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We study two-cluster solutions of an ensemble of generic limit-cycle oscillators in the vicinity of a Hopf
bifurcation, i.e., Stuart-Landau oscillators, with a nonlinear global coupling. This coupling leads to conserved
mean-field oscillations acting back on the individual oscillators as a forcing. A reduction to two effective equations
makes a linear stability analysis of the cluster solutions possible. These equations exhibit a π -rotational symmetry,
leading to a complex bifurcation structure and a wide variety of solutions. In fact, the principal bifurcation structure
resembles that of a 2:1 resonance tongue, while inside the tongue we observe an 1:1 entrainment.
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I. INTRODUCTION

Cluster formation is a well-known phenomenon in systems
of coupled oscillators. It arises in discrete systems of individual
units [1–3] and in spatially extended oscillatory media [4–8].
The common property of clusters in these systems is that
the oscillators separate into distinct groups having the same
properties within. The oscillations in the different groups
are then phase shifted with respect to each other. In the
symmetrical phase cluster state, the phase shifts for n clusters
are given by 2πm/n [2,7,8], where m = 1,2, . . . ,n − 1. Here,
we will treat two-cluster solutions, exhibiting more complex
than simple periodic dynamics. In many cases the amplitude
variations in cluster states are very small and the dynamics can
be approximated by phase models. However, as one prominent
counter example, we present a type of clusters, so-called type
II clusters [9], where essential variations in the amplitudes
occur. They have been described in Refs. [9–12]. In this state
the clusters are a modulation of a homogeneous oscillation, as
visible in Fig. 1(a).

The photoelectrodissolution of n-type silicon [10,13] is an
experimental system exhibiting this type of clustering. Many of
the spatio-temporal dynamics of this system can be modelled
with a complex Ginzburg-Landau equation (CGLE) with a
nonlinear global coupling [11,14]. As the essential ingredient
for the dynamics is this nonlinear global coupling [15], we drop
the diffusive coupling of the CGLE, rendering a mathematical
treatment of the cluster solutions possible. One ends up with an
ensemble of Stuart-Landau oscillators, coupled via a nonlinear
global coupling. In this article, we study this ensemble in order
to understand the experimental cluster dynamics. As we will
see, the coupling leads to a conserved periodic mean-field
oscillation that acts back on the individual oscillators as a
forcing. Reducing the full set of equations to two effective
equations, we describe the case of clustering with two groups.
We show that we end up with an equation possessing the same
(symmetry) properties as the resonantly forced CGLE near a
2:1 resonance [16], which also exhibits cluster formation [17].
The symmetry of this equation leads to a very complex
bifurcation diagram and therefore to a wide variety of different
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dynamical states, in line with results on periodically forced
oscillators near a 2:1 resonance [18,19], with one exception:
inside the locking region we observe an 1:1 entrainment,
despite the bifurcation structure of a 2:1 resonance.

II. STUART-LANDAU OSCILLATORS WITH A
CONSERVATION LAW

Our model consists of N Stuart-Landau oscillators, each of
the form [3,20,21]

d

dt
Wk = Wk − (1 + ic2)|Wk|2Wk, k = 1, . . . ,N, (1)

coupled via a nonlinear global coupling [10,14], yielding:

d

dt
Wk = Wk − (1 + ic2)|Wk|2Wk

− (1 + iν)〈W 〉 + (1 + ic2)〈|W |2W 〉. (2)

Here 〈· · · 〉 describes the arithmetic mean over the oscillator
population, i.e., 〈W 〉 = ∑N

k=1 Wk/N . Taking the average of
the whole equation yields for the dynamics of the mean value

d

dt
〈W 〉 = −iν〈W 〉 ⇒ 〈W 〉 = ηe−iνt . (3)

Therefore, we are dealing with a globally coupled popula-
tion of Stuart-Landau oscillators with a conservation law for
the mean-field oscillation. This conservation is an important
property of the dynamics of the experimental silicon system.
Here, we achieve it by the specific design of our coupling
function. This mean-field oscillation also acts as an intrinsic
self-forcing on individual oscillators. We will see that this
indeed leads to a so-called Arnold tongue, a tongue-shaped
region in which oscillations are entrained to the driving. In
general, the dynamics of the oscillator population, Eqs. (2), is
determined by three parameters, namely c2, ν and η.

