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Influence of self-steepening and intrapulse Raman scattering on modulation instability
in oppositely directed coupler
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We investigate the modulation instability in oppositely directed coupler in the presence of higher-order effects.
Using linear stability analysis, we obtain an expression for instability gain. Special attention is paid to find
out the influence of self-steepening effect and intrapulse Raman scattering on modulation instability. The study
shows that in normal dispersion, regime instability gain exists even if perturbation frequency (�) is zero. But
the instability gain at � = 0 is zero, when the dispersion is anomalous. Moreover, self-steepening effect and
intrapulse Raman scattering form new instability regions and, hence, provide a new way to generate solitons
or ultrashort pulses. Further, efficient control of modulation instability by adjusting self-steepening effect and
intrapulse Raman scattering also successfully demonstrated.
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I. INTRODUCTION

Nonlinear directional couplers (NDCs) have attracted
widespread interest due to their potential applications in signal
processing, including optical switching and logic operation
[1,2]. In 1982, Jensen first suggested the model of nonlinear
coupler, which consists of two wave guides in close proximity,
which can allow the possibility of desired redistribution of
waves between the channels [1]. Tunnel penetration of electro
magnetic wave from one channel to another channel of coupler
causes coupling between the wave guides after a particular
distance known as coupling length and direction of light
propagation is preserved [3,4]. In the case of conventional
couplers, propagation of the input and output fields are in
the same direction [1,5]. If any one of the channel of NDCs
is replaced with negative index material then the coupler is
known as oppositely directed coupler because the direction of
input and output optical modes become opposite [6]. So it can
act like a mirror [7]. Oppositely directed couplers exhibit the
phenomenon of optical bistability and admit gap solitons due
to an effective feedback mechanism in negative index channel
arising from the oppositely directed phase velocity and energy
flow [6]. Based on the model of coupled modes, the nonlinear
propagation of electromagnetic wave in oppositely directed
coupler has been theoretically investigated [8].

The phenomenon of modulation instability (MI) was first
discovered by T. Brooke Benjamin and Jim E. Feir for
periodic surface gravity waves [9]. Now it has been widely
observed in most of the nonlinear systems like nonlinear optics
[10–14], plasma [15–17], and Bose Einstein condensates
[18–20]. MI arises due to an interplay between nonlinearity
and group velocity dispersion in temporal domain and due
to interaction between nonlinearity and diffraction in spatial
domain [21]. During this process small perturbation imposed
on a continuous wave grows exponentially and this leads to
beam breakup in either space or time. MI in conventional
NDCs has been investigated for both normal and anomalous
group velocity dispersion regimes and it is reported that even
at vanishing modulation frequency instability gain exists [5].
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MI in oppositely directed coupler were also discussed and
results are quite different from that observed in conventional
couplers made up of same materials [22,23]. It has been found
that MI in oppositely directed coupler is highly affected by
the ratio of forward and backward propagating wave’s power
and nonlinear parameters [22]. Unlike normal dispersion
regime, MI generation is thresholdless for ratio of forward
and backward propagating wave’s power in anomalous group
velocity dispersion regime, and increase in the input power
suppresses the MI gain [22]. Saturable nonlinearity can be used
to control the generation of side bands through the oppositely
directed coupler [23].

In the context of directional coupler, the MI analysis is
deeply connected with the nonlinear Schrödinger equation
(NLSE), which leads to the formation of soliton or solitary
wave. When we consider the higher-order effects in oppositely
directed coupler, an extended wave equation is required. Our
main aim is to discuss the MI in oppositely directed coupler
with higher-order effects. In this paper, we will discuss the
impact of higher-order nonlinear effects like self-steepening
and intrapulse Raman scattering on modulation instability
in oppositely directed coupler. We will extend our study in
both normal and anomalous group velocity dispersion regimes.
The rest of the paper is organized as follows. In Sec. II, the
theoretical model of the problem and linear stability analysis
leading to dispersion relation are presented. Investigation of
effect of self-steepening on MI and investigation of effect
of intrapulse Raman scattering on MI in oppositely directed
coupler are carried out in detail in Sec. III and Sec. IV,
respectively. Conclusions are made in Sec. V.

