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Symmetries and transport in site-dependent driven quantum lattices
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We explore the quantum dynamics of particles in a spatiotemporally driven lattice. A powerful numerical
scheme is developed which provides us with the Floquet modes and thus enables a stroboscopic propagation
of arbitrary initial states. A detailed symmetry analysis represents the cornerstone for an intricate manipulation
of the Floquet spectrum. Specifically, we show how exact crossings can be converted into avoided ones, while
the widths of these resulting avoided crossings can be engineered by adjusting parameters of the local driving.
Asymptotic currents are shown to be controllable over a certain parameter range.
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I. INTRODUCTION

Periodically driven systems which allow for the extraction
of work out of an unbiased environment are often termed
“ratchets.” Because originally these systems relied on the
rectification of thermal noise they were seen as realizations
of Brownian motors, the corresponding research field being
highly active (see [1] and references therein). Experimentally,
ratchet physics has been explored in a variety of different
setups such as crystals exposed to intense laser fields [2] or
cold atoms loaded into driven optical lattices, and the latter
have proven to be particularly insightful since they allow for a
precise control over the system parameters [3—7]. While some
of these experiments are carried out at moderate temperatures
and allow for a classical treatment [3-5], others could reach
ultracold temperatures and demonstrated the accessibility of
Hamiltonian ratchet setups operating deep in the quantum
regime [6,7]. The experimental advances concerning these
newly realized “quantum ratchets” were accompanied by a
substantial body of theoretical work (see [§—16] and references
therein). Thereby, one of the main achievements was the
classification of the symmetries which need to be broken
in order to allow for the observation of a ratchet current
[17]. Besides that, the discussed phenomena associated with
quantum ratchets were manifold. Examples are the existence
of resonances in the directed current [12,18], the possibility
of tuning the dispersion rate of a wave packet [19], or the
harvesting of Landau-Zener transitions [20]. Another active
subarea of ratchet physics are periodically kicked systems,
which have the advantage of being more accessible from a
theorist’s point of view due to the simpler §-shaped time
dependence. In these, similar effects as for the aforementioned
smoothly driven setups could be observed, such as directed
transport, resonance behavior, and even the acceleration of
ratchet currents [21-25].

In any case, all of the aforementioned works related to
ratchet physics, be it classical, quantum, smoothly driven, or
kicked, are restricted to globally acting driving forces. Over
recent years, however, for classical particles loaded into driven
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lattices, it was shown that a site-dependent driving can add
to the already existing diversity of physical phenomena in
ratchet setups [26-32]. In [26] for example it was shown
how a protocol based on a site-dependent driving leads to
the patterned deposition of particles out of a uniform initial
particle distribution. Furthermore, [27-29] demonstrated the
possibility for particles to undergo conversion processes from
diffusive to regular motion, something explicitly forbidden for
globally uniform driving forces and which leads to a plethora
of nonequilibrium phenomena for the dynamics. Inspired
by these interesting observations, it seems an intriguing
perspective to carry over the idea of a spatially nonglobal
driving from the classical setups to the realm of quantum
ratchets. This is precisely the purpose of this work. An
additional motivation for this project is the development of
cold atom experiments which also deviate from the simple
case of a spatially uniform driving force. A noteworthy idea in
this context is the introduction of subwavelength lattices [33]
which allow for the construction of more complicated unit
cells of the lattice. Full control over each of the lattice barriers
is achieved in experiments with so-called “painted potentials”
[34], even though these are until now restricted to just a few
barriers and do not yet consider extended lattices.

In the present paper we show that for a quantum particle
exposed to a periodically oscillating lattice, the inclusion of
a site-dependent driving indeed leads to interesting phenom-
ena. Such setups are investigated here in the framework of
Floquet-Bloch theory, and we demonstrate how, by breaking
the translational invariance through the local driving, a set
of different symmetry classes for the Floquet-Bloch modes
evolves. This is demonstrated to have significant impact
on the Floquet spectrum where we observe the transforma-
tion from exact to avoided crossings for a deviation from
global towards a site-dependent driving. Even more, we find
that the width of the resulting avoided crossing is controllable
through variation of a single parameter of the local driving.
This is particularly interesting, because the width of avoided
crossings in Floquet spectra of driven lattices is of relevance
for a variety of physical phenomena, two noteworthy examples
being the already mentioned Landau-Zener transitions [18] or
quite generally the diffusion properties of a wave packet [35].
Finally, we show the possibility of a directed current in our
system, even for the case where all individual barriers do not
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break the relevant symmetries. Consequently, the symmetry
breaking becomes a collective phenomenon of the barriers
constituting the lattice.

This work is structured in the following way: In Sec. II
we introduce the setup of the spatiotemporally driven lattice.
In Sec. III we show how a well-known scheme to calculate
the time evolution operator in a periodically driven system
can be extended in order to simulate the time evolution in
a site-dependent driven lattice. In doing so, we also take
the possibility of nonzero quasimomenta into account. In
Sec. IV we perform a thorough symmetry analysis and identify
symmetry classes for the Floquet-Bloch modes, which arise
due to the site-dependent driving. In Sec. V we show how
the existence of these symmetry classes is translated into
properties of the Floquet spectrum. Section VI contains an
investigation of the transport properties of our setup. Finally,
we conclude and provide an outlook in Sec. VIIL.

II. THE SPATIOTEMPORALLY DRIVEN LATTICE

The system under investigation consists of a single quantum
particle in one dimension exposed to a laterally oscillating
lattice of Gaussian potential barriers. Hence the dynamics
obeys the time-dependent Schrodinger equation (TDSE)

oV (x,t
ih% = H(x,0)¥(x,1), (1)
where x and ¢ denote position and time and the Hamiltonian
is given by
H(x,t) = _h_za_z +V, i g SL=d P /A ()
’ 2m 9x? '
§=—00
Here, A, L, m, and V,, are the barrier width, the distance
between the barriers’ equilibrium positions, the particle mass,
and the height of the potential barriers, respectively, while
ds(t) is the driving law. Without loss of generality we
will set m = h =1 in the following. The crucial difference
from Hamiltonians usually studied in investigations of driven
lattices in the quantum regime is that the driving law carries
a barrier index s and thus can be site dependent. Throughout
this work, we employ a cosine driving with equal amplitude
and frequency but with possibly different phases:

d,(t) = A cos(wt + ). 3)

Moreover, we restrict ourselves to sequences of the barrier
phases which periodically repeat themselves after some num-
ber of barriers n,, i.e., we have d; = §;,,,. Because of the
intimate relation between the driving of a lattice site and its
barrier index s, and thus its position within the lattice, we
call a setup with n,, > 1 a spatiotemporally driven lattice. In
contrast, for the case of only a single employed driving law,
i.e.,n, = 1, we say the lattice is uniformly driven. A sketch of
a spatiotemporally driven lattice for the case of three different
driving laws (n,, = 3) is shown in Fig. 1.

