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Impact of heterogeneous delays on cluster synchronization
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We investigate cluster synchronization in coupled map networks in the presence of heterogeneous delays.
We find that while the parity of heterogeneous delays plays a crucial role in determining the mechanism of
cluster formation, the cluster synchronizability of the network gets affected by the amount of heterogeneity. In
addition, heterogeneity in delays induces a rich cluster pattern as compared to homogeneous delays. The complete
bipartite network stands as an extreme example of this richness, where robust ideal driven clusters observed for
the undelayed and homogeneously delayed cases dismantle, yielding versatile cluster patterns as heterogeneity
in the delay is introduced. We provide arguments behind this behavior using a Lyapunov function analysis.
Furthermore, the interplay between the number of connections in the network and the amount of heterogeneity
plays an important role in deciding the cluster formation.
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I. INTRODUCTION

Cluster synchronization has been investigated in many
complex systems such as ecological, nervous, social, coupled
semiconductor lasers, and electrical power systems [1–8]. In
these systems the interactions among units are not instan-
taneous due to the finite speed of information transmission
causing a time delay [9]. Most of the work pertaining to
delays has considered a homogeneous delay [10–19], however,
in real world networks the rate of information transmission
from all the units may not be the same [20]. Hence, model
systems incorporating heterogeneity in delays advance a more
realistic framework. A few previous studies examining systems
having heterogeneous delays have shown them to follow
emerging behaviors as observed for homogeneous delays [21].
A recent work demonstrates that an optimal level of delay
heterogeneity may maximize the stability of the uniform flow,
which has implications in traffic dynamics [22]. Another recent
work involving electronic circuits with heterogeneous delays
demonstrates the change in cluster patterns and suppression
of synchronization [23]. Furthermore, heterogeneous delays
have been shown to bear a more secured communication in
chaos based encryption systems [24].

In this paper we investigate the impact of heterogeneous
delays on the mechanism of cluster synchronization. So far,
very few studies have focused on the impact of heterogeneity
in delay values on phase synchronized clusters [4,5,23,25].
In addition, attempts still need to be made to find out the
mechanism behind cluster synchronization in the presence
of heterogeneity in the delay values. Undelayed and ho-
mogeneously delayed coupled systems have been identified
with two different mechanisms of synchronized cluster for-
mation, namely, the driven (D) and the self-organized (SO)
[6,7,14,15].

We find that a large amount of heterogeneity in delays,
as defined in Sec. II, leads to better synchronizability of
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the underlying network, while the parity of the delay plays
an important role in the mechanism of cluster formation.
At weak coupling, even heterogeneous delays lead to SO
clusters, odd heterogeneous delays lead to the D clusters,
and even-odd heterogeneous delays lead to mixed clusters.
Furthermore, we demonstrate that heterogeneous delays lead
to rich cluster patterns. Cluster pattern refers to a particular
state which contains information on all pairs of synchronized
nodes distributed in various clusters in the network [14]. We
present results for coupled chaotic maps on various networks,
namely, one-dimensional (1D) lattice, small-world (SW),
Erdös-Rényi (ER) random, scale-free (SF), and the complete
bipartite [26]. The complete bipartite networks, which have
been known to form robust ideal D clusters for undelayed
and homogeneous delayed evolution [7,8,14], yield different
cluster patterns upon the introduction of heterogeneity in the
delays.

The paper is organized as follows. We describe the model
along with definitions of (phase) synchronization and (phase)
synchronized clusters in Sec. II. Thereafter, Sec. III presents
numerical results for coupled dynamics on all the networks.
Section IV discusses an analytical understanding of the
observed results using complete bipartite networks. We discuss
the effect of the change in the amount of heterogeneity in
delays on the phase synchronized clusters in Sec. V, followed
by the results for the coupled circle maps in Sec. VI. In
addition, Sec. VII studies the effect of the Gaussian distributed
delays on the phase synchronized clusters. We also present
the effect of average degree on the cluster synchronization in
Sec. VII, and discuss the results with conclusions and future
directions in the last section.

