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Locking of periodic patterns in Cahn-Hilliard models for Langmuir-Blodgett transfer
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The influence of a periodic spatial forcing on the pattern formation in a generalized Cahn-Hilliard model
describing Langmuir-Blodgett transfer is studied. The occurring locking effects enable a control mechanism for
the pattern formation process. In the one-dimensional case the parameter range in which patterns are created is
increased and the patterns’ properties can be adjusted in a broader range. In two dimensions, one-dimensional
stripe patterns can be destabilized, giving rise to a multitude of complex two-dimensional structures, including
oblique and lattice patterns.
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I. INTRODUCTION

Locking and synchronization phenomena are ubiquitous
in diverse areas, starting from physiological systems such as
oscillators in the human body [1,2] to technical applications
such as chaotic pulsed lasers, magnetic nano-oscillators, or
modern power grids [3–5]. A rather beneficial utilization of
synchronization and locking effects is the control of pattern
formation processes. While such systems exhibit natural
spatial and temporal frequencies, they can be entrained to an
external forcing, providing an additional control mechanism.
Although the term synchronization is more commonly known
in the context of temporal oscillations, there are numerous
systems where spatial patterns exhibit wave-number locking
to an external spatial forcing, similar to temporal synchro-
nization, e.g., in spatially forced chemical systems [6] or
convection [7–9]. Extensive theoretical studies have also been
made in the context of Turing patterns [10], a Ginzburg-Landau
type of equation [11], Swift-Hohenberg equations [12], and
phase separation phenomena [13,14]. Among others, the
control via locking effects can be utilized in coating processes
with thin layers [15,16]. The coverage of substrates with thin
layers of organic molecules finds various applications today,
for example, in the creation of sensor devices [17] or organic
transistors and light-emitting diodes [18]. The employment
of self-organization phenomena for the creation of such thin
layers facilitates the production of structured layers [19,20].
The effective use of self-organization phenomena of course
necessitates extensive control over the whole process. One of
the common methods to control pattern formation processes
is the use of prestructures that enable locking effects to
occur [21–25]. If these effects are robust, the requirements
regarding the accuracy of the rest of the process are lower and
therefore in practice more easily achievable.

Here we are interested in a description of locking effects in
a generalized Cahn-Hilliard model [26] that was introduced
to describe self-organized patterns arising by Langmuir-
Blodgett (LB) transfer [20,27] onto prestructured substrates.
The experimental setup for LB transfer consists of a trough
filled with water, on which a floating monolayer of amphiphilic
molecules, such as dipalmitoylphosphatidylcholine, is pre-
pared (see Fig. 1, left panel). A substrate is then pulled out
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of the trough, leading to a transfer of the floating monolayer
onto the substrate. Movable barriers on the surface of the
water are used to keep the area density of the monolayer
constant, even if molecules are carried away on the substrate.
As the monolayer is confined to the surface of the water, it
constitutes a truly two-dimensional gas or liquid. The phase
of the monolayer depends on its density and can therefore be
controlled by the movable barriers. In the experiments that we
are interested in [20,28,29], the monolayer is in a low-density
liquid-expanded (LE) phase. However, during the transfer,
the monolayer is subject to a short-range interaction with
the substrate, the so-called substrate-mediated condensation
(SMC) [29–32]. This effect lowers the coexistence pressure
of the LE phase with the more dense liquid-condensed (LC)
phase in the vicinity of the substrate. Therefore, a phase
transition of the monolayer into the LC phase is energetically
favored as soon as it is transferred onto the substrate. This
is experimentally observed if the substrate is pulled out of
the trough sufficiently slow. For higher transfer velocities,
however, the condensation of the monolayer does not occur
uniformly but periodically, leading to the transfer of patterns
consisting of domains in the LC phase alternating with
domains in the LE phase. The patterns that can be obtained
are highly regular stripe and lattice patterns [20]. As a main
control parameter, the transfer velocity determines the type of
pattern and its properties such as wavelength and orientation.