In principle one could also imagine more complicated
unit cells containing more barriers or even more complicated
driving laws. The only restrictions that we have to make in
order to employ the computational scheme as presented in the
following section are that the Hamiltonian remains periodic in
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FIG. 1. (Color online) Snapshot of a spatiotemporally driven
lattice consisting of Gaussian barriers of height V,, with lattice spacing
L. Three different driving laws d,(¢) for s = 1,2,3 are periodically
repeated. The shaded barriers indicate the equidistant equilibrium
positions of the barriers.

time and that two neighboring barriers do not have a notable
overlap at any time.

III. COMPUTATIONAL SCHEME:
THE PROPAGATOR METHOD

In this section we develop a computational scheme in the
framework of Floquet-Bloch theory which enables us to prop-
agate an arbitrary initial state according to the Hamiltonian
given by Eq. (2). Our formalism is based on the ideas presented
in [36] (see also [37]), and was originally designed to study
atomic and molecular multiphoton processes. In the following,
we show how the formalism can be extended in order to
describe the dynamics in a spatiotemporally driven lattice
as introduced in the previous section. In doing so, we have
incorporated the possibility of a nonzero quasimomentum as
well as the complex nature of the unit cell which can contain
several barriers, each equipped with a different driving law.

Other ideas as to how Floquet and Bloch theory can
be applied simultaneously to study temporally and spatially
periodic systems have been developed earlier in order to
investigate solids which are exposed to intense laser fields,
for example in the context of higher harmonic generation [38].
However, the computational schemes employed in these works
are tailored towards globally acting ac forces and cannot easily
be adapted to systems with spatially varying driving forces,
such as the spatiotemporally driven lattice.

A. Floquet-Bloch theory

To be self-contained, let us start by summing up the most
important results from Floquet and Bloch theory. Because
the Hamiltonian under investigation is periodic in time with
Hx,t) = H(x,t+T)and T = %’, Floquet’s theorem ensures
that every solution of Eq. (1) can be written as

W, (x,0) = e "' dy(x,1), 4)

where the Floquet mode (FM) ®, respects the periodicity
of the Hamiltonian, i.e., ®,(x,t) = ®,(x,t + T), and ¢, is
a real number often termed the “quasienergy” (QE). It is
straightforward to see that adding or subtracting some integer
multiple of w to the QE while simultaneously multiplying the
FM by an appropriate phase factor leaves the solution of the
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TDSE W, (x,t) invariant. Hence, the QEs can always be chosen
to be within the interval [— %, % .

Knowing the FMs of our system is of particular relevance
because it allows us to compute the time evolution of any initial
state. This is because they are eigenstates of the time evolution

operator U (t,1y) over one period of the driving:
U(T + t07t0)¢a(x,fo) = eiieuTqDO((xvto)a (5)

which follows directly from applying the time evolution
operator U(T + fy,tp) to the solution of the TDSE W, (x,?).
Hence, the stroboscopic time evolution of an arbitrary initial
state can be calculated as [11]

Wx,mT +10) = ) Colto)e ™™ Do(x,10),  (6)

where the C,(#)) are obtained as the overlap of the ini-
tial state with the FM ®,(x,f)). So far we have taken
into account only the temporal periodicity of our sys-
tem. However, the Hamiltonian considered in this work
features spatial periodicity as well, since H(x,t) = H(x +
n,L,t). Accordingly, the FMs can be written in terms of
Floquet-Bloch modes (FBMs) as @, (x,t) = e**¢, (x,1)
with g (X,1) = P (x +npL 1) = ¢ (x,t +T) and k €
[-7/(n,L), + m/(n,L)] being the quasimomentum. The stro-
boscopic time evolution for an initial state [Eq. (6)] becomes
then [11]

V(x,mT + tp)

/L) 4
= [ e Y Conte T . (D)
—m/(n,L) o

B. Evaluation of the time evolution operator

It is apparent that, once the FBMs &, , are known, any
quantum state W(x,m7T) can be propagated stroboscopically
according to Eq. (7). In the following we explain how the
FBMs can be obtained numerically in an efficient way. The
general idea is to make use of the fact that as mentioned
above the FBMs are eigenstates of the one-period time
evolution operator U (T + ty,y). Accordingly, once the matrix
representation of this operator is calculated in some basis it can
be diagonalized and one obtains both the FBMs ®,, , (x,) and
the corresponding QEs €, .

1. The underlying Hilbert space

The first step towards the calculation of the matrix repre-
sentation of the evolution operator, and with this of the FBMs,
is to specify the Hilbert space H in which the solutions of the
TDSE [Eq. (1)] can be represented. It was argued in [39] that
‘H can be composed as a product space of the Hilbert space
of square integrable functions R and of the Hilbert space of
time-periodic functions 7.

In the following we define appropriate bases for R, 7,
and finally for H. The states that we want to represent in
‘H, namely, the FBMs, have to obey Bloch’s theorem. This
imposes the condition that of the square integrable functions
constituting the Hilbert space R we are interested only in
the ones obeying W(x + n,L) = e*“"»LW(x). We can take
this into account by choosing quasimomentum-dependent
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basis vectors (x|u,) = #ei[z”“/ (Lnp)+els for e 7, which
are in accordance with the Bloch theorem since |w,) =
e |u) where (x|u) = (x +n,L|u). Hence, once the time
evolution operator is obtained in this basis and the FBMs
are calculated as its eigenvectors, they will automatically
satisfy Bloch’s theorem because the basis in which they are
expanded does. The inner product in R can be defined as
(flg) = f_oooo dxf*(x)g(x) for | f), |g) € R. For the Hilbert
space of time-periodic functions 7 the inner product is given
by (alb) = + [ dt a*(t)b(t) for |a), |b) € T and the Fourier
vectors (t|n) = /" with n € Z are a natural choice for the
basis vectors.