II. MODEL: COUPLED MAPS WITH
HETEROGENEOUS DELAYS

We consider a network of N nodes and Nc connec-
tions between the nodes. Let each node of the network
be assigned a dynamical variable xi , i = 1,2, . . . ,N . The
dynamical evolution is defined by the well known coupled
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maps [9,27]

xi(t + 1) = (1 − ε)f (xi(t))

+ ε∑N
j=1 Aij

N∑
i=1

Aijg(xj (t − τji)). (1)

Here A is the adjacency matrix with elements Aij taking values
1 and 0 depending upon whether or not there is a connection
between i and j . We consider undirected networks which lead
to the symmetric adjacency matrix, i.e., Aij = Aji . The delay
τij = τji is the time it takes for the information to reach from
a unit i to its neighbor j . The function f (x) defines the local
nonlinear chaotic map, g(x) defines the nature of coupling
between the nodes, and ε is the overall coupling constant.

In the present investigation we consider networks with two
types of delay arrangements: (i) two delay values and (ii) a
Gaussian distributed delay. The first arrangement is achieved
by randomly making a fraction of connections fτ1 conducting
with τ1, and another fraction fτ2 conducting with delay τ2.
These two parameters are defined as fτ1 = Nτ1/Nc and fτ2 =
Nτ2/Nc, where Nτ1 and Nτ2 stand for the number of connec-
tions with delay τ1 and τ2, respectively. Maximum heterogene-
ity is exhibited when half of the connections bear a τ1 delay and
the other half bear a τ2 delay. We remark that these definitions
do not incorporate the exact values of delay and only take care
of the number of connections conducting with different delay
values. We consider h = 1 − |fτ1 − fτ2 | as a measure of the
amount of heterogeneity in the network. The value of h being
zero corresponds to homogeneous delays, whereas h = 1
corresponds to fτ1 = fτ2 , denoting maximum heterogeneity.

Also, we define the cluster synchronizability of a network
in terms of the number of nodes participating in the clusters.
Based on this, we say cluster synchronizability enhances if
the number of nodes participating in the clusters increases
in the network. Note that some of the earlier works have
defined global synchronizability of the network in terms of the
ratio of the maximum and the first nonzero eigenvalues of the
Laplacian of a graph [28]. In the present paper our definition
of the synchronizability is based on cluster synchronization.

We investigate the first arrangement of two delay values
in detail and then consider a Gaussian distributed delay
arrangement. Depending on the parity of the delay, we classify
three types of heterogeneity: (a) odd-odd heterogeneity, (b)
odd-even heterogeneity, and (c) even-even heterogeneity. We
find that these three types have a distinct impact on the coupled
dynamics, and hence may give rise to different patterns of
clusters as well as mechanisms behind their origin. We present
detailed results for the logistic map as this simple map has
been used widely and has exhibited a wide range of emergent
behaviors observed so far in the nonlinear dynamics [9]. We
also present results for the circle maps in order to demonstrate
the robustness of the observed phenomena.

Synchronized and phase synchronized clusters

Exact synchronization corresponds to a state where the
dynamical variables of the nodes have identical values (xi =
xj ,∀t > t0), whereas in the case of phase synchronization
the dynamical variables for the nodes have some definite
relation between their phases [29–31]. Cluster synchronization

corresponds to a state where some of the nodes in a network
are (phase) synchronized with each other, while they are
not (phase) synchronized with the rest of the nodes of
the network [31]. Depending on the mechanism of cluster
formation, as discussed in the Introduction, there can be
SO, D, or mixed clusters [6–8,14,15,32]. In the numerical
investigation presented here, we consider sparse networks,
primarily in order to avoid global synchronization (as the
present paper focuses on cluster synchronization) and, more
importantly, to have a better understanding of the mechanisms
underlying cluster synchronization. As sparse networks yield
exact synchronization for very few nodes, we consider phase
synchronization. The definition of the phase for the discrete dy-
namical system is taken from Refs. [6,33] as dij = (1 − νij )/
max(νi,νj ), which was further proved to follow the metric
properties [7]. In this expression νi and νj denote the
number of times the dynamical variables xi(t) and xj (t),
t = t0,t0+1, . . . ,t0 + T − 1, for nodes i and j show local
minima (maxima) during the time interval T starting from
some time t0, with νij denoting the number of times local
minima (maxima) match with each other. Further, dij = dji ,
and dij = 0 when all the minima (maxima) of the variable xi

and xj match with each other, whereas dij = 1 when none of
the minima (maxima) match. Thus the phase synchronization
between two nodes exists if the above defined phase distance
between them vanishes.