Equations (2) are equivariant to the direct product SN × S1

of the symmetry group SN of permutations of N elements and
the circle group S1, describing the global phase invariance.
The equivariance to SN is obvious, as a permutation of
indices in Eqs. (2) leaves the whole set of equations invariant.
Nevertheless, particular solutions are not required to possess
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FIG. 1. (Color online) Cluster dynamics in the Stuart-Landau
ensemble. Solid lines describe the trajectories of individual oscillators
and dots mark their positions in a snapshot. Dashed lines describe the
oscillation of the mean-field 〈W 〉. (a) Modulated amplitude clusters
for c2 = −0.6, ν = 0.1, and η = 0.7. Here, the subgroups perform
additional oscillations around their mean-field η exp(−iνt) given in
Eq. (3). (b) Amplitude clusters for c2 = −0.6, ν = −1.5 and η = 0.9.
The main difference between the two groups is the difference in
radius of their respective limit cycles. The phase shift is much smaller
than π .

the full SN × S1 symmetry, only all solutions together exhibit
it [22].

We numerically solved Eqs. (2) using an implicit Adams
method with timestep dt = 0.01 for N = 1000 oscillators,
starting from random initial conditions on the real axis
fulfilling the conservation law. For certain parameter regimes
the whole population divides into two subgroups of sizes N1

and N2 with N1 + N2 = N . Thus, the full symmetry is reduced
to SN1 × SN2 × S1 ⊆ SN × S1. For η > 0 one then observes
modulated amplitude and amplitude clusters as shown in
Figs. 1(a) and 1(b), respectively. These cluster dynamics are
the most commonly observed coherent solutions.

In the modulated amplitude cluster state the subgroups
oscillate, in addition to the mean-field oscillation (shown as
a blue dashed line), around their mean field. This leads to
a repeated passing by each other of the subgroups in the
complex plane. Similar states were observed in continuous
systems in Refs. [5,9–12,23]. In the amplitude cluster state
the two groups oscillate on different limit cycles separated
by an amplitude difference, while the phase shift is much
smaller than π [21]. In the next section, in order to treat
these solutions mathematically, we reduce the full set of N

equations in Eqs. (2) to two effective equations modelling the
two subgroups.

III. MODULATED AMPLITUDE CLUSTERS IN THE
TWO-GROUPS REDUCTION

We will now focus on modulated amplitude clusters as
presented in Fig. 1(a). As is visible from the figure, the
ensemble splits into two groups, each performing amplitude-
modulated oscillations in the complex plane. To analyze these
dynamics, we reduce the N equations of the Stuart-Landau
ensemble, Eqs. (2), to two effective equations. Therefore, we
assume two groups W1 and W2, each synchronized, with sizes
N1 and N2, respectively. The average over the entire ensemble

is then given by

〈W 〉 = 1

N
(N1W1 + N2W2) , (4)

and analogously for 〈|W |2W 〉. Inserting these expressions into
Eqs. (2) results in

d

dt
W1 =

(
1 − (1 + iν)

N1

N

)
W1

− (1 + ic2)

(
1 − N1

N

)
|W1|2 W1

− (1 + iν)
N2

N
W2 + (1 + ic2)

N2

N
|W2|2 W2, (5)

where the same holds for W2 with indices 1 and 2 interchanged.
Thus, we reduced the set of N equations to two effective
equations and can now perform a linear stability analysis of
the synchronized state. By setting W1 = W2 we obtain

d

dt
W1 = d

dt
W2 = −iνW1 = −iνW2, (6)

and thus

W1 = W2 = ηe−iνt = W0, (7)

as expected. Since the conservation law, Eq. (3), still has to
be fulfilled, the synchronized solution is given by W0. We
define deviations w1 and w2 from W0 via W1 = W0(1 + w1)
and W2 = W0(1 + w2). To fulfill the conservation law,

1

N
(N1w1 + N2w2) = 0 (8)

holds. For symmetric cluster states N1 = N2 = N/2 one
obtains for w1 and w2, when using the condition in Eq. (8),

d

dt
w1 = (μ + iβ)w1 − (1 + ic2)η2(|w1|2w1 + w∗

1),
(9)

w2 = −w1,

where μ = 1 − 2η2, β = ν − 2η2c2 and the asterisk denotes
complex conjugation.