As mentioned earlier, the entire solution space H of Eq. (1)
can be constructed as the product space, H = R ® 7. Thus, a
possible choice of basis vectors for H is given by the product
basis |u,) ® [n) = |u,n)) and the scalar product associated
with H is

1 T +00
«\yw/»:?/o dt/ dxW* o, OV (x,0). ()

2. The time evolution operator

After we have specified the solution space of the TDSE
we are ready to calculate its solutions, or more precisely its
FBMs. As mentioned before, this can be done by finding the
eigenvectors of the one-period time evolution operator U(T +
10,1o).

It was shown in [36] that the time evolution operator
represented in our basis of R can be calculated for zero
quasimomentum as

Uyt ,10) = (] U(t,10) [v)
+00

D (unle 0 oy, (9)

n=—0o0

where the Floquet operator H(x,t) = H(x,t) — l% was
introduced. Because in this work the authors were interested in
the time evolution of a single atom in a spatially homogeneous
oscillating magnetic field, there was no need for the introduc-
tion of a nonzero quasimomentum. We, however, are interested
in the action of a spatially periodic inhomogeneous potential
and are therefore entitled to consider the case k # 0 as well.
In order to do this, we exploit the fact that states of different
quasimomenta are of course not mixed through the action of
the Hamiltonian. Thus the matrix representation of the time
evolution operator U,,,(t,1y) can be thought of as being a block
matrix, where every block acts only on states with a certain
quasimomentum «. For each of these blocks we introduce
the notation U ,'ju(l,to)- Equation (9) can be adjusted easily, by
replacing the mere plane wave basis |p) with the k-dependent
basis vectors |u, ) introduced in Sec. III B 1. Thus we obtain
for the evolution operator for now arbitrary quasimomentum:

Uy (t,10) = (il U (2,10) [vie)
+00

= D (wenle 0 w0pe™, (10)

n=—oo

which for r = 1y + T is the desired expression for the matrix
elements of the time evolution operator over one driving
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period. In the following we show how Eq. (10) can be evaluated
numerically. To begin with, we divide the interval (tp,to + T')
into N small intervals of length At, thus allowing for a
truncation of the exponential series for sufficiently small Az.
Hence, the quantity of interest becomes the evolution operator
over the jth short time span Ar: Uy = Uk [10 4 jAt,10 +
(j — DAt] for j =1,...,N, while the full operator can be
obtained as the product of all U, ,'i’vj afterwards (we omit the
matrix indices p and v for the sake of clarity):

N
Uty + T.to) = USN(tg) -+ U (00) = [ JU (t9).  (1D)
j=1
From Eq. (10) we get
+0o0o P=Pmax
K,j __ : inwj At (s P
U;LU - pm{nigloo Z ¢ Z p!( lAt)
n=-—00 p=0

X (el Hy (x,t — 10) [v0), 12)

where in a numerical calculation pn,x has to be sufficiently
large to ensure convergence and (. n| H fp (x,1) |v0)) are the
matrix elements of the pth power of the Floquet operator
Hy(x,t). In [36] it was shown how these can be calculated
recursively for k = 0. For nonzero quasimomentum we obtain
(see Appendix A)

(penl HY [v,0)

+Mmax +Mmax

~ Z Z (HAZY’H”,)"'”‘U‘SMM"S""’)

n'=—Nmax L'=—|Lmax
X Qun'| HP ™ v, 0). (13)

Thereby, nmax and pmax have to be sufficiently large to ensure
convergence and H l’jv(”’m) is the matrix element of the (n —
m)th Fourier coefficient of H(x,t) represented in the basis of
R,i.e.,

H "™ = (| H" ™ (x) |ve)

T

1 —iwt(n—m
= |l e HG D ) - (14)
0

It is straightforward to see that the Fourier components of the
Hamiltonian are

1 (2n 2
Hyy" = 3 (n,,_L“ + :c) Suwdno + Vi (15)
with V% = (u,| V™ (x) |v.), where the x dependence can
be omitted since the potential is a function solely of the
position operator and not of its derivatives, and there-
fore Vo™ = (el V(X)) = (] e VO (x)e™ v) =
(ul VO (x) o) = V.

Y

3. The potential energy

So far we have seen how the time evolution operator
U /';v(T =+ t9,1p) for a given quasimomentum « can be calculated
by evaluating the matrix elements of the powers of the Floquet
operator as given by Eq. (13), which in turn requires the
calculation of the Fourier components of the Hamiltonian
via Eq. (15). The remaining task is to compute the Fourier
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components of the potential V™(x), or more precisely their
matrix representations in R: V\%). Note that the formalism
described so far does not distinguish between uniform and
spatiotemporal driving. However, this becomes relevant for
the Fourier decomposition of the potential V) (x) as we shall
see in the following.

Let us start by considering the potential of a single oscillat-
ing barrier which will be denoted by Vsg(x,#) in the follow-
ing. Performing a Fourier transformation yields Vsg(x,?) =

7 o Van (e with Vg (x) = & [ Vsp(x,0)e"!  If we
now include a nonzero initial time #, as well as a possible
phase of the barrier motion of § [cf. Eq. (3)], we get via the

transformation t — ¢ + fy + %

+00
Vsp(x,1) = Z VS(]’;)(x)ei"[w(Hm)H]- (16)

n=—0oo

Apparently, the phase shift § of a barrier leads to a complex
phase factor of ¢/ of the corresponding Fourier coefficient.
For n, barriers each with a different phase §, this generalizes
to

V) =Y Vg (r — xg e @), (17)

s=1
with xg ; = s L being the equilibrium position of the sth barrier.
For the desired matrix representation of this Fourier mode Vlﬁ’}}
this yields (see Appendix B)
p

V,E'L) — Z stg), lwei[n(wz0+5x)+(2n/Ln,,)(,ku)x0,x]’ (18)

s=1

where ng;)’ o = Vs(g)(x) |v) is the nth Fourier component
of a single oscillating barrier represented in our basis of R.

At this point we have all the ingredients to make use
of Eq. (12) in order to determine the one-period time
evolution operator and thus the FBMs, the QEs, and finally
the stroboscopic time evolution of arbitrary initial states via
Eq. (7).