A way to gain more control over the pattern formation
process is the use of prestructured substrate. In the following,
we will consider substrates that have a periodic prestructure,
which means that certain properties of the substrate vary with
a well defined spatial frequency. This introduces a periodic
forcing, which can change the properties of the generated
patterns, depending on, e.g., the strength of the forcing. This in
turn is related to the contrast of the prepattern, i.e., how strong
a certain property of the substrate varies along the prestructure.
If the contrast is strong enough, the pattern formation process
locks to the prestructure, resulting in a perfect control over the
produced structures.

This paper is organized as follows. Section II contains a
derivation of the generalized Cahn-Hilliard model. In Sec. III
the results of this model in the case of a transfer onto
homogeneous substrates are briefly discussed. The results
for the transfer onto prestructured substrates are presented
in Sec. IV for the one-dimensional case and in Sec. V for the
two-dimensional case.
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FIG. 1. (Color online) Shown on the left is a sketch of the
experimental setup for Langmuir-Blodgett transfer. A substrate is
pulled out of a trough filled with water, on which a floating monolayer
of amphiphilic molecules is prepared. Movable barriers compress
the monolayer during the transfer to keep the area density constant.
Shown on the right is the front view illustrating the frame of reference
and the coordinate system used in the numerical simulations.

II. MODEL EQUATIONS

Since the monolayer is in a stable LE phase before the
transfer, the formation of domains in the LC phase can
only occur in the vicinity of the substrate. Therefore, the
relevant part of the experiment that needs to be described
by a theoretical model is confined to the meniscus, where
the water layer between the monolayer and the substrate
becomes thin. Under this assumption, the transfer process can
be well described by the dynamics of the water layer in a
lubrication approximation [33] coupled to the dynamics of
the floating monolayer on its surface [34,35]. Such a model
has been developed in [36] and proven to be able to describe
most phenomena occurring during Langmuir-Blodgett transfer
onto homogeneous substrates, as well as onto prestructured
substrates [25]. However, the results of this model indicate
that the dynamics of the water layer only has a minor impact
on the pattern formation process, which is dominated by
the dynamics of the floating monolayer undergoing a phase
decomposition. Therefore, a reduced model can be derived,
in which the water layer is assumed to be static and its shape
only enters parametrically [26]. The evolution equation for the
density of the monolayer then has the form of a generalized
Cahn-Hilliard equation. While in [26] such a model has been
presented on the basis of the full thin-film model, here we
introduce the model starting from the general Cahn-Hilliard
equation [37] and introducing the contributions specific to
the case of LB transfer. It has to be emphasized that, while
this minimal theoretical model for LB transfer has proven
to be able to capture the main features of pattern formation
occurring in the experiments, we do not intend to make
quantitative predictions. Therefore, we do not give a specific
scaling of the dimensionless quantities used in the equation
and also do not derive parameters from experimental data. In
contrast, we want to facilitate the comparison of the results
with results obtained in similarly general models, such as in
the Swift-Hohenberg equation [12] or in reaction-diffusion
systems [6].

The Cahn-Hilliard equation for the concentration c(x,t) of
the monolayer in one (x = x ∈ �1 ⊂ R) or two [x = (x,y) ∈

�2 ⊂ R2] dimensions reads

∂

∂t
c(x,t) = ∇ ·

(
M∇ δF (c)

δc

)
, (1)

with the mobility M and the free energy F (c) given by

F (c) =
∫

1

2
(∇c)2 − 1

2
c2 + 1

4
c4 + μζ (x)c dx. (2)

The free energy (2) includes the Cahn-Hilliard contribution
due to spatial inhomogeneities [38] and a double-well approx-
imation for the free energy of the uniform system, which is
justified in the vicinity of the LE-LC phase transition of the
monolayer [36]. Here μ is a coefficient regulating the strength
of the SMC, which is spatially varying with the function ζ (x).
For μ = 0 the two minima of the free energy c = ±1 have
equal depth and correspond to a monolayer in the pure LE
phase (c = −1) or in the pure LC phase (c = +1). For μ > 0
the double well of the free energy has a skewness favoring the
LC phase. The form of ζ (x) reflects the characteristics of the
liquid layer between the monolayer and the substrate located
at the meniscus. Here we use the form

ζ (x) = −1

2

[
1 + tanh

(
x − xs

ls

)]
, (3)

which ensures a smooth transition from no influence of the
SMC [ζ (x) = 0] before the meniscus (x < xs) to a fixed value
[ζ (x) = −1] after the meniscus (x > xs), which is located at xs.
The width of the transition region is determined by ls. While
we will use the hyperbolic tangent shape in the following,
the concrete shape of ζ (x) only has a minor impact on the
simulations.