II. THEORETICAL MODEL

The coupled envelope equation of nonlinear Schrödinger
type is one of the major theoretical models that has been
considered so far to describe the physics of electromagnetic
wave propagation inside the coupler. When the peak power
of propagating electromagnetic wave inside the coupler is
above the threshold level, the higher-order effects play an
important role. So the propagation model should be modified
accordingly. We consider the effect of self-steepening and
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intrapulse Raman scattering in the propagation model and
study its effect on modulation instability. Self-steepening
arises from intensity dependence of group velocity and it
creates an optical shock on the trailing edge of the pulse in
the absence of group velocity dispersion. During the process
of intrapulse Raman scattering, low-frequency components
of the pulse are amplified by Raman gain due to transfer of
energy from high-frequency component of same pulse and
pulse spectrum shifts toward the low-frequency side [5]. It is
well known that the third-order dispersion contributes none to
the MI gain [24]. So, for this particular work of investigation of
modulation instability, third-order linear dispersion is trivial.
If we neglect the cross-phase modulation effect, the model
that describes the propagation of electromagnetic wave in
oppositely directed coupler is given by following coupled
nonlinear Schrödinger equation (CNSE) [5,6]:

i σ1
∂u1

∂z
− β21

2

∂2u1

∂t2
+ k12 u2 e−iδz + γ1

[
(|u1|2) u1

+i s1
∂(|u1|2u1)

∂t
− TR1 u1

∂(|u1|2)

∂t

]
= 0, (1)

i σ2
∂u2

∂z
− β22

2

∂2u2

∂t2
+ k21 u1 eiδz + γ2

[
(|u2|2)u2

+i s2
∂(|u2|2u2)

∂t
− TR2 u2

∂(|u2|2)

∂t

]
= 0. (2)

Where σ1 and σ2 indicate the sign of refractive index in
channel-1 and channel-2 of the coupler, respectively. We
consider channel-1 is made by positive index material (PIM)
and channel-2 by negative index material (NIM), hence σ1 = 1
and σ2 = −1; u1(z,t) and u2(z,t) are the normalized complex
amplitude of the modes in PIM and NIM channels, respec-
tively; γ1 and γ2 are the nonlinear coefficient, respectively;
k12 and k21 are coupling coefficients; β21 and β22 are group
velocity dispersion coefficients. And δ = β1 − β2, where β1

and β2 represent the propagation constants of the individual
channels. In the case of oppositely directed coupler with NIM
channel, the wave guides are not identical and hence β1 �= β2.
If the channels of the coupler are identical then δ = 0. The
last two terms are responsible for self-steepening and the
Raman-induced frequency shift, induced by intrapulse Raman
scattering, respectively.

A. Linear stability analysis

We use linear stability analysis to study MI in oppo-
sitely directed coupler based on Eqs. (1) and (2) as in
Refs. [22,23,25,26]. The basic idea of linear stability analysis is
to perturb continuous wave solution and then analyze whether
this small perturbation grows or decays with propagation.
Assuming the following form of steady-state solutions to
Eqs. (1) and (2):

a1 = u1 exp(i q z) exp

(
− i

δ

2
z

)
, (3)

a2 = u2 exp(i q z) exp

(
i

δ

2
z

)
. (4)

The linear stability of steady state can be examined by
perturbing the solutions of the following form:

a1 = [u1 + α1(z,t)] exp(i q z) exp

(
− i

δ

2
z

)
, (5)

a2 = [u2 + α2(z,t)] exp(i q z) exp

(
i

δ

2
z

)
. (6)

Where the complex field αj (z,t) � uj , j = 1, 2. Substituting
Eqs. (5) and (6) into Eqs. (1) and (2) and linearizing, we obtain

i
∂α1

∂z
− i

β21

2

∂2α1

∂t2
+ k12 α2 − k12 f α1 + p

1 + f 2
γ1

×
[

(α1 + α∗
1 ) + 2 i s1

∂α1

∂t
− TR1

∂α1

∂t

]
= 0, (7)

−i
∂α2

∂z
−i

β22

2

∂2α2

∂t2
+ k21 α1 − k21 f −1 α2 + p

1 + f 2
f 2 γ2

×
[

(α2 + α∗
2 ) + 2 i s2

∂α2

∂t
− TR2

∂α2

∂t

]
= 0, (8)

where f = u2
u1

, which describes how the total power p =
u2

1 + u2
2 is divided between forward and backward propagating

waves. In order to solve the above set of two linear differential
equations, we assume a plane-wave ansatz, consisting of two
sideband components with forward and backward propagation
having the form

αj (z,t) = cj {exp [i (K z − � t)]}
+ dj {exp [−i (K z − � t)]}, (9)

where K and � are wave-vector and frequency of perturbation
amplitude. Substituting Eq. (9) into Eqs. (7) and (8), we obtain
a set of four linearly coupled equations satisfied by cj and dj .
This set has nontrivial solution only when 4 × 4 determinant
formed by coefficient matrix vanishes as given below:

⎛
⎜⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞
⎟⎠

⎛
⎜⎝

c1

c2

d1

d2

⎞
⎟⎠ = 0,

where m11 = 0, m12 = R f 2 γ2, m13 = k21, m14 =
R f 2 γ2(1 − 2 s2 � − i TR2 �) − K − k21 f −1 + β22

2 �2,
m21 = R γ1, m22 = 0, m23 = R γ1 (1 − 2 s1 � − i TR1 �) +
K − k12 f − β21

2 �2, m24 = k12, m31 = k21, m32 =
R f 2 γ2 (1 + 2s2 � + i TR2 �) + K − k21 f −1 − β22

2 �2,
m33 = 0, m34 = R f 2 γ2, m41 = R γ2 (1 + 2 s1 � +
i TR1 �) − K − k12 f − β21

2 �2, m42 = k12, m43 = R γ1,
m44 = 0, and R = p

1+f 2 . Vanishing condition of above 4 × 4
stability matrix leads to a fourth-order polynomial in K as
given below,

K4 + a K3 + b K2 + c K + d = 0. (10)

The four roots of Eq. (10) determine the stability of the
continuous-wave solution. In order to observe MI, one of the
roots of the above fourth-order polynomial should possesses
a nonzero and negative imaginary part that corresponds to
an exponential growth of amplitude of the perturbation. The
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instability gain is given by the equation [25]

g = |Im(K)|, (11)

where Im(K) denotes the imaginary part of K .

III. EFFECT OF SELF-STEEPENING ON MODULATION
INSTABILITY

Here, we will discuss the influence of self-steepening
effect on MI in oppositely directed coupler. In this section,
initially we omit the Raman self-scattering effect by setting
TR1 = TR2 = 0. We consider both negative and positive
index channels of the coupler are nonlinear with γ1 = γ2 =
1/ (kW m). In order to study the effect of self-steepening, we
consider the following cases. Case 1: Both channels are not
influenced by self-steepening effect (s1 = 0 and s2 = 0). Case
2: One of the channels is influenced by self-steepening effect
and the other is not (s1 = 0 and s2 �= 0 or s1 �= 0 and s2 = 0).
Case 3: Both channels are influenced by self-steepening
effect and are equal (s1 = s2 �= 0). Case 4: Both channels
are influenced by self-steepening effect but opposite in sign
(s1 = −s2 �= 0). We discuss the above-mentioned cases for
both normal and anomalous group velocity dispersion regimes.

A. Normal group velocity dispersion regime

As an illustrative example, we select k12 = 10 m−1, k21 =
10 m−1, and p = 10 kW. Here, we consider MI in normal
group velocity dispersion regime, so we select f = 1 and
β21 = β22 = 1 ps2 m−1. Figure 1(a) depicts the instability
gain versus perturbation frequency without self-steepening

effect (s1 = s2 = 0). From the figure it is clear that instability
spectra consists of single conventional MI band centered at
zero perturbation frequency formed by balance between group
velocity dispersion and self-phase modulation. If any one of
the channel of the coupler is influenced by self-steepening
effect, the maximum gain and band width of conventional MI
band reduces [27]. Also, it is very interesting to observe new
instability regions are formed as shown in Fig. 1(b). These
instability regions are MI bands induced by self-steepening
effect. Figure 1(c) corresponds to when both channels are
influenced by equal self-steepening effect. In this case also
new instability regions are observed, but it is shifted to high
perturbation frequency. Finally if both channels are influenced
by equal self-steepening but opposite sign, then instability gain
spectra resemble case 1, as shown in Fig. 1(d). Here, the effect
of self-steepening of two channels cancel each other, and no
new instability regions are observed.

It can be concluded from Fig. 1 that, in normal dispersion
regime, instability gain exists even if perturbation frequency is
zero and instability gain at � = 0 is constant in all four cases.
Self-steepening effect form new instability regions and hence
provide a new way to generate solitons or ultrashort pulses.
It is already reported that, in the case of two core optical
fiber self-steepening effect can shift MI band [24]. Our result
also shows similar shifting of instability band. So, MI can be
effectively controlled by adjusting self-steepening effect.