C. Computation for different initial times

The final remark of this section is on the role of the initial
time within the described formalism. Due to the linearity
of the Schrodinger equation, the asymptotic behavior of an
observable in a time-dependent system depends, in general, on
the initial time fy. For example, in the context of ratchet physics
it was shown that the asymptotic transport velocity of an initial
state depends crucially on 7 (see [6] and also Sec. VI). Thus, in
numerical simulations the time propagation typically has to be
performed for many different initial times in order to capture
the full physical behavior. The straightforward way to include
different initial times in the formalism as described above is
to simply plug in the potential V(x,t + #,) into the calculation
of the Fourier components of the Hamiltonian [via Eq. (15)].
The downside of this approach is that the entire formalism to
calculate U (T + ty,tp) has to be carried out for each considered
value of fy, which can be quite time consuming. Fortunately,
there is a much faster way. Within the presented formalism
we have calculated the time evolution operator over an entire
driving period as the product of N operators U*/(t,) where
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each of the U/ (#,) propagates over the small time step At [see
Eq. (11)]. The idea is now to calculate the N operators U~/ (1)
for some value of the initial time, say for 7y = 0. The desired
operator U(T + ty,1o) for arbitrary #; can be obtained simply
as the product of all the U/ (ty = 0), where the dependence
on fy is now captured in the ordering of the operators. More
precisely, Eq. (11) can be rewritten for 0 < #9p < T as

Ut(to + T,tp) = (U~ us e ... usy

Jo—1 N
=[Tvw=0]]vw=0 09
j=1 J=Jo

with jo = [(N/T)ty] where [x] denotes the smallest integer
number larger than x. The obvious advantage is that the
U/*(ty) have to be calculated only for one initial time. After-
wards, the time evolution operators for arbitrary initial times
can be calculated easily by means of matrix multiplication. For
the calculation of the FBMs in the setup of the spatiotemporally
driven lattice, the speedup of this procedure to include the
dependence of the initial time—as compared to the previously
mentioned straightforward way—proved to be significant and
amounted to up to one order of magnitude.

IV. SYMMETRY ANALYSIS

It goes without saying that classifying the symmetries of
a physical system is often helpful in order to understand the
phenomena occurring in it. In the context of quantum ratchets,
for example, how the symmetries of the Floquet operator affect
the possibility of directed particle motion has been extensively
studied [12,17]. Within this section we present the relevant
symmetries of the Hamiltonian and deduce their consequences
for the time evolution operator as well as for the FBMs. As it
turns out, the unitary symmetries corresponding to parity and
spatial shifts as well as the antiunitary time-reversal symmetry
will be of major importance. Hence, our analysis will start
with general remarks on time-reversal and parity symmetry
which are commonly studied in the context of uniformly driven
one-dimensional (1D) lattices [17]. Afterwards, we investigate
the impact of the spatiotemporal driving.

A. Time-reversal symmetry

The Hamiltonian is symmetric under time reversal if
H(x,t) = H(x, —t + ) for some appropriate time shift ,
which we will assume to be zero in the following. Let us start
with investigating the consequences of time-reversal symmetry
for the time evolution operator U(¢,#y). For the simpler case
of zero quasimomentum it was shown in [40] that the matrix
elements of U(T,0) in the plane wave basis as used in this
work obey

U_y_ (T/2,0) = U, (T,T/)2),
U_y—(T,0) = U, (T,0). (20)
Of particular interest is the last named symmetry because it
concerns the time evolution operator over an entire driving pe-
riod, which is the one used to determine the FBMs [see Eq. (5)].

By employing ideas from Sec. III one can readily generalize
this symmetry to nonzero values of the quasimomentum «: At
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the heart of the calculation of the matrix elements of the time
evolution operator as given by Eq. (10) is the calculation of the
Fourier components of the Hamiltonian as given by Eq. (15).
Note that the quasimomentum « enters only in the diagonal
term which is proportional to (% W+ k)*8,,,. Apparently, this
term is invariant under © — —v if and only if we set« — —«
simultaneously. Thus the symmetry generalizes for arbitrary
quasimomentum « to

U (T,0)=U,,(T,0). (21)

—v—p
In fact we find strong evidence that both symmetries as stated

in Eq. (20) are special cases of the more general symmetry
which holds here:

UZy_ () = U (T — 1, T — 1) (22)

with 0 < #; <1, < T. In Appendix C we provide a rigorous
proof up to first order in the expansion of the time evolution
operator, i.e., for pm.x = 1 in Eq. (12). Beyond first order, we
have strong numerical evidence for the validity of Eq. (22).

Finally, we consider the consequence of a time-reversal
symmetry of the Hamiltonian on the FBMs. It was argued in
[17] that these must obey

Dy i (x,1) = 0, P, _ (x,T —1), 0u =%l (23)

For the representation as chosen in this work, this yields for
the components of the FBMs

(4| Po e (x,1)) = B (1) = 06 [ @1 (T —D)]". (24)

B. Parity symmetry

The Hamiltonian is said to be invariant under parity sym-
metry if H(x,t) = H(—x + x,t + T /2) for some appropriate
spatial shift y which we can assume without loss of generality
to be zero. As argued in [40] parity symmetry yields for the
time evolution operator

Us(T,0) =
0

U*,_o(T/2,00US(T/2,0).  (25)

This relation can be of particular use since it allows us to
halve the computational effort. Furthermore, this symmetry of
the time evolution operator leads to a symmetry of the FBMs
[17]:

Dy (x,t) = 04Dy (—x,t +T/2), 04 ==x1. (26)

In analogy to the time-reversal symmetry [see Eq. (24)] this
yields for the components of the FBMs in the representation
introduced in Sec. III

L (1) = 04D, (t +T/2). (27)

C. Parity and time-reversal symmetry

Apparently, there is the possibility for a Hamiltonian to be
symmetric under both parity and time-reversal symmetry. In
this case it obeys H(x,t) = H(—x, — t + 7). The components
of the Floquet modes have to fulfill both Eq. (24) and Eq.(27).
Hence we get

DL (T —1) = oo [®L, (t + T/D)]". (28)
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FIG. 2. (Color online) Absolute value of matrix elements
U,.,(T ,0) of the time evolution operator for « = 0. The phases §, of the
three barriers within one unit cell are (0,0,0) in (a) and (0,7,0) in (b).
The remaining parameters are L = 10, Vo = 1.0, » = 1.0, A = 1.0,
and A = 0.5.