Also, we use fintra and finter as the measures for intracluster
and intercluster couplings [6]: fintra = Nintra/Nc and finter =
Ninter/Nc, where Nintra and Ninter are the numbers of intracluster
and intercluster couplings, respectively. In Ninter, coupling
between two isolated nodes is not included. The criteria for the
distinction of different cluster states are as follows [34]: The
state, corresponding to fintra = 0 and finter > 0, is defined as the
ideal D cluster state as the mechanism behind the synchroniza-
tion is intercluster couplings, and the state corresponding to
fintra > 0 and finter ∼ Ncl〈k〉/Nc (Ncl is the number of clusters)
is defined as the ideal SO cluster state as the mechanism
behind the synchronization between pairs of nodes is due
to intercluster couplings. Further, if |fintra − finter < th, the
clusters are of mixed type. The phase diagram is presented for
th = 0.2. For the higher values of th, as long as fintra > finter

(fintra < finter), clusters are considered here to be of dominant
SO (dominant D) type.

In order to further explain the cause (mechanism) and effect
(synchronized clusters), which forms a backbone of the present
work, we plot the schematic diagram (Fig. 1). For an ideal D
cluster [for example, nodes 1 and 3 in Fig. 1(a)], there is no
direct connection between the nodes, thus the synchronization

FIG. 1. (Color online) Schematic diagram depicting the (a) ideal
D, (b) ideal SO, and (c) dominant SO clusters. The nodes (small solid
circles) in the circular region represent that they are synchronized.
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between these nodes is driven by the coupling outside the
cluster, whereas for the SO cluster [Fig. 1(b), containing nodes
1, 2, 6, and 7] all the connections, except one, which is essential
to keep the network connected, lie within the cluster, indicating
that the synchronization between the pairs of nodes is due to
intracluster couplings. We remark that deducing such a direct
relation between the cause (mechanism) and effect (cluster
synchronization) is not straightforward for the dominant SO,
D, and mixed clusters. For example, in Fig. 1(c) the mechanism
behind the formation of the dominant SO cluster (comprising
nodes 1, 2, 3, 6, and 7) can be due to the inter- or intracouplings
or due to the mixed effect of both types of couplings, however,
the observation of the ideal SO and D clusters as discussed
above forms a basis to define the dominant D and SO cluster
states as well.

III. COUPLED MAPS WITH TWO DELAY VALUES

Starting with random initial conditions, Eq. (1) is evolved
and the phase synchronized clusters for T time steps after
an initial transient are studied. This paper considers diffusive
coupling [g(xi,xj ) = g(xj ) − g(xi)] because of its relevance
in real world systems [9,21]. Note that the other forms of
couplings, such as linear, may yield different results for
the same coupling value, but key phenomena observed for
diffusive couplings such as different mechanisms of cluster
formation would remain the same [6,7]. In the following first
we present the results for maximum heterogeneity fτ1 = fτ2 ,
followed by discussions on the impact of the amount of
heterogeneity on cluster formation.