The transfer process is included into the model through
an additive advective term v · ∇c with the transfer velocity
v = (v,0). Incorporating these contributions and assuming the
mobility to be constant (M = 1), the final model reads

∂

∂t
c(x,t) = ∇ · {∇[−�c − c + c3 + μζ (x)] − vc}. (4)

This equation is solved numerically on a one- or two-
dimensional domain (�1 = [0,L] and �2 = [0,L] × [0,L],
respectively) with the boundary conditions

c|x=0 = c0,
∂

∂x
c

∣∣∣∣
x=L

= 0,
∂2

∂x2
c

∣∣∣∣
x=0,L

= 0, (5)

c|y=0 = c|y=L. (6)

The boundary at x = 0 reflects the role of the Langmuir-
Blodgett trough supplying a constant density c0 of the
monolayer on the surface of the water and therefore in front
of the meniscus. Ideally, the boundary at x = L should not
influence the outflow of the concentration c with v, which is
hard to realize. However, the conditions given in (5) are nearly
nonreflective, restricting the region of their impact close to
the boundary. On a sufficiently large simulation domain, the
influence on the region of interest can therefore be safely
neglected. The boundary conditions in the y direction (6)
are chosen to be periodic in two-dimensional simulations
[see Fig. 1 (right panel) for a clarification of the coordinate
system]. The simulations were performed using an adaptive
Runge-Kutta 4(5) time-integration scheme with time steps
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of order 10−2–10−1 and finite-difference evaluations of the
spatial derivatives on a grid of 500 (384 × 384 in two
dimensions) points. The methods were implemented using the
NVIDIA CUDA framework [39] for computations on graphics
processors.

III. TRANSFER ONTO HOMOGENEOUS SUBSTRATES
IN ONE DIMENSION

The transfer onto a homogeneous substrate in one dimen-
sion has already been discussed in detail in [26,40]. We briefly
summarize the most important findings here to enable an easier
comparison with the results on prestructured substrates in the
following section. In [26], four stable solution types of (4)
and (5) have been identified: two solution types corresponding
to the transfer of a homogeneous LC layer for low velocities,
one solution type corresponding to a homogeneous LE layer
for high velocities, and one solution type corresponding to
stripes of alternating LE and LC domains parallel to the
meniscus for intermediate velocities. These results, which
can be obtained by direct numerical simulations, are shown
in Fig. 2. Each solution type corresponds to a branch in a
diagram where the L2 norm of the solutions is plotted against
the transfer velocity. In [26], such a diagram was augmented
by unstable stationary solutions, which were traced using con-
tinuation methods, resulting in a complete bifurcation diagram
for the one-dimensional system. In this diagram, the unstable
stationary solutions exhibit a heteroclinic snaking behavior
connecting the stable stationary solutions corresponding to
homogeneous LE and LC layer transfers. One of the unstable
solution branches is also connected to the stable LE branch by
the branch corresponding to the periodic solutions (Fig. 2, blue
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FIG. 2. (Color online) Overview of stable stationary and periodic
solutions of (4) and (5) in one dimension (bottom panel). The solution
types are shown as branches in an L2 = ‖c(x)‖2 := [ 1

L

∫ L

0 c(x)2dx]1/2

versus v diagram. For each branch an exemplary solution is shown
(four top panels).
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FIG. 3. Wave number k (solid line) and duty cycle (dashed line)
of generated patterns during a transfer onto a homogeneous substrate
in one dimension, dependent on the transfer velocity v for c0 = −0.9
(bottom). Two snapshots of exemplary solutions for v = 0.04 and
0.05 are shown (top).

line) generating stripes parallel to the meniscus. This branch
emerges in a homoclinic bifurcation at low velocities, while
at high velocities it ceases in a sequence of subcritical Hopf
bifurcations.

