2 k2
v

k2
1

+ Ri
k2
h

k2
1

− Ro−2 k2
0

k2
1

∣∣∣∣ ,
C0

r ≈ 2Ro−2

∣∣∣∣kv

k1

∣∣∣∣ ,
α ≈ Ro

4

(
C0

q + k2
2

k2
1

)− 1
2

. (B3)

Besides, we have

q̇(τ ) = 2Ro−1 k1k2

k4

(
k2

3 − k2
h

) − 2Ro−2 k1k3k
2
h

k4
+ 2Ri

k2
hk1k3

k4
,

ṙ(τ ) = −16Ro−1 k2
1k2k3k

2
h

k6
− 2Ro−2 k2

1

k4

(
k2

3 − k2
h

)
− 2(Ro−2 − Ri)

k2
1k

2
h

k6

(
3k2

3 − k2
h

)
,

q̈(τ ) = 2Ro−1 k2
1k2k3

k6

(
2k2

3 − 6k2
h

) + 2Ri
k2
hk

2
1

k6

(
4k2

3 − k2)
− 2Ro−2 k2

1k
2
h

k6

(
4k2

3 − k2), (B4)

for the first-order derivative q̇, ṙ and for the second-
order derivative q̈. As a consequence, there exists a >

max[0,(Ro k2 + kv)/k1] (see Sec. IV A), such that |q̈q− 3
2 |,

|ṙq− 3
2 |, and r2q− 5

2 are in L1(a,∞), which corresponds to the
first set of hypothesis asked by theorem 8 in Pfeiffer [32].

We will now show that Condition I is fulfilled for function
D(τ ). From Eqs. (B4) and (28b), we deduce the expression of
(q̇ − 2r),

q̇(τ ) − 2r(τ ) = 2Ro−1 k1k2

k2
+ 4Ro−1 k1k2k

2
h

k4

+ 2(3Ro−2 − Ri)
k1k3k

2
h

k4
+ 4Ro−2 k1k

3
3

k4
.

(B5)

Since q(τ ) tends to Ro−2 as τ → +∞, we can focus on the
integrability of the numerator of D(τ ). The only nonintegrable
term in Eq. (B5) is the last term of the right-hand side, which
behaves like τ−1 as τ → +∞. Therefore, we have

∫ τ

a

D(s)ds = 4Ro−2
∫ τ

a

1

q(s)

k1k
3
3

k4
ds + CD(τ ), (B6)

where

CD(τ ) =
∫ τ

a

2Ro−1 k1k2

k2
+ 4Ro−1 k1k2k

2
h

k4

+ 2(3Ro−2 − Ri)
k1k3k

2
h

k4
ds,

and

lim
τ→+∞

∫ τ

a

1

q(s)

∣∣k1k
3
3

∣∣
k4

ds = +∞.

We recall that k3(τ ) = kv − k1τ . For s 	 1, we then rewrite
the right-hand side of Eq. (B6) as

∫ τ

a

D(s)ds =4Ro−2
∫ τ

a

1

q(s)

(−k4
1s

3 + O(s2))
k4

ds+CD(τ ).

(B7)
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The limit of q being positive, the sign of the integral
Eq. (B7) is given by −k4

1s
3 and is then negative. As a

consequence,

lim
τ→+∞

∫ τ

a

+ q̇(s) − 2r(s)

q(s)
= −∞,

and a natural choice for the constant C0 is C0 =
limτ→+∞ |CD(τ )|. It follows that

lim
τ→+∞

∫ τ

a

− q̇(s) − 2r(s)

q(s)
= +∞,

and

−
∫ τ

a

q̇(s) − 2r(s)

q(s)
> −C0.

APPENDIX C: EVALUATION OF THE UPPER AND
LOWER BOUNDS

We first derive bounds on the ratio r/2q. From inequality
Eqs. (B1) and (B2), we have for all t > a

τ 2

P(τ ) + 4C0
q

� 1

2q(τ )
� τ 2

P(τ )
, (C1)

and

2Ro−2τ − C0
r

τ 2
� r(τ ) � 2Ro−2τ + C0

r

τ 2
, (C2)

leading to

2Ro−2τ − C0
r

P(τ ) + 4C0
q

� r(τ )

2q(τ )
� 2Ro−2τ + C0

r

P(τ )
, (C3)

where the polynomial P is defined by

P(τ ) = 2τ 2Ro−2 − 4Ro−1 k2

k1
τ − 2C0

q . (C4)

To this stage, notice that � = 16Ro−2(C0
q + k2

2

k2
1
) is strictly

positive.

1. Upper bound

After some factorization we obtain from Eqs. (C3) and
(C4):

r(τ )

2q(τ )
� 1

2

Ṗ(τ )

P(τ )
+

(
C0

r + 2Ro−1 k2

k1

)
1

P (τ )
, (C5)

and

1

2

Ṗ(τ )

P(τ )+4C0
q

+
(

−C0
r + 2Ro−1 k2

k1

)
1

P(τ ) + 4C0
q

� r(τ )

2q(τ )
.

(C6)

The function P(τ ) admits two real roots (ρ1,ρ2), such
that

1

P(τ )
= α

τ − ρ1
− α

τ − ρ2
, (C7)

with α = Ro2(ρ1 − ρ2)−1/2. After integration of inequality
Eq. (C5) we get upper bound Eq. (C8):∫ τ

a

r(s)

2q(s)
ds � 1

2
log

∣∣∣∣P(τ )

P(a)

∣∣∣∣ +
(

C0
r + 2Ro−1 k2

k1

)
α

× log

∣∣∣∣τ − ρ1

τ − ρ2

a − ρ2

a − ρ1

∣∣∣∣. (C8)

This is a quite satisfactory upper bound since the log terms will
compensate the exponential function in the asymptotic limit
Eq. (35).

2. Lower bounds

To conclude on the stability of the solution, we need to find
both upper and lower bounds. To obtain a lower bound we
must distinguish two cases:

(1) Q(τ ) = P(τ ) + 4C0
q has two distinct real roots or a

single root with second-order multiplicity.
(2) Q(τ ) = P(τ ) + 4C0

q has two complex conjugate roots.

a. Case 1

In the first case, if Q has two roots ρ∗
1 �= ρ∗

2 , we have

Q(τ ) = α∗

τ − ρ∗
1

− α∗

τ − ρ∗
2

, (C9)

where α∗ = Ro2(ρ∗
1 − ρ∗

2 )−1/2 and a lower bound is obtained
following Eq. (C3). It follows the same calculation presented
in the case of the determination of the upper bound. The case of
a single root with second-order multiplicity is straightforward.

b. Case 2

In the second case, where Q admits two complex conjugate
roots, can be put into the form

Q(τ ) = 2

(
C0

q + k2
2

k2
1

)
[�2(τ ) + 1],

(C10)

�(τ ) = τ − Ro k2
k1

Ro
(
C0

q − k2
2

k2
1

)1/2
.

Then, after integration we have

I(τ ) ≡
∫ τ

a

ds

Q(s)
=

(
C0

q − k2
2

k2
1

)−1/2

2Ro−1

× [arctan �(τ ) − arctan �(a)], (C11)

and a lower bound is obtained as

1

2
log

∣∣∣∣Q(τ )

Q(a)

∣∣∣∣ +
(

−C0
r + 2Ro−1 k2

k1

)
I(τ ) �

∫ τ

a

r(s)

2q(s)
ds.

(C12)

From Eq. (C11), we conclude that the integral I(t) converges
as τ → +∞.
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