We note here already that, as a result of the self-forcing
in the system, the equation for w1 is a forced CGLE near
a 2:1 resonance [16] without the diffusive coupling. The
synchronized solution W0 possesses the symmetry S2 × S1

in the present two-oscillators description. A bifurcation with
emanating solution branches exhibiting the reduced symmetry
S1 (separation into two subgroups) has to have the following
symmetry property: the sum of the two solutions W1 + W2 is
required to possess the full symmetry S2 × S1 (W1 is on one
of the solution branches and W2 on another). Therefore, the
symmetry breaking parts w1 and w2 have to cancel each other,
i.e., w1 = −w2, in line with Eq. (8). This symmetry condition
is fulfilled by three types of bifurcations, namely the pitchfork,
the Hopf and the period doubling bifurcations. The two new
solution branches emanating from the bifurcations are phase
shifted by π . We will see that we indeed find the pitchfork and
the Hopf bifurcation in the following linear stability analysis
of the synchronized state, which is given by w1 = w2 = 0.
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FIG. 2. (Color online) Emergence of modulated amplitude clus-
ters in the full ensemble for c2 = −0.6, ν = 1.2, and η = 0.7.
(a) Modulated amplitude clusters in the original frame. (b) Two limit
cycles in antiphase and the fixed point in the origin (red square) in the
rotating frame of wk defined via Wk = W0(1 + wk). The limit cycles
have different radii as the whole population is divided into subgroups
with N1 �= N2.

The linear stability of this state is determined by

d

dt

(
w1

w∗
1

)
=

(
μ + iβ −(1 + ic2)η2

−(1 − ic2)η2 μ − iβ

)(
w1

w∗
1

)
. (10)

The eigenvalues of the Jacobian matrix are given by

λ± = 1 − 2η2 ±
√

η4
(
1 − 3c2

2

) + 4νc2η2 − ν2. (11)

Thus, we find a secondary Hopf bifurcation in this system at
η = ηH = 1/

√
2 for (1 − 3c2

2)/4 + 2νc2 − ν2 < 0. This Hopf
bifurcation is the origin of the modulated amplitude clusters
shown in Fig. 1(a). In order to visualize this, we use the
ansatz Wk = W0(1 + wk) in the full system [Eqs. (2)] for the
analysis of simulation results. For the modulated amplitude
clusters shown in Fig. 2(a), the dynamics of wk are depicted in
Fig. 2(b).

One can clearly identify the two limit cycles of the two
subgroups (blue solid lines). The green dots mark a snapshot of
the dynamics. In this reference frame the phase shift between
the two groups is given by π . The two limit cycles are not
identical, since the full system is divided into two groups with
different sizes, i.e., N1 �= N2. This results in different radii
of the limit cycles in order to fulfill the condition in Eq. (8)
and thus to fulfill the conservation law in Eq. (3). The red
square marks the position of the synchronized solution. These
observations confirm the result of the two-groups analysis
that modulated amplitude clusters arise in a secondary Hopf
bifurcation.

Using the eigenvalues in Eq. (11) we can determine the
Hopf frequency ωH to be

ωH = Im
(√

η4
(
1 − 3c2

2

) + 4c2η2ν − ν2
)
. (12)

Next, we investigate the frequencies occurring in the dynamics
in the original frame. Therefore, we calculate the cumulative
power spectrum. To obtain this, one first has to Fourier
transform all individual time series Re Wk of the oscillators and
then average the resulting squared amplitudes |ak(ω)|2, where
k is the oscillator index. It is thus given by S(ω) = 〈|a(ω)|2〉.
An exemplary cumulative power spectrum for the dynamics

ω

10−3

100

103

106

|a(
ω
) |2

|ωH + ν||ωH − ν| ν

FIG. 3. (Color online) Cumulative power spectrum for the full
system at parameter values c2 = −0.6, ν = 1.2, η = 0.7. The major
peaks in this spectrum can be traced back to linear combinations of the
Hopf frequency ωH in Eq. (12) and the frequency of the mean-field
oscillation ν as indicated by the vertical lines [see text and Eq. (15)].

in the modulated amplitude cluster state (in the full system) is
shown in Fig. 3 and it exhibits several peaks.

The strongest peak is at the frequency ν of the mean-field
oscillation. As we will show in what follows, the next two
highest peaks are given by ±(ν − ωH ) and ±(ν + ωH ) as
indicated by vertical lines in the figure.