To be able to discuss the influence of prestructured sub-
strates on the dynamics of periodic solutions, we will start with
a discussion of the properties of the one-dimensional case of
a transfer onto a homogeneous substrate, where the generated
pattern can be characterized by the wave number k and the duty
cycle, i.e., the ratio between the width of the stripes in the LC
phase and the wavelength. The dependence of the wave number
k and the duty cycle on the transfer velocity v is shown in Fig. 3.
Up to a certain threshold velocity, a homogeneous layer in the
LE phase is transferred. Above this threshold, domains in the
LC phase alternating with domains in the LE phase arise at
the location of the meniscus and are then carried away with
the transfer velocity v. That is, temporal oscillations of the
concentration at the meniscus translate to the resulting spatial
patterns on the substrate. At the onset of pattern formation, the
wave number k steeply increases with v up to a maximum for
intermediate transfer velocities after which the wave number
decreases again. Therefore, patterns with the same wave
number are created for different velocities. The patterns are
not identical, however, because the duty cycle of the generated
pattern is monotonically decreasing with increasing speed.
Above a certain threshold velocity, a homogeneous layer in
the LC phase is transferred, corresponding to k = 0. We define
the velocity interval between these threshold velocities as the
patterning regime. At the upper limit of the patterning regime,
the location where new stripes are formed is carried further
and further into the domain and the patterning regime therefore
ends as soon as this location is outside the simulation domain.
The upper threshold velocity is therefore dependent on the
actual domain size.

Besides the transfer velocity, also the boundary value c0 of
the concentration is an important control parameter influencing
the pattern formation process. The dependence of the wave
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FIG. 4. (Color online) Wave number k of generated patterns
during a transfer onto a homogeneous substrate in one dimension,
dependent on the transfer velocity v and the boundary concentration
value c0. The patterning regime broadens and shifts towards higher
velocities for increasing c0.

number k in the patterning regime on the transfer velocity
v and the boundary concentration c0 is shown in Fig. 4.
One can clearly see that the patterning regime broadens and
shifts towards higher velocities v for increasing c0. Without
loss of generality, c0 = −0.9 will be used for the following
discussion.

IV. LOCKING TO PERIODIC PRESTRUCTURES
IN ONE DIMENSION

In general, two different types of prestructures can be
distinguished. Topological prestructures consist of the same
material as the underlying substrate and are defined by
the spatially varying height profile. In contrast, chemically
prestructured substrates have a flat profile but another property
that is spatially varying, e.g., the wettability. In experiments,
both types often occur simultaneously, when prestructures
made of a material different from the substrate are used,
e.g., gold stripes on a silicon substrate. As we assume no
dynamics of the liquid layer in our model (4) and (5), only
the varying interaction of the monolayer with the substrate
has to be included, which is connected to the disjoining
pressure [41,42]. Therefore, one can model the prestructure
via a spatial modulation m(x,t) of the strength ζ (x) of the
SMC,

ζ (x) = −1

2

[
1 + tanh

(
x − xs

ls

)]
[1 + ρm(x,t)]. (7)

The form of the function m(x,t) mimics the form of the
prestructure. For stripes that are parallel to the meniscus we
use

m(x,t) = tanh

{
10

[
4

∣∣∣∣frac

(
x − vt

Lpre

)
− 0.5

∣∣∣∣ − 1

]}
. (8)

This delivers a kink-antikink train with periodicity Lpre, where
the steepness of the kinks is determined by the constant 10 and
frac denotes the fractional part of the argument. The strength of
the prestructure is determined by the contrast ρ. A sketch of a
resulting strength ζ (x) of the SMC in one dimension is shown
in Fig. 5. Note that the prestructure is fixed to the substrate and
therefore also moves with a velocity v in the reference frame.

The resulting model (4)–(8) is a spatially forced Cahn-
Hilliard equation, which has strong similarities to studies
from the literature [13,14,43]. In [13], a uniformly quenched
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FIG. 5. Sketch of the spatial dependence of ζ (x) defined by
Eqs. (7) and (8) for a prestructured substrate, indicating the local
strength of the SMC. The sketch is only a snapshot as the prestructure
moves with the velocity v to the right.