B. Anomalous group velocity dispersion regime

When the dispersion is anomalous, then the parameters are
f < 0, β21 < 0, and β22 < 0. So as an illustrative example,
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FIG. 1. Instability gain spectra in normal group velocity dispersion regime under different combinations of s1 and s2 when p = 10 kW,
and k12 = k21 = 10 m−1. (a) s1 = 0 ps/(kW m), s2 = 0 ps/(kWm), (b) s1 = 0 ps/(kW m), s2 = 1 ps/(kW m), (c) s1 = 1 ps/(kW m),
s2 = 1 ps/(kW m) and (d) s1 = 1 ps/(kW m), s2 = −1 ps/(kW m).
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FIG. 2. Instability gain spectra in anomalous group velocity dispersion regime under different combinations of s1 and s2 when p = 10 kW,
and k12 = k21 = 10 m−1. (a) s1 = 0 ps/(kW m), s2 = 0 ps/(kW m), (b) s1 = 0 ps/(kW m), s2 = 1 ps/(kW m), (c) s1 = 1 ps/(kW m),
s2 = 1 ps/(kW m) and (c) s1 = 1 ps/(kW m), s2 = −1 ps/(kW m).

we select f = −1, β21 = −1 ps2 m−1, and β22 = −1 ps2 m−1.
The main difference here from normal dispersion is that there is
no instability gain at zero perturbation frequency, as shown in
Fig. 2. The instability spectra are centered around zero pertur-
bation frequency. When any one of the channel is influenced by
self-steepening effect, then the maximum gain and band width
of conventional MI band reduces and new instability regions
are formed on either side of zero perturbation frequency
as shown in Fig. 2(b). If both channels are influenced by
self-steepening effect, then new instability regions are formed
in higher perturbation frequency than in case 2, as in the case of
normal dispersion regime as depicted in Fig. 2(c). When both
channels are influenced by equal and opposite self-steepening
effect then the MI gain is same as self-steepeningless case.

The influence of self-steepening on MI is basically same
in both anomalous and normal dispersion regime. Self-
steepening effect form new instability regions and hence, it
provides a new way to generate solitons or ultrashort pulses.
But, the instability gain at � = 0 is zero and is observed when
the dispersion is anomalous.

IV. EFFECT OF INTRAPULSE RAMAN SCATTERING ON
MODULATION INSTABILITY

Here, we study in detail the effect of intrapulse Raman
scattering on MI in oppositely directed couplers. For this
particular study, we neglect the role of self-steepening effect.
Figures 3(a) and 3(b) depict the MI in normal and anomalous
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FIG. 3. Instability gain spectra showing the effect of intrapulse Raman scattering in (a) normal group velocity dispersion regime and
(b) anomalous group velocity dispersion regime when p = 10 kW, and k12 = k21 = 10 m−1, s1 = s2 = 0 ps/(kW m), and TR1 = TR2 =
0.1 ps/(kW m).
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FIG. 4. (Color online) Instability gain spectra showing the combined effect of self-steepening and intrapulse Raman scattering in (a)
normal group velocity dispersion regime and (b) anomalous group velocity dispersion regime, when p = 10 kW, k12 = k21 = 10 m−1, and
s1 = s2 = 1 ps/(kW m).

group velocity dispersion regimes, respectively, where the
parameters are TR1 = TR2 = 0.1 ps/(kW m). It is already
reported that intrapulse Raman scattering forms additional MI
regions with small growth rates but wide spans for higher
frequencies in microstructured fiber [28], and additional MI
band with linearly increasing gain with perturbation frequency
in the dispersion decreasing fibers [29]. Nonconventional MI
side bands are more prone to Raman-induced degradations
than ordinary MI side bands [30]. From Fig. 3 it is clear that
due to intrapulse Raman scattering, additional MI regions
for higher frequencies appear. So new instability regions
are induced by intrapulse Raman scattering and it widens
the extent of MI. Instability gain of these regions increases
linearly as perturbation frequency increases. Also, the effect
of intrapulse Raman scattering is the same for both normal and
anomalous group velocity dispersion regimes.

Figure 4 depicts instability gain spectra versus perturbation
frequency and intrapulse Raman scattering in normal and
anomalous dispersion regime, when p = 10 kW, k12 = k21 =
10 m−1 and s1 = s2 = 1 ps/(kW m). These figures show
the combined effect of self-steepening and intrapulse Raman
scattering on MI gain. As explained in previous sections, at
lower perturbation frequency, instability gain spectra consists
of conventional MI band formed by the balance between group
velocity dispersion and self-phase modulation. One can notice
the effect of self-steepening on MI gain spectra as the form
of new instability region at higher perturbation frequency. It is
also clear from figures that when the magnitude of intrapulse
Raman scattering increases, additional MI bands are formed

with linearly increasing gain. So self-steepening and intra-
pulse Raman scattering form additional instability regimes
at higher perturbation frequencies and widen the extent
of MI.