In the vicinity of the Hopf bifurcation, the limit-cycle
solution for w1 in Eq. (9) is given by

w1 = w0
+eiωH t + w0

−e−iωH t , (13)

where w0
± are complex-valued constants. In the original frame

this results in

W1 = ηe−iνt (1 + w0
+eiωH t + w0

−e−iωH t ),
(14)

W2 = ηe−iνt (1 − w0
+eiωH t − w0

−e−iωH t ).

Thus, we obtain frequency contributions in the cumulative
power spectrum at

± ν (∝ η2),

± (ν − ωH ) (∝ |ηω0
+|2), (15)

± (ν + ωH ) (∝ |ηω0
−|2),

as can be seen for the three major peaks in the power spectrum
in Fig. 3. The other peaks are presumably given by higher
resonances. Note that for a circular limit cycle ω0

+ or ω0
−

equals zero leading to vanishing contributions at ± (ν − ωH )
or ± (ν + ωH ), respectively.

To further check the validity of the frequencies, obtained via
a reduction to two effective equations and via linear stability
analysis, we compare them with the frequencies in the full
system for several values of ν. The results for |ν + ωH | (blue,
dashed) and |ν − ωH | (red, solid) are shown in Fig. 4(a). In
Fig. 4(b) we show the comparison for |ν − ωH | in more detail.

The simulation results shown are for η = 0.7, which is close
to the value at the Hopf bifurcation ηH = 1/

√
2 ≈ 0.707. As

visible in the figure, the results of the linear stability analysis
(lines), Eqs. (15), reproduce the simulation results (symbols)
very well. The nearly constant shift visible in Fig. 4(b) is due
to the finite distance to the Hopf bifurcation.
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(a)

(b)

FIG. 4. (Color online) Comparison of the calculated peak fre-
quencies with the frequencies in the full system for c2 = −0.6
and η = 0.7. The Hopf bifurcation occurs at ηH = 1/

√
2. (a) Both

frequencies |ν + ωH | in blue (dashed) and |ν − ωH | in red (solid)
versus ν. Lines describe the results of the linear stability analysis,
Eqs. (15), and symbols mark the simulation results. (b) For more
details only |ν − ωH | vs. ν.

We conclude that the modulated amplitude clusters arise
through a Hopf bifurcation in the rotating frame with frequency
ν, which gives rise to the amplitude modulations in the
full system. The dynamics on the created limit cycle are in
anti-phase as to fulfill the conservation law, which is also
in line with our symmetry considerations above. Since the
Hopf bifurcation occurs in the rotating frame, it is in fact
a secondary Hopf bifurcation. The dynamics in the original
frame is thus quasiperiodic. This is also obvious from the
continuous frequency curves in Fig. 4.

IV. AMPLITUDE CLUSTERS IN THE TWO-GROUPS
REDUCTION

The modulated amplitude clusters described in the pre-
ceding section arise for certain parameters through a Hopf
bifurcation. This motion on a torus can be destroyed through
a saddle-node bifurcation leading to the amplitude clusters
shown in Fig. 1(b). These amplitude clusters are solutions of
Eq. (9) in the form w1 = R exp (iχ±) [16], as this results in
|W1| = η

√
1 + 2R cos χ± + R2. With χ+ = χ− + π the two

solutions describe limit cycles with different radii. Inserting
this ansatz into Eq. (9), separating real and imaginary parts
and assuming R �= 0 one obtains

μ − η2R2 − η2 cos 2χ − c2η
2 sin 2χ = 0,

(16)
β − c2η

2R2 − c2η
2 cos 2χ + η2 sin 2χ = 0.

This set of equations can be solved for R and χ and one finds
two pairs of solutions [24,25]:

R(1) =

√√√√μ + c2β −
√

η4
(
1 + c2

2

)2 − (c2 − ν)2

η2
(
1 + c2

2

) ,

χ
(1)
− = 1

2
arcsin

(
c2 − ν

η2
(
1 + c2

2

)
)

, (17)

χ
(1)
+ = χ

(1)
− + π,

R(2) =

√√√√μ + c2β +
√

η4
(
1 + c2

2

)2 − (c2 − ν)2

η2
(
1 + c2

2

) ,

χ
(2)
− = π

2
− 1

2
arcsin

(
c2 − ν

η2
(
1 + c2

2

)
)

, (18)

χ
(2)
+ = χ

(2)
− + π.