Cahn-Hilliard model influenced by a resting spatial forcing
was studied, while in [14] a Cahn-Hilliard model subject to
a moving quenching front was discussed. In the latter, also
a modulation of the quenching front position was included.
An extension of [13] towards a moving spatial forcing was
presented in [43]. The model (4)–(8) incorporates aspects of
all the work mentioned, as the pattern formation occurs at
a fixed front defined by the onset of SMC at x = xs and
is influenced by a moving spatial forcing, while the whole
system is also subject to an advection. Although similar,
the front in the model (4)–(8) is not equal to the quenching
front present in [14,43]. A quenching front typically describes
the transition from a one-phase (single-well potential) to
a two-phase (double-well potential) region, while the front
used here is a transition from a symmetric double-well
potential to a tilted double-well potential. Additionally, the
fixed front in combination with the advection is a crucial
aspect of this model, as it selects a distinct wavelength of
the emerging pattern, in contrast to a classical Cahn-Hilliard
model, where no distinguished wavelength exists. That is, the
pattern formation process in the case described here is driven
by the concentration oscillations at the meniscus, which are
subject to the moving prestructure, creating a temporal periodic
forcing. Therefore, one can think of the occurring patterns as
the result of a synchronization process.

In contrast to the work presented in [26], we now investigate
the transfer onto a prestructured substrate and therefore a
nonvanishing contrast ρ �= 0. In this case the k versus v curve
changes by exhibiting jumps to plateaus that correspond to
a wave number commensurable with the wave number of
the prestructure kpre. These plateaus grow with increasing
contrast ρ, as can be seen in Fig. 6. Within these plateaus, the
generated pattern is almost independent of the transfer velocity,
which can reduce the necessary accuracy of the transfer
velocity control in the experimental system. In addition, the
use of a prestructured substrate extends the velocity range
in which periodic structures are generated towards higher
transfer velocities and extends the wave-number range that
is accessible towards higher wave numbers, i.e., smaller
wavelengths, which can be seen at the 1:1 locking plateau.
Both effects enable the production of a broader range of
patterns at a larger range of experimental parameters. Note
that the wave numbers k plotted in Fig. 6 are averaged over
time, because for higher-order locking ratios, such as 2:3, the
resulting pattern can consist of alternating stripes with different
periodicities, which only on average are commensurable with
the prestructure periodicity.
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A good overview of the possible locking regimes can be
gained in an Arnold tongue diagram [2], where the parameter
regions in which locking effects occur are marked as colored
areas in the ρ-v plane, with each color referring to a different
locking ratio (see Fig. 7). Of course the structure of such a
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FIG. 7. (Color online) Arnold tongue diagrams showing the
locking regimes depending on transfer velocity and prestructure
contrast, where different colors correspond to different locking ratios.
The crosses depict the boundaries of the locking regimes. The
wavelength of the prestructure is Lpre = 60 (top) and Lpre = 240
(bottom), corresponding to a wave number kpre = 2π

Lpre
≈ 0.105 (top)

and kpre ≈ 0.026 (bottom).

diagram also depends on the periodicity of the prestructure,
as can be seen in the comparison of the Arnold diagrams for
a prestructure wavelength of Lpre = 60 (top) and Lpre = 240
(bottom). However, common features can be identified, such
as the shape of the 1:2 locking tongue in the Lpre = 60 diagram
and the 2:1 locking tongue in the Lpre = 240 diagram, which
both correspond to stripes with a periodicity of λ = 120.

Despite obvious quantitative differences, the results ob-
tained in the model (4)–(8) are similar to the results obtained
in the full two-component model for the Langmuir-Blodgett
transfer presented in [25]. Both models predict the existence of
similarly shaped locking regimes for various locking ratios at
a broad range of transfer velocities and prestructure contrasts.
The feature of increasing locking domains for increasing
prestructure contrast ρ is also common to both models.
The fact that this model resembles the findings in the full
two-component model additionally clarifies the origin of the
locking effects to be the interaction of the prestructure and the
surfactant monolayer, while the interaction of the prestructure
and the liquid layer seems to have a minor impact. The
similarity of the results also further justifies the use of the
simplified model employed here, as it proofs that it still
captures the important physical effects even for prestructured
substrates.