A. 1D lattice and SW networks

The 1D lattices used in the simulation have circular bound-
ary conditions with each node having 〈k〉 nearest neighbors.
Figure 2(a) plots a phase diagram depicting different cluster
states based on the values of finter and fintra, and Fig. 2(c)
displays the fraction of nodes forming a cluster (Fclus) for the
1D lattice. In the absence of any coupling, all the nodes evolve
independently in a chaotic manner which solely depends upon
the value of the initial condition. As coupling is introduced
(ε > 0), the coupled dynamics displays emerging behavior
depending upon the delayed interactions and the strength of
the coupling. With even-odd parity (say, τ1 = 1 and τ2 = 2)
for very weak coupling values (ε < 0.16) the local chaotic
dynamics dominates over the interaction terms and all the
nodes keep evolving in an isolated manner. As coupling is
further increased, the coupling range (0.16 � ε � 0.25) leads
to the mixed cluster state. As ε increases further, there is
an emergence of dominant D clusters [Fig. 2(a)] leading to
mixed clusters for strong couplings. For odd-odd parity, the
ideal SO or dominant SO clusters are formed. The snapshots
in Fig. 3(a) demonstrate the ideal SO clusters for the 1D
lattice. Note that here the value of Fclus is one as all the
nodes participate in the cluster formation, but they distribute in
different clusters instead of forming a globally synchronized
state. Hence, Fclus being one does not provide criteria for the
globally synchronized state.

Further, the intermediate and strong couplings exhibit a
manifestation of dominant D clusters. A comparison with
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FIG. 2. (Color online) Phase diagrams (a) and (b) show different
regions in the parameter space of τ1,τ2 (τ for homogeneous delays)
and ε for f (x) = 4x(1 − x). The gray (color) denotes different
regions: turbulent (T) (stands for no cluster formation), ideal driven
(D), dominant driven (DD), ideal self-organized (SO), dominant
self-organized (DSO), and mixed (M). In these phase diagrams, the
boundaries of the ideal D and ideal SO clusters do not depend on
the threshold value, while the boundaries of the dominant D, SO,
and mixed clusters depend on the threshold chosen. (c) and (d)
show variations in the fraction of nodes forming clusters (Fclus =
Nclus/N , where Nclus = total number of nodes forming clusters) in
the parameter space of τ1,τ2 (τ for homogeneous delays) and ε for
f (x) = 4x(1 − x). The values on the y axis represent the delay values.
Network parameters are N = 500 and 〈k〉 = 4. The gray (color)
coding represents the variation in the fraction of nodes forming
clusters. (a), (c) correspond to the 1D lattice and (b), (d) correspond
to the SF networks.

the homogeneous delay evolution leads to the conclusion that
heterogeneous delays cause an enhancement in synchroniza-
tion for strong couplings while keeping the D mechanism
responsible for the cluster formation. For even-even parity, the
coupled dynamics at a weak ε range manifests the formation
of ideal D clusters, as observed for even homogeneous
delays [Fig. 2(a)]. We remark that the definition of phase
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FIG. 3. (Color online) The ideal SO clusters for the (a) 1D lattice,
(b) SW, and (c) random networks. Squares represent clusters, diagonal
dots represent isolated nodes, while off-diagonal dots imply that the
two corresponding nodes are coupled (i.e., Aij = 1). In each case
the node numbers are reorganized so that the nodes belonging to the
same cluster are numbered consecutively. The example corresponds
to networks with N = 50, 〈k〉 = 4, and ε = 0.17. All the graphs
correspond to fτ1 = fτ2 , τ1 = 1, and τ2 = 3.
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synchronization and the phase distance used here assign
antiphase synchronization (minima of one node matching with
maxima of the other) into two different clusters as the phase
distance for this case remains one. However, this particular
situation of the nodes being antiphase synchronized [29] is
not observed very often for chaotic situations (for example,
Fig. 5 for t < t0). With an increase in the coupling strength, at
intermediate and strong couplings, mixed clusters are formed
[Fig. 2(a)]. At the strong couplings where the undelayed and
the homogeneous delays do not lead to cluster synchroniza-
tion, for even-even heterogeneous delays, 50% of the nodes
participate in cluster formation [Fig. 2(c)].

The delayed coupled maps on the SW networks, generated
using the Watts-Strogatz algorithm by rewiring probability
pr [26], do not display any distinguishable changes as com-
pared to the corresponding 1D lattice described above. Thus
for 1D lattice and SW networks the mechanism behind the
cluster formation depends on the parity of the delay values. At
weak coupling, even heterogeneous delays are associated with
the D mechanism, odd heterogeneous delays are associated
with the SO mechanism, while mixed heterogeneous delays
are associated with the mixed mechanism. Thus, a change in
the parity of the heterogeneous delay values may give rise to a
transition from one phenomenon to the other phenomenon.
We provide arguments supporting this parity dependence
in Sec. IV.