D. Shift symmetry

Finally we turn our focus to the impact of spatiotemporal
driving and investigate its consequences for the time evolution
operator as well as for the FBMs. Let us as an introductory
example consider a lattice with a unit cell which contains
three barriers, i.e., we have n, = 3. We choose for the three
different initial phases §; for s = 1,2,3 in the driving law
[see Eq. (3)] (6; =0, &3, 63 = 0) with 8, € [0,27). Hence,
we obtain a driven lattice where the central barrier of each unit
cell is potentially out of phase compared to its two neighboring
barriers. In the following we try to deduce properties of the
overall structure of the time evolution operator for such a setup.
In doing so, we will show that this “partial shift symmetry
breaking” induced by the complex nature of the unit cell in
a spatiotemporally driven lattice has profound consequences
both on the time evolution operator and on the FBMs.

To get some insight we calculate numerically the matrix
elements of the time evolution operator U,,(T,0) for zero
quasimomentum and for #p = 0. We do this for the case of
a nonzero phase shift of the central barrier of 6, = m and
compare the results to the uniformly driven lattice with §, = 0.
The absolute values of the obtained U,,(T,0) are shown
in Fig. 2. The most intriguing feature is that in both cases
we observe a stripelike structure for the nonzero elements.
In particular, for the uniformly driven case [Fig. 2(a)] we
see that for a fixed value of w, only every third value of v
corresponds to a nonzero matrix element, and vice versa. For
the spatiotemporally driven lattice [Fig. 2(b)] this behavior
persists for elements close to the main diagonal but becomes
less pronounced further away from it, i.e., for larger values of
[ —vl.

In order to understand the overall structure of the two
time evolution operators shown, we consider their different
symmetries under spatial shifts. Obviously both Hamiltonians

J

1
O(x,p,t) = E|<p<x,p>|<1>K>|2

=27 Z (1) o~ (@D /ny Lyptx—pP+il@r [y Lyp-te—plx

m

(7.[0_2)71/4
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obey H(x,t) = H(x +n,L,t) because by construction the
length of the unit cell was chosen to be n,L. However, in
the uniformly driven case, the Hamiltonian additionally obeys
H(x,t) = H(x + L,t), and consequently the time evolution
operator U,,,(T,0) should commute with the operator S* =
e iLP = ¢=L3/9x performing a spatial shift of L. This is
because the FBMs form a complete set and are eigenstates
of both U,,,(T,0) and § L For arbitrary quasimomentum « the
matrix representation of the shift operator S* becomes

S = (tel " ve) = 7T bebs, - (29)

v

Thus the requirement of commutation with S;IivL yields for the
matrix elements U, (T',0) (we omit the argument for the sake

of clarity)
S5EUpy — Uy S5 = 0 _ ooy L
(30)

Apparently, this requires that either U,,,(T,0) =0orpu —v =
n,z for z € 7 and explains the stripelike structure of the time
evolution operator as observed in Fig. 2(a). Arguments along
a very similar line lead to a restriction on the components of
the FBMs @/ (¢). Due to the Bloch theorem the FBMs must

be eigenstates of S* and thus
SEL@Y (1) = e Ol (1) = h, Dk (1) (31)

for some complex eigenvalue A,. This requires that the
prefactor e~>7/"»)% must be independent of p which is true
only if all the nonzero components of the FBM @/ (¢) can
be labeled by u =n,z+q forz € Z andg =0,1, ...

1. The corresponding n, different eigenvalues are A, , =
il /ny)g+Li],

»np -

Although the reported restrictions on the matrix elements
U,, as well as on the FBMs were derived for the uniformly
driven lattice with §, = 0, we see clearly that, for the case of the
evolution operator, this structure survives to some degree even
for the largest possible phase shift of 6, = 7 [cf. Fig. 2(b)].
For decreasing &, we observe that the uniformly driven case is
approached more and more closely.

E. Husimi representations for uniform
and spatiotemporal driving

We conclude the section on the symmetry analysis by
analyzing the consequences of the discussed symmetries on
Husimi representations, which are a very commonly used
tool to obtain a coarse-grained visualization of a quantum
state [41]. The Husimi representation of a quantum state is
defined by the square of the absolute value of its overlap with
a coherent state |p(x,p)) centered around position x, with
momentum p, and with width o [41]. Such a coherent state
can be expressed as (¥|p(x, p)) = (wo2) /4= (—57/20%+ipT,
For a FBM &, (x,¢) with quasimomentum x we can calculate
the Husimi distribution Q,(x, p,t) as

2

/ di ef(xfi)2/202+ipi @, (%,1)

2
(32)
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FIG. 3. (Color online) Husimi distributions in arbitrary units for
o = 0.5 of a FBM at zero quasimomentum in a lattice with n, =3
for four different settings of the barrier phases (81,8,,83): (a) (0,0,0),
(b) (0,7/2,0), (c) (0,7,0), and (d) (0,7, /4). The barrier equilibrium
positions are at x; = —10, x, =0, and x3 = 10. The remaining
parameters are as in Fig. 2.

where we have plugged in the expansion of the FBM &, (x,1) in
terms of our basis of R: @, (x,1) = Y, Pl (r)e 1T/ mpLtelx,
To get some insight, let us consider the Husimi representation
of one specific FBM. This mode, denoted as ®;(x,?), has zero
quasimomentum and is characterized as the FBM with the
largest overlap with a spatially uniform state. It is of particular
importance since it usually also has the largest overlap with
a quantum particle which is initially distributed over many
lattice sites—a situation that is commonly considered both
in theory and in experiments [12]. The Husimi distributions
Q(x,p,t) of ®g(x,t) for t = 0 are shown for different setups
each containing three barriers per unit cell (n, = 3) but with
different settings of the barrier phases (61,8,,83) [cf. Eq. (3)] in
Fig. 3. For the uniformly driven lattice [Fig. 3(a)] we observe
that the Husimi representation is invariant under a spatial shift
of one barrier distance L, i.e., Q(x,p,0) = Q(x + L, p,0). Ap-
parently, this shift symmetry is broken for setups with nonzero
barrier phases [Figs. 3(b), 3(c), and 3(d)]. Additionally, for
the setups with (0,0,0) and (0,7,0) the Husimi distribution is
symmetric with respect to an inversion of momentum, i.e., we
observe Q(x,p,0) = Q(x, —p,0). In the following we argue
how these symmetries of the Husimi representations can be
deduced from the corresponding symmetry analysis.