V. EFFECTS OF PERIODIC PRESTRUCTURES
IN TWO DIMENSIONS

The stable solution types of the one-dimensional system,
i.e., homogeneous transfer of LE layers, alternating stripes
in the LE and LC phase parallel to the meniscus, and
homogeneous transfer of LC layers, are also solutions of the
two-dimensional system (4)–(6) if they are only extended ho-
mogeneously in the new spatial y direction [26]. Furthermore,
for low transfer velocities within the patterning regime, stripes
parallel to the meniscus are unstable and stripes perpendicular
to the meniscus are created and transferred. Due to the periodic
boundary conditions in the y direction, sometimes defects in
the stripe pattern occur if the natural wavelength of the pattern
does not fit the periodicity of the simulation domain. See Fig. 8
for an overview of the possible two-dimensional basic pattern
types.

Considering prestructured substrates in two dimensions,
the results from the one-dimensional system can be directly
reproduced by using stripes parallel to the meniscus as a
prestructure. Snapshots of numerical solutions for different
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FIG. 8. (Color online) Overview of basic pattern types in two di-
mensions on homogeneous substrates (ρ = 0,L = 600). The menis-
cus is located at the bottom of the snapshots, with the transfer direction
going from bottom to top. The patterns correspond to a homogeneous
LC transfer, stripes perpendicular to the meniscus, stripes parallel to
the meniscus, and a homogeneous LE transfer (from left to right).
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FIG. 9. (Color online) Overview of occurring patterns on a pre-
structured substrate with stripes parallel to the meniscus with
Lpre = 200.

transfer velocities v and prestructure contrasts ρ are shown
in Fig. 9, where only solutions homogeneous in the y

direction occur. This means that stripes parallel to the
meniscus are further stabilized by a prestructure with stripes
parallel to the meniscus [44]. This is particularly important
in the lower-velocity part of the patterning regime, where
a transfer onto a homogeneous substrate would result in
stripes perpendicular to the meniscus. That is, the instability
leading to this solution type is suppressed by the use of a
prestructured substrate. Interestingly, there also exist small
parameter regimes (e.g., v = 0.038,ρ = 0.01, not shown)
where the pseudo-one-dimensional patterns are not further
stabilized by a pseudo-one-dimensional prestructure but are in
fact destabilized, so the stripes parallel to the meniscus break
up into smaller domains, which are still roughly aligned in
lines. This is reminiscent of similar results found in the Swift-
Hohenberg equation [12], where a pseudo-one-dimensional
forcing can also destabilize equally aligned stripe patterns,
leading to oblique or rectangular patterns.

In two dimensions the prestructure can also be oriented
differently, e.g., perpendicular to the meniscus. We consider a
prestructure of the form

m(x) = tanh

{
10

[
4

∣∣∣∣frac

(
y

Lpre

)
− 0.5

∣∣∣∣ − 1

]}
. (9)

The transferred patterns are shown in Fig. 10. In this
case a large variety of qualitative different structures can be
generated depending on the transfer velocity v and prestructure
contrast ρ. For low velocities (v = 0.022,ρ = 0.001), stripes
perpendicular to the meniscus are formed, just like in the
case of a homogeneous substrate, but with wavelengths that
have a fixed 2:1 ratio to the wavelength of the prestructure
(Lpre = 200). For increased velocities (v = 0.028), stripes that
are slightly tilted against the prestructure are created. There the
prestructure wavelength or a commensurable ratio of it is not a
favorable wavelength for the system. Therefore, the system
effectively changes the wavelength by tilting the stripes,
similar to the Benjamin-Feir instability mechanism leading
to the zigzag pattern in other pattern-forming systems [45],
while reacting to the prestructure with the y component of
the wave vector. In the case of v = 0.028,ρ = 0.002, the y

component exhibits a 4:1 locking, which can be best seen by
looking at the Fourier transform of the pattern (see Fig. 11,
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FIG. 10. (Color online) Overview of occurring patterns on a
prestructured substrate with stripes perpendicular to the meniscus
with Lpre = 200. A schematic cross section of the prestructure is
shown below the solution panels. The possible patterns comprise
stripes with different orientations as well as regular and irregular
lattice structures.