We calculate the boundaries η(c2,ν) of their existence and
obtain

R(1), χ
(1)
± exists for η > ηSN & η < ηc & η < η−

P ,

(19)

R(2), χ
(2)
± exists for

{
η > ηSN, for η < ηc,

η−
P < η < η+

P , for η > ηc.

(20)

ηSN (c2,ν), ηc(c2,ν) and η±
P (c2,ν) are given by

ηSN =
√

|c2 − ν|
1 + c2

2

,

ηc =
√

1 + c2ν

2
(
1 + c2

2

) , (21)

η±
P =

√√√√2(1 + c2ν) ±
√

4(1 + c2ν)2 − 3
(
1 + c2

2

)
(1 + ν2)

3
(
1 + c2

2

) .

Linear stability analysis reveals that the amplitude cluster
solutions R(1,2) exp(iχ (1,2)

± ) arise as two saddle-node pairs
at ηSN , thereby destroying the limit cycle of the modu-
lated amplitude clusters in a saddle-node of infinite period
bifurcation (sniper). Solution (1) is a saddle and solution
(2) is a stable node. Both solutions (1) and (2) can be
destroyed in pitchfork bifurcations with the synchronized
solution (η±

P ). Note that ηc is not a bifurcation line. Below ηc

the pitchfork involves R(1) exp(iχ (1)
± ) and above ηc it involves

R(2) exp(iχ (2)
± ). Furthermore, the crossings of ηc and η−

P mark
degenerate pitchfork bifurcations. For details see the next
section. In essence, the amplitude clusters emerge in a sniper
bifurcation when coming from a parameter region, where
the modulated amplitude clusters are stable. And they arise
in a pitchfork bifurcation when coming from a parameter
region, where the synchronized solution is stable (in a small
region they also arise via a saddle-node bifurcation; see next
section). A coarse bifurcation diagram is depicted in Fig. 5
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FIG. 5. (Color online) Coarse bifurcation diagram for the two-
groups reduction. Shown is the amplitude η of the mean-field
oscillation versus its frequency ν for fixed c2 = −0.6. The stable
dynamical states are indicated in the figure. The Hopf bifurcation
(green) is given by η = ηH , the pitchfork (blue) is described by η±

P

and the sniper (red) occurs at ηSN , see Eqs. (21). The dynamical states
along the path A to E are depicted in Fig. 6. The codimension-two
points are two Takens-Bogdanov points of π -rotational symmetry
(TB±

π ) and two degenerate pitchfork bifurcations (DPF). The details
of the bifurcation structure, which have been omitted here, including
the unfoldings of the TB±

π points, will be discussed in Sec. V.

with illustrations of the dynamical states along the path A to
E given in Fig. 6.

The overall structure reminds of a so-called Arnold tongue
and we will discuss the relation to the locking behavior of
forced oscillatory media in Sec. VI. Inside the tongue one
observes amplitude clusters. The tongue is bounded by a sniper
bifurcation for small η values and by a pitchfork bifurcation
for high η values. A Hopf bifurcation separates the region
of modulated amplitude clusters from the region of stable
synchronized solutions. To illustrate the different dynamical
behaviors in the distinct regions, we go through the path A
to E (for comparison see Fig. 6): Starting at point A with the
synchronized solution, the Hopf bifurcation creates the limit
cycle for the modulated amplitude clusters in B. This limit
cycle is then destroyed by the sniper bifurcation resulting
in amplitude clusters in C. Approaching the outer pitchfork
bifurcation brings the fixed points of the amplitude clusters
closer together in D. Note that in the pitchfork between C and
D the unstable solutions R(1) exp(iχ (1)

± ) meet the synchronized
solution, thus the stable solutions R(2) exp(iχ (2)

± ) are unaffected
by the pitchfork bifurcation. At the upper pitchfork the fixed
points of the amplitude clusters merge with the synchronized
solution with what we end up in E. Note that, as w2 = −w1 in
Eq. (9), both groups undergo the bifurcations simultaneously

pf

h

sn

sniper

het

DPF

SNL

TBπ
+

1
2 3

4

5

6

a

1 2

3 4

5 a

6

FIG. 7. Sketch of the local bifurcation structure around the TB+
π

point with corresponding phase portraits. The involved codimension-
one bifurcations are: pitchfork (pf), saddle-node (sn), Hopf (h),
saddle-node of infinite period (sniper), and heteroclinic (het). The
codimension-two bifurcations are: Takens-Bogdanov TB+

π , degener-
ate pitchfork (DPF) and saddle-node loop (SNL). Stable fixed points
are marked by filled circles and unstable ones by empty circles. Stable
limit cycles are drawn with a solid line and unstable limit cycles with
a dashed line.

and the second group always realizes the π -rotated solution of
the first group.