Let us start with the observed shift symmetry Q(x, p,0) =
Q(x + L, p,0). In fact, it follows directly from the shift sym-
metry of the FBM which obeys &g (x,t) = ®g(x + L,¢) (cf.
Sec. IV D) that the shift symmetry of the Husimi distribution
indeed holds for all times. Likewise, the observed symmetry of
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Q(x,p,0) = Q(x, —p,0) can be understood conveniently with
the help of the above symmetry analysis. By virtue of Eq. (24)
we know that ®{;(0) = [®;"(0)]* which can be shown easily
to imply Q(x,p,0) = Q(x, —p,0). More generally, one can
show from Eq. (32) that the restrictions on the FBMs in the
presence of time-reversal symmetry [see Eq. (24)] yield for
the Husimi representation

QK(-xspvt) = Qik(xv_va - t) (33)

Analogously, the presence of parity symmetry, where the
components of the FBMs obey Eq. (27), implies for the Husimi
representation

QK(X’PJ) = Q_K(_xv_p7t+T/2)‘ (34)

Note that even though we used a particular representation of
the FBMs in order to derive the two latter relations for the
Husimi distribution, these relations themselves must of course
hold for every other representation too. Thus Egs. (33) and
(34) are general results for FBMs in 1D driven lattices with
time-reversal or parity symmetry.

Because the Hamiltonians underlying Figs. 3(a) and 3(c)
with phases (0,0,0) and (0,7,0) respect both time-reversal and
parity symmetry, the Husimi distributions obey Egs. (33) and
(34). The setup with (0,7r/2,0) as used in Fig. 3(b) inherits
only parity symmetry, i.e., the associated Q(x, p,t) obeys only
Eq. (34). Finally, for (0,7,7/4) no symmetry remains.

V. THE FLOQUET SPECTRUM

The quasienergies €, , of the FBMs ®,, ,(x,?) evaluated as
functions of the quasimomentum « constitute the quasienergy
or Floquet spectrum of a periodically driven system. In the
following we investigate the impact of the symmetries as
introduced in Sec, IV on the Floquet spectrum. This question
has been the subject of comprehensive research in the case of
uniform driving (see, e.g., [11,12,17,18]), and we are going to
sum up the most important results. However, our main interest
is in the impact of the partially broken shift symmetry induced
by the spatiotemporal driving. As before we consider as an
exemplary setup a lattice with a unit cell containing three
barriers with phases (§1,62,63).

A. Impact of parity and/or time-reversal symmetry

An extract of the Floquet spectrum for a phase configuration
of (6, =0,6, = 27”,83 = 0) is shown in Fig. 4(a). In this
case the Hamiltonian is invariant under parity symmetry as
introduced in Sec. IV and we observe that €, , = €4, 1.€.,
the spectrum is symmetric with respect to k = 0. In fact it
was argued in [17] that the invariance of the Hamiltonian
under either parity or time-reversal symmetry generally yields
a spectrum which is symmetric with respect to x = 0. In
accordance with this, it is shown how a breaking of these
symmetries by setting a second barrier phase, in this case §3, to
a nonzero value leads to a desymmetrization of the spectrum.
Note that for such a configuration where we fix two barrier
phases to §; = 0 and have arbitrary §,, parity symmetry is
always present for §3 = 0. Thus by changing the value of the
phase of the third barrier 83 from zero, one can very reliably
tune the asymmetry of the spectrum.
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FIG. 4. (Color online) Extracts of the Floquet spectra for differ-
ent setups containing three barriers per unit cell. The three phases
of the barrier driving laws are (a) (0,27/3,683), (b) (0,8,,0), and (c)
(0,0,0). In (c) the spectra for two different global driving amplitudes
are shown. The remaining parameters are as in Fig. 2.

B. The role of shift symmetry and transitions
from exact to avoided crossings

In the following we show how the deviation from a uniform
driving towards a spatiotemporal driving affects the Floquet
spectrum in a unique way. As a model system we consider a
phase configuration of the barriers in a unit cell of (0,6;,0),
where as in Sec. IV D the shift symmetry is said to be “partially
broken” for §, # 0. Representative extracts of the spectrum
for uniform driving (5, = 0) as well as for a spatiotemporal
driving (8, # 0) are shown in Fig. 4(b). The most notable
effect is that the crossings which are exact for the uniform
driving are cast into avoided crossings in the case of the
spatiotemporal driving. At the same time the crossings which
are avoided for uniform driving remain avoided crossings for
8, # 0. Further, we see that at least to a certain degree one can
control the width of the avoided crossing by tuning the phase
of the central barrier 8,. This is best seen for the two crossings
at € ~ 0.275 where the widths can be seen to increase for
increasing 8,. At this point it is worth mentioning that the
widths of avoided crossings in Floquet spectra are crucial for
many nonequilibrium phenomena reported in driven lattice
setups, such as Landau-Zener transitions [18], the diffusion
properties of a wavepacket [35], or the occurrence of an
absolute negative mobility [7]. Hence, the additional flexibility
introduced by the site-dependent driving should contribute
to an increased controllability of the aforementioned effects.
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For comparison we also show the spectrum of a uniformly
driven lattice for two different driving amplitudes A = 1.0 and
A = 1.2 in Fig. 4(c). Apparently, even though the spectrum is
altered significantly by the increased driving amplitude, the
nature of the crossings, i.e., exact or avoided, is not changed.

By means of the symmetry analysis carried out in Sec. IV D
it is quite straightforward to understand why the variation in
the barrier phase 6, leads to a transformation of the crossings
from exact to avoided while the variation in the global driving
amplitude A does not. The key observation lies within Eq. (31),
stating that the FBMs must be eigenstates of the operator
performing a spatial shift of the barrier distance L. As argued,
the allowed eigenvalues for a FBM &, ,(x,?) are then given
by Agq = e 1@T/matel for g = 0,1,...,n, — 1. Thus the
FBMs can be separated into n, different symmetry classes,
each characterized by one of the n, different eigenvalues A, .
According to the noncrossing rule [42] states belonging to
different symmetry classes are allowed to cross, while states
within the same symmetry class cannot. For a nonzero value of
8, the shift symmetry x — x + L gets destroyed and Eq. (31)
becomes invalid. Hence, the FBMs cannot be separated into
different symmetry classes associated with the shift operator
SL and thus they are not allowed to cross anymore. At this
point it is important to note that, even for a partially broken
shift symmetry, the spectrum may still feature exact crossings
due to the presence of different symmetry classes associated
with parity or time-reversal symmetry.