right panel). While the tilt angle is defined by the ratio of the
wavelength the system favors and the wavelength introduced
by the prestructure, the tilt direction (to the left or the right) is
determined by the initial conditions and is sensitive to slight
perturbations.

Further increased velocities lead to more complex pattern
topologies. For v = 0.034, lattice structures of small domains
in the LC phase are created, where each row is shifted
horizontally by half a wavelength with respect to the previous
row. For higher velocities, this does not hold true and the
LC domains of the patterns are no longer regular, resulting
in irregular looking patterns. However, for some parameter
sets, quite regular rows consisting of irregular domains can be
identified, e.g., for v = 0.046,ρ = 0.002. For high velocities
near the upper boundary of the patterning regime, fully regular
patterns arise again. They consist of domains that are well
aligned in rows and columns and are locked to the prestructure.
They can be understood as a superposition of the natural pattern
in the absence of a prestructure, which are stripes parallel to
the meniscus and the perpendicular stripe pattern induced by
the prestructure.

A comparison of Figs. 9 and 10 exhibits completely differ-
ent behavior of the patterning process, only depending on the
orientation of the prestructure. This reveals the different nature
of the two basic pattern types on homogeneous substrates,
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FIG. 11. (Color online) Oblique stripe pattern arising on a verti-
cally prestructured substrate (Lpre = 200,v = 0.028,ρ = 0.002) and
its Fourier transform. The dominant Fourier modes are integer
multiples of the wave number kpre of the prestructure.
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which are stripes parallel and perpendicular to the meniscus.
Stripes perpendicular to the meniscus occur as a result of
a secondary instability, after stripes parallel to the meniscus
have been formed [26]. Therefore, this instability might be
suppressed more easily by a corresponding prestructure (see
Fig. 9) than the instability leading to stripes parallel to the
meniscus. This could explain the various patterns shown in
Fig. 10, which might result from a competition between the
strong tendency to form stripes parallel to the meniscus for
high transfer velocities and the prestructure that favors stripes
perpendicular to the meniscus.

Notice that a comparison with results for other spatially
forced pattern-forming systems [10,12] reveals interesting
similarities, such as the formation of complex two-dimensional
oblique and lattice patterns as a result of a one-dimensional
spatial forcing. This is notable, as Cahn-Hilliard models
generally have no intrinsic critical wave number, in contrast to
the systems studied in [10,12]. However, in the case described
here, the transfer process included in the Cahn-Hilliard model
acts as a wave-number selection mechanism, leading to the
noticeable similarities to the aforementioned systems.

VI. CONCLUSION AND OUTLOOK

A theoretical investigation of Langmuir-Blodgett transfer
onto prestructured substrates by means of a generalized
Cahn-Hilliard model has been presented. Starting with the
one-dimensional case, we found locking effects of different

order with periodic prestructures. Utilizing these effects, the
patterning process can be controlled more precisely, patterns of
higher complexity can be obtained, and the patterning regime
can be extended to a larger control parameter range.

In the two-dimensional case, prestructured substrates can be
used to stabilize the production of stripes parallel to meniscus,
as well as to enable a variety of different complex patterns, if
the prestructure orientation is changed. Again, locking effects
enable an additional control mechanism over the patterning
process. This concept might be extended to similar systems,
such as orientation control in a quenched system [43].

Towards a more detailed understanding of the processes
in the real experiments one should further investigate the
legitimacy of the assumptions made in the derivation of the
Cahn-Hilliard model used here, in the case of prestructured
substrates. The approximation of a static meniscus might be-
come improper for prestructures, which introduce a wettability
contrast and therefore influence the dynamics of the meniscus.
This falls outside the scope of this paper and is left for future
work.
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