B. SF networks

We now turn our attention to the SF network, which has
completely different structural properties [26] than the 1D
lattice and the SW networks. SF networks are constructed
by starting with 〈k〉 nodes and then adding one node with
〈k〉 connections at each step [26]. The weak coupling range
displays a similar result as for the regular networks described
in the previous section for all types of heterogeneity, whereas
intermediate couplings do not display the transition from one
mechanism to other, as observed for the regular networks,
which exhibit a transition from the dominant SO cluster
state to the dominant D cluster state and instead yield D or
mixed clusters for all the parities [Fig. 2(b)]. Comparing the
three heterogeneities leads to the conclusion that even-even
heterogeneity in delays causes less of an enhancement in the
fraction of nodes forming clusters, as compared to odd-odd
and odd-even heterogeneity [Fig. 2(d)]. The phenomenon of
suppression in the fraction of nodes forming clusters for a
particular heterogeneity becomes more prominent with the
increase in delay values. At strong couplings, odd-odd hetero-
geneity in delays manifests a better cluster synchronizability
of SF networks as compared to the corresponding 1D lattice
and SW networks [Figs. 2(c) and 2(d)].

Random networks display a better synchronization than
the corresponding regular networks even for undelayed and
homogeneous delays [6,10,14]. The interesting finding in the
presence of heterogeneous delays is that the enhancement in
the cluster synchronizability of the network may be accom-
panied with the nodes directly connected, as is evident from
the mixed clusters in Fig. 2. We remark that D clusters were
already observed for homogeneous delays in the intermediate
ε range for the SF networks, indicating synchronization
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FIG. 4. (Color online) Phase diagrams (a) and (b) showing dif-
ferent regions in the parameter space of τ1,τ2 (τ for homogeneous
delays) and ε for a complete bipartite network of N = 500. The figure
description is the same as for Figs. 2(a) and 2(b).

between nodes which are not directly connected [14], therefore
the occurrence of synchronization between these nodes for
high coupling ranges is not very surprising. We can fairly
conclude that the SO mechanism has a major role to play
in the enhancement of synchronization in the presence of
heterogeneous delays, which further becomes clearly visible
for the complete bipartite network. In order to understand
the copious behavior observed in the dynamical evolution of
regular and random networks with heterogeneous delays, we
conduct an elaborate investigation for the complete bipartite
networks in Sec. IV.

C. Complete bipartite networks

Complete bipartite networks consist of two sets where all
the nodes of one set (say, A) are connected with those of the
second (say, B). Results are presented for both sets having
an equal number of nodes. The simple structure of these
networks, on one hand, makes analytical studies easier to carry,
and, on the other hand, the capability of the network to yield
rich cluster patterns such as ideal D, SO, and mixed clusters
brings it into the same platform of the other random networks.
Figure 4 plots a phase diagram depicting different cluster states
based on the values of finter and fintra for complete bipartite
networks. Note that for the homogeneous delays themselves
the coupled dynamics exhibits participation of all the nodes
in the cluster formation, and the introduction of heterogeneity
in the delay does not change this number. The phase diagram
in Fig. 4 shows that at weak couplings, as discussed for the
other networks, complete bipartite networks also exhibit ideal
D clusters for even delays, while for odd delays, instead of
the ideal SO cluster state as exhibited by the other networks
discussed above, complete bipartite networks lead to the
globally synchronized sate. We remark that complete bipartite
networks do not show ideal SO clusters, as due to their
topology it is not possible to divide the whole network in
ideal SO clusters, however, mixed or dominant SO and D
states are possible, for instance, at intermediate couplings and
strong couplings where homogeneous delays lead to robust
D clusters, and the heterogeneity in the delays generates D,
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mixed, or dominant SO clusters depending upon the parity of
the heterogeneous delays and the coupling strength [Fig. 4(a)].