Furthermore we encounter three codimension-two bifurca-
tions, namely a degenerate pitchfork (DPF) and two types of
Takens-Bogdanov points TB±

π . The unfoldings of the Takens-
Bogdanov points are presented in the next section. Note that
due to the symmetry present in the system, the unfoldings are
much more complicated than in the standard case.

This diagram is strictly valid only for the two-groups
reduction. It clarifies, which bifurcations lead to the amplitude
and modulated amplitude clusters. The diagram is applicable
whenever the full ensemble is separated into two subgroups.

V. DETAILS OF THE BIFURCATION DIAGRAM

The codimension-two bifurcations TB±
π present in the

coarse bifurcation diagram in Fig. 5 have rather complex
unfoldings. Using the software AUTO-07P for numerical con-
tinuation, we could identify the local and global bifurcations
occurring around the TB±

π points. The unfolding of the plus
case, TB+

π , is shown schematically in Fig. 7, while the minus

A B C D E

FIG. 6. (Color online) Simulation results for the two-groups reduction in the original frame illustrating the dynamical states along the path
A to E in the bifurcation diagram in Fig. 5.
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FIG. 8. Sketch of the local bifurcation structure around the TB−
π

point with corresponding phase portraits. The involved codimension-
one bifurcations are: pitchfork (pf), saddle-node (sn), Hopf (h),
saddle-node of infinite period (sniper), saddle-loop (sl), and saddle-
node of periodic orbits (snp). The codimension-two bifurcations are:
Takens-Bogdanov with symmetry (TB−

π ) and without symmetry (TB),
saddle-node loop (SNL), degenerate pitchfork (DPF), and neutral
saddle-loop (NSL). Here, a TB and a SNL belonging to different
solutions coincide, for details see text. Stable fixed points are marked
by filled circles and unstable ones by empty circles. Stable limit cycles
are drawn with a solid line and unstable limit cycles with a dashed
line. Note that the bifurcation structure in the shaded box is not a
result of the continuation as this diverges. It is consistent with the rest
of the diagram, but there might be other bifurcations involved, see,
e.g., Ref. [18].

case, TB−
π , is presented in Fig. 8. Sketches of corresponding

phase portraits are also depicted in the figures.
In the TB+

π point a pitchfork, a Hopf and a heteroclinic
bifurcation meet. In our system, we find in the vicinity also
a saddle-node bifurcation, which meets the pitchfork in a
degenerate pitchfork bifurcation (DPF) and the heteroclinic
in a saddle-node loop (SNL) bifurcation, see Fig. 7. The
DPF turns the pitchfork from supercritical to subcritical and
the TB+

π changes it back to supercritical. The SNL turns the
saddle-node into a saddle-node of infinite period (sniper).

When following the numbering in Fig. 7, we start with a
stable focus (1), then cross the saddle-node, thereby creating
two saddle node pairs (2). Then, we cross the subcritical
pitchfork and end up in (3) with two stable nodes and a saddle.
Next, we cross the pitchfork on the supercritical side, yielding
two saddle node pairs with an unstable focus in between
(4). Note that the foci involved in the pitchfork bifurcations
change to nodes just before the bifurcations occur. Crossing the
heteroclinic bifurcation creates a stable limit cycle around the
unstable focus in the center (5), which emerges from a double

heteroclinic connection at the bifurcation (a). Finally, the
saddle node pairs are annihilated in a saddle-node bifurcation
and we are left with a stable limit cycle around an unstable
focus in (6).