VI. DIRECTED TRANSPORT

In this section, we study the possibility of an asymptotic
particle current in the setup of a spatiotemporally driven lattice.
The appearance of such currents in the absence of any mean
forces has been studied intensively over the last two decades
for uniformly driven lattices (see, for example, [1,9,17] and
references therein). Similarly to the previous sections, we
begin with some general considerations and investigate the
spatiotemporally driven lattice in particular afterwards.

A. Asymptotic currents

Following [12] we define the asymptotic quantum current
as the time-averaged expectation value of the momentum
operator for some initial state |\, (#y)):

di (UDIpIviD).  (35)

)

1
J(to) = lim ——

t—oo t — [0
One of the perks of using Floquet theory in order to study
the dynamics of a time-dependent system is that once the

FBMs are known, the asymptotic current can be calculated
very conveniently as [11,12]

50 = [ di 3 var Custio (36)

where vy, is the averaged momentum of the FBM |®,,)
and Cy,(ty) is the overlap of the initial state with the FBM
| Dy ) at time ¢ = #. For a commonly studied initial state of
a Gaussian wave packet W (x,70) = (mo2)~ /412" these
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two quantities can be calculated as

vom

1 T
= dt q)ou( p q)ou(
= [ aronipion

1 r 2

— dt | — D (¢

TZ/O (anH+K)| e )
i

CO(K(IO) = <\Ij1|©ak)

V20

(6221202 2 )2
— 7_[_1/4 e (0°/2L n,,)(n,,LK+ TT L) CDZK(IO), (37)

2
3

m

where as before the @ () are the components of the FBMs
in our chosen basis, which can be calculated according to the
numerical scheme presented in Sec. III.

B. Symmetries and directed transport

Now that we have seen how the asymptotic current J(¢)
can be expressed through the components of the FBMs &%, ()
we are able to analyze how the symmetries derived in Sec. IV
for the ®%, (7o) are carried over into symmetries of J(f). For a
time-reversal-symmetric Hamiltonian we saw that ® (1) =
+[®," (T — 1)]*. From this and by virtue of Eq. (37) we
readily calculate that vy, = —v4—, Which is in accordance
with the arguments in [17]. For the overlap coefficients Eq. (37)
yields [Ca())]? = |Cyee(T — 1)|?, which ultimately gives

J(t) = =J(T — 1) (38)

from Eq. (36). Analogously, the presence of parity symmetry
induces |Cuc(t)|?> = |Coq—rc(t + T/2)|>. For the asymptotic
currents this results in

J(to) = —J(to + T/2). (39)

Note that in the presence of either time-reversal or parity
symmetry the asymptotic current averaged over the initial time

vanishes, i.e., J = 1/T fOT J(t)dt =0.

C. Transport in the spatiotemporally driven lattice

In the following we demonstrate transport phenomena in
the spatiotemporally driven lattice. As an exemplary setup we
again consider a lattice with three barriers in a unit cell, i.e.,
n, = 3. The phases of the barriers are (5;,6,,63) with §; =0
and 8, = 2m /3.

We calculate the asymptotic quantum current J(#p) numer-
ically for different values of the third barrier phase §3 and for
different initial times #. The results are shown in Fig. 5(a). For
the case of 63 = 0 the Hamiltonian possesses parity symmetry
and thus according to the previous section the asymptotic
current obeys J(fp) = —J(tp + T /2). If 53 deviates from zero,
parity symmetry is absent, which allows for anonzero averaged
current. Interestingly, for the small values of ;3 shown, it seems
that the curve J(#y) is merely shifted by some constant while
the overall shape is approximately independent of §3. This
also matches the observation concerning the variation of the
Floquet spectrum for small deviations from a parity-symmetric
setup [cf. Fig. 4(a)]. In this case, we observed that the spectrum
approximately maintains its overall form, but the symmetry
axis of the spectrum, which is at k = 0 for 3 = 0, is shifted to
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FIG. 5. (Color online) (a) Asymptotic quantum current J (%) for
three different configurations of the barrier phases (0,27/3,83).
(b) Time-averaged quantum current as a function of the third barrier
phase ;. The lines are guides for the eye. The remaining parameters
are as in Fig. 2.

a nonzero « for small nonzero 5. In order to understand how
these two observations could be related, let us consider only the
most populated Floquet mode for our initial state of a Gaussian
wave packet, which for a parity-symmetric setup with §3 = 0
has zero quasimomentum. As a crude approximation, one
can argue that for a small deviation from §3 = 0 this mode
will remain almost unchanged but is shifted to a nonzero
quasimomentum in the same way that the spectrum is. Hence,
the mode picks up a momentum which is related to the shift
of the spectrum and thus related to the value of §3. Furthermore,
the spectrum is of course independent of the initial time and
consequently the shift of the spectrum is the same for every
tg, which by virtue of the previous arguments would explain
why the increase of J(#;) for increasing §3 was to a good
approximation independent of #,.

For larger values of the third barrier phase §3 the simple
picture of a merely shifted spectrum is no longer applicable.
The current averaged over the initial time is shown over the
entire range of §3 in Fig. 5(b), revealing the more complex
behavior at larger 83, such as several sign changes of the
currents which cannot be explained easily be means of simple
symmetry arguments. In fact it was shown in [12] that the
asymptotic quantum current as a function of some system
parameter generally features a highly nontrivial dependence.