V. CONCLUSION

Based on the coupled mode equations and linear stability
analysis, we have investigated the modulation instability in
oppositely directed coupler with higher-order effects. We have
extended our study in both normal and anomalous group
velocity dispersion regimes. It is found that in a normal
dispersion regime, instability gain exists even if perturbation
frequency is zero. On the other hand, for the case of an
anomalous dispersion regime, the instability gain is zero at
vanishing perturbation frequency. From the study on influence
of self-steepening effect and intrapulse Raman scattering, we
have found that those effects form new instability regions and
widen the extent of modulation instability. So these effects
provide a new way to generate solitons or ultrashort pulses.
Also, the effect of self-steepening and intrapulse Raman
scattering is the same for both normal and anomalous group
velocity dispersion regimes.
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APPENDIX

The coefficients of Eq. (10) are given by where

a = 2 �R [2 (γ2 f 2 s2 − γ1 s1) + 2 i (γ2 TR2 f 2 − γ1 TR1)], (A1)

b = 2 R f (γ1 k12 + γ2 k21) −
(

k12 f − k21

f

)2

+ �2

[
k21

(
β21 f + β22

f

)
− R (γ1 β21 + γ2 f 2 β22)

+ 4 R2
(
γ 2

1 s2
1 − 4 γ1 γ2 s1 s2 f 2 + γ 2

2 s2
2 f 4 − γ 2

1 T 2
R1 + f 2 γ1 γ2 TR1 TR2 − f 2 γ 2

2 T 2
R2 − i TR1 γ1 (2f 2 γ2 s2 − γ1 s1)

− i TR2 γ2 f 2 (2 s1 γ1 − s2 γ2 f 2)
)] − �4

4

[
β2

21 + β2
12

]
, (A2)
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c = �

[
2 R

(
2 k2

21
s1

f 2
− 2 k21 k12 γ1 s1 − 2 k2

12 γ2 s2 + 2 k21 k12 f 2 γ2 s2 − i k21 k12 γ1 TR1 + i k2
21

γ1 TR1

f 2
− i f 4 k2

12 γ2 TR2

+ i k21 k12 f 2 γ2 TR2

)
+ 4 R2 (2 f 3 γ1 γ2 k12 s2 − 2 f γ2 γ1 k21 s1 − i f γ2 γ1 k21 TR1 + i f 3 γ1 γ2 k21 TR2)

]

+ 4 �3

[
R

(
β21 f 3 k12 γ2 s2 − γ1 s1

f
β22 k21 − i

2f
β22 k21 γ1 TR1 + i

2
β21 f 3 k12 γ2 TR2

)
+ R2

(
β22 γ1 γ2 s1 f 2

−β21 γ1 γ2 s2f
2 + i

2
β22 γ1 γ2 f 2 TR1 − i

2
β21 γ1 γ2 f 2 TR2

)
+R3

(
4 f 2 γ 2

1 γ2 s2
1 s2−4 f 4 γ1 γ 2

2 s2
2 s1 + 4 i γ 2

1 γ2 s1 s2 TR1 f 2

− 2 i γ1 γ 2
2 s2

2 TR1 f 4 − γ1 γ2 s2 T 2
R1 f 2 + 2 i γ 2

1 γ2 s2
1 TR2 f 2 − 4 iγ1 γ 2

2 s1 s2 TR2 f 4 − γ 2
1 γ2 2s1 TR1 TR2 f 2

+ 2 γ1 γ 2
2 s2 TR1 TR2 f 4 − i

2
γ 2

1 γ2 T 2
R1 TR2 f 2 + i

2
γ1 γ 2

2 TR1 T 2
R2 f 4 + γ1 γ 2

2 s1 T 2
R2 f 4
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, (A3)

d = �2
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β22 f 4 γ2 k2

12 + β22 γ1 k21 k12 + β21 f 2 γ2 k12 k21 + 1

f 2
β21 γ1 k2

21

)
− R2
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2 β22 f 3 γ1 γ2 k12 + 2 β21 f γ1 γ2 k21

+ 4

f 2
k2

21 γ 2
1 s2

1 + 8 k12 k21 γ1 γ2 s1 s2 f 2 + 4 f 6 k2
12 γ 2

2 s2
2 + 4i

f 2
γ 2

1 s1 TR1 k2
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f 2
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R1 γ 2
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+ 4 i f 2 γ1 γ2 s1 TR2 k21 k12 + 4 i f 6 γ 2
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1 f

+ 8 γ1 γ 2
2 k12 s2

2 f 3 + 8 i γ 2
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R1 f

) + 8 i γ1 γ 2
2 k12 TR2 s2 f 3 + 2 γ1 γ 3

2 k12 T 2
R2 s2 f 3

]
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)
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