The local bifurcation structure around the TB−
π point is more

complex. In the TB−
π point, a pitchfork, a Hopf concerning

the synchronized solution, a Hopf concerning the amplitude
cluster solutions, a saddle-loop and a saddle-node of periodic
orbits (snp) meet. The saddle-loop line is in fact the coinci-
dence of two saddle-loop bifurcations, one which describes
the saddle-loop bifurcation of the limit cycles related to the
amplitude cluster solutions (small limit cycles in Fig. 8) and
one which concerns the modulated amplitude cluster solutions
(outer limit cycles in Fig. 8). With this, we can understand
the codimension-two bifurcations occurring in the vicinity of
the TB−

π point: the snp and the two saddle-loops meet first in
a neutral saddle-loop (NSL) and later the saddle-loops meet
with the Hopf and the saddle-node in a Takens-Bogdanov
(TB) without symmetry and a saddle-node loop (SNL). The
saddle-loop corresponding to the amplitude cluster solution
ends in the TB point and the other saddle-loop turns the
saddle-node into a saddle-node of infinite period (sniper) at
the SNL. Note that this region of the bifurcation diagram, i.e.,
the shaded region, is not a result of the continuation as this
diverges. It is consistent with the rest of the diagram, but there
might be other bifurcations involved, see, e.g., Ref. [18]. In the
degenerate pitchfork (DPF) the saddle-node bifurcation meets
the pitchfork.

Again we can go through the diagram step by step by
following the numbering in Fig. 8: We start with a stable
focus (1) and cross the Hopf to obtain a stable limit cycle
around an unstable focus (2). Then, the subcritical pitchfork
turns the unstable focus into a saddle point and creates
two unstable nodes (3). The subcritical Hopf creates two
unstable limit cycles (4), which form homoclinic loops when
meeting the manifolds of the saddle point in the saddle-loop
bifurcation (a). This saddle-loop bifurcation coincides with a
saddle-loop bifurcation of an unstable modulated amplitude
cluster solution, which is given by the unstable limit cycle in
(5). Finally, the stable and the unstable limit cycles annihilate
each other in a snp, and a pair of stable nodes (describing the
amplitude cluster solutions) with a saddle point in between
remains (6).

In fact the TB±
π points are Takens-Bogdanov points of π -

rotational or cubic symmetry [26,27]. This is the symmetry
present in Eq. (9). They possess the same principal bifurcation
structure as the second order resonance points found in the
investigation of periodically forced oscillators [18]. However,
some bifurcations are different, as we will discuss in the next
section.

VI. CONCLUSIONS

We could unravel the complex bifurcation structure ex-
hibited by the two-cluster solutions of an ensemble of
generic limit-cycle oscillators near a Hopf bifurcation. The
conservation of the mean-field oscillation leads to mainly
two bifurcations: a Hopf bifurcation yielding the modulated
amplitude clusters and a pitchfork bifurcation resulting in
common amplitude clusters. The meeting of these two
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gives rise to two Takens-Bogdanov points of π -rotational
symmetry and therewith to a wide variety of dynamical
states.

Besides the application to the experimental system, for
which the model was originally proposed, namely the pho-
toelectrodissolution of n-type silicon [10,11,13], there is
a strong connection to resonantly forced oscillatory me-
dia [7,8,16,17,28–33]. The symmetry properties of the reduced
dynamics in Eq. (9), namely the cubic and π -rotational
symmetries, are also present in the CGLE with resonant forcing
near a 2:1 resonance. In fact, there is a linear transformation
that transforms the equation for w1 in Eq. (9) to the form given
in, e.g., Ref. [16] [see Eq. (10) therein] of the resonantly forced
CGLE, when omitting the diffusive coupling. As for forced
oscillatory media, we observe an Arnold tongue, a region of
frequency locking, in the bifurcation diagram in Fig. 5. The
tongue starts at ν = c2, i.e. at a value of the driving frequency
ν equal to the natural frequency of the Stuart-Landau oscillator
c2. The locking region is bounded by the saddle-node, sniper
and pitchfork bifurcations. The dynamics lock to the frequency
ν of the mean-field oscillations, i.e., to the frequency of
the driving. Thus, we observe an 1:1 locking instead of a
2:1 locking, which one would expect, since we observe the

bifurcation structure of a 2:1 resonance. This is reflected in
the occurrence of a pitchfork bifurcation instead of the period
doubling bifurcation, see Ref. [18]. Furthermore, as in the
forced CGLE, the locked solutions do not lie on a torus, since
the torus is destroyed in a sniper bifurcation.

In our system the forcing is in fact a self-forcing, as the
dynamics produce a mean-field oscillation, which is conserved
and then acts back as a forcing on the system. This self-forcing
renders the cluster solutions possible. But note that it is the
mathematical structure of a 2:1 resonance that is responsible
for the cluster formation. We observe an 1:1 locking and in
general this would not give rise to cluster formation.
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