IV. ANALYTICAL INSIGHT

In the following, we perform a Lyapunov function analysis
in order to obtain an understanding of the destruction of
the robust D clusters for homogeneous delays to different
cluster states for heterogeneous delays, and present some
arguments for the transition from ideal D clusters to the SO
cluster state upon introduction of heterogeneity in the delays
at intermediate and strong couplings.

First, we analyze the case of the transition from the D
clusters to different cluster states. The Lyapunov function for
a pair of nodes can be written as [6,35]

Vij (t) = [xi(t) − xj (t)]2. (2)

Vij (t) � 0 and the equality holds well when nodes i and j

are exactly synchronized. The Lyapunov function for a pair
of nodes on a complete bipartite network in the presence of
heterogeneous delays, using Eqs. (1) and (2), can be written as

Vij (t + 1)

=
⎡
⎣(1 − ε)[f (xi(t)) − f (xj (t))] + 2ε

N

N∑
j=N/2+1

g(xj (t − τji))

− 2ε

N

N/2∑
i=1

g(xi(t − τij ))

⎤
⎦

2

. (3)

Let us consider a pair of nodes of the same set having
homogeneous delays, which leads to the situation where
coupling terms having delay values in Eq. (3) get canceled,
thereby commencing the D clusters, which are robust against
the change in the delay values [14]. However, in the presence
of heterogeneity in the delay values, the coupling term having
delay values does not vanish in Eq. (3), and thus may or
may not emulate the synchronization between these nodes
depending upon the delay arrangements of these two nodes,
and may be leading to nodes from the same set organizing into
different clusters. Note that for parameter mismatch [36,37],
the coupling term bearing the delay values does not vanish
and the nodes from the same set may get distributed into
different clusters even for the undelayed and homogeneously
delayed cases. We remark that the Lyapunov function analysis
performed here for the complete bipartite network works for
clusters having exactly synchronized nodes (see Fig. 5).

Furthermore, we remark that for the undelayed and homo-
geneously delayed cases, the nodes receiving the same input
can be considered as forming a set (say, A in Fig. 6), similar
to the complete bipartite networks, and the nodes which are
giving the same inputs to these can be considered to form
another set (say, B in Fig. 6). The synchronization criteria
for nodes in set A depend on whether or not these nodes are
directly connected.

For the first case, when the nodes in set A are not directly
connected [Fig. 6(I)], for the undelayed and homogeneously
delayed cases, the Lyapunov function between a pair of nodes
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FIG. 5. (Color online) Time evolution of a few nodes in the
complete bipartite network of N = 500 [the coupling strength is
chosen as 0.68 for which the network is shown to form two ideal
D clusters for a homogeneous delay (τ = 2) for t < t0]. At t = t0
the heterogeneity in the delay is introduced by randomly making
50% of the connections conducting with τ2 = 4 and the rest keep on
conducting with τ2 = 2.

becomes

V12(t + 1) = {(1 − ε)[f (x1(t)) − f (x2(t))]}2.

Thus synchronization between nodes 1 and 2 depends only on
the local dynamics of both the nodes and the coupling strength,
whereas if nodes in set A are directly connected [Fig. 6(II)] in
the Lyapunov function all the coupling terms except the one
involving the interaction between 1 and 2 cancel out,

V12(t + 1) =
[

(1 − ε)[f (x1(t)) − f (x2(t))]

+ε

4
g(x2(t − τ )) − g(x1(t − τ ))

]2

,

thus yielding different criteria for synchronization of these
nodes [8].

Next, using the complete bipartite network, we attempt to
understand the parity dependence of the mechanism of cluster
formation at weak couplings as observed for all the network
architectures. A simple analysis of the periodic synchronized
state on the complete bipartite networks provides a basic
understanding of the different behaviors observed for the lower
coupling values. For example, at a weak ε range, the homo-
geneous delays for τ1 = 1 manifest the globally synchronized
state spanning all the nodes for 0.16 � ε � 0.2. The dynamical
evolution