VII. CONCLUSION AND OUTLOOK

We have investigated the setup of a quantum particle
in a periodic lattice consisting of driven Gaussian barriers.
Since we allowed for different driving laws which were
spatially periodically repeated, we have been able to design
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lattices with complex unit cells containing differently driven
barriers. Within the framework of Floquet theory, we presented
an efficient numerical scheme that provided us with the
Floquet-Bloch modes for arbitrary quasimomentum. For the
Floquet spectrum we found that the site-dependent driving has
remarkable ramifications. A small deviation from a uniform,
i.e., site-independent, driving was shown to cast exact into
avoided crossings while the quasienergy bands away from
the crossings remained approximately unaltered. The width of
the corresponding avoided crossings could be manipulated by
adjusting parameters of the driving law. Because the presence
of exact and avoided crossings in the Floquet spectrum of
driven lattice systems has been shown in the literature to be at
the heart of many interesting phenomena, such as resonances
in directed particle motion [12], the diffusion of a wave packet
[35], the stimulation of Landau-Zener transitions via external
forces [18], or even the possibility of an absolute negative
mobility [7], this control over the crossing’s widths as achieved
in this work opens up a promising direction of interesting
future research. We could explain the effect of a transition
from a crossing to an avoided crossing as the result of a
breaking of the translational symmetry over the distance apart
of two adjacent barriers. Since this effect was shown to be
symmetry induced it in no way depends on the fine-tuning of
parameters and should be accessible in state-of-the-art cold
atom experiments. Promising experimental techniques for the
realization of the required breaking of translational invariance
are subwavelength lattices where modulations below the
laser’s wavelength can be obtained [33]. Possible setups which
should allow for the phase-modulated driving as studied in this
work are provided by so-called painted potentials where full
control over the motion of each potential barrier is achieved
[34]. Here we showed that directed particle motion can be
generated even in situations where each barrier on its own
does not break the necessary symmetries. Over a certain
regime the resulting currents were shown to be controllable by
engineering the asymmetry of the Floquet spectrum through
parameter variations of the site-dependent driving.
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APPENDIX A: POWERS OF THE FLOQUET OPERATOR

The quantities of interest are the matrix elements of the
powers of H(x,t),1.e., we need to compute {{ji,7| H)’f [vem)).
For p = 0 one simply gets {(n|1|vem)) = 8,,8,, due to the
orthonormality of the basis vectors. For p = 1 we obtain

{pen| Hy(x,1) [vem))

1 /T dt —inwt ( | H( t) . d | ) imwt
— e P X,l)—1— Vg) €
T J ’ a1

(el H"7™ () [ve) + (el ma> [ve) 80

= H;jv(”_m) + M8, 0,4

(Al)
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Matrix representations of higher powers of Hy(x,t) can be
calculated recursively:

(twen] HJ (x,0) [vem)
= (pen| HyGe,)H] ™ (x.1) [vem))
= {enl HpGe,t) lpn") Guin'| HE (x.1) [oem)
wn'

= (HT + neobudu) (wen'| HY ™ @) [uem),
w'n

(A2)

where we have used the completeness of the product basis as
well as Eq. (Al).

APPENDIX B: FOURIER EXPANSION
OF THE POTENTIAL

The Fourier coefficients of the potential V(x) are to be
represented in the basis of R. Again we exploit the fact that
we can omit the k¥ dependence for the operator of the potential
energy, and the calculation becomes

VO = (ul V@) |v)

+o00
_/ dxV(n)(x)ei(h/an)(v—u)x
L)

1 [+ p ) )
z/ de VS(lr;)(x _ xo,s)eln(wtoJr&.\-)el(2n/an)(v7u)x’
—00

s=1

(B1)

where we have used the expression for the Fourier coefficient
from Eq. (17) and as before Vg (x,1) is the potential of a single
oscillating barrier. At this point we make use of the fact that
we have restricted ourselves to setups in which the different
Gaussian barriers have no significant overlap with one another.
Hence we can exchange summation and integration and apply
the coordinate transformation ¥ = x — xq; for each of the n,
integrals:

n,,

1 +o00 ) )
V/EV:)) — Z Z/ dx VS(;;)(X _ xo,s)em(mer&Y)et(Zn/an)(vfu)x
s=1Y7>

np

+o0
= %Z / A5 VS(]’;)(i)ei"(wto-*'lsx)ei(27f/L"P)(V—M)(fC+X0,;)
s=1 Y™

n,,

_ (n)
- Z VSB, uv
s=1

i In@10+8.)+Q2 /Lny ) (v—p)xo.s]. (B2)

APPENDIX C: SYMMETRY OF THE TIME
EVOLUTION OPERATOR

First, we show that the symmetry given in Eq. (22) is
equivalent to the relation

Usl = (U™ (C1)
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for the matrix elements of the time evolution operator over the
Jjth time step as given by Eq. (12) (we omit the dependence on
the initial time 7, for the sake of clarity) and we have adopted
the notation (Ui )* = U, from [12]. As mentioned in the
main text, the time evolution operator over an entire period
of the driving is obtained as the product of the N operators
U,y . For reasons of clarity, we will omit the momentum
indices (u,v) for the time being. In analogy, the time evolution
operator for the time interval (¢;,#,) is given by

.
Ut =[] U, (C2)

J=i

where j; and j, are the numbers of time steps corresponding
to #; and 1, and are given by jj» = [(N/T)t;>]. Now, if we
assume that Eq. (C1) holds we find

N—ji i
UT —1,,T — 1) = l_i U< — lj_[UK,N—j
J=N—=p J=j
Ji J2 *
=[Jw™H*=|]Jv™
J=n j=iji
= [U (t2,11)]™. (C3)

Thus, the symmetry in Eq. (22) follows indeed from
Eq. (C1). However, the validity of Eq. (C1) remains to be
shown.
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To make some progress we restrict ourselves to the first-
order expansion of U,/ given by Eq. (12):

+00
Ukl =" ™ (8080 + i AtHS™)

n=—0oo
+oc> . .
=8 +iAt Y "IN HEY, (C4)
n=-—00

where we have used Eq. (Al) for the matrix elements of
the Floquet operator Hy(x,t). In comparison we obtain for

(U™

Uflc,fj kS — U*K,fj
L

o
+00
. [ — A B
=6y tiAr Y MDA
n=—00
+00
— 8#.11 +iAt Z eznw]AtHf.U(:Z-)
n=—0oo
+00
=8 +iAL Y N HSW
n=—oo
=Uy. (C5)

Here we exploited that Hf’v(:z) = Hl’j’u(”), which follows
directly from Eq. (15), as well as from the fact that the
Fourier components of a time-reversal-symmetric function

obey VW(x) = V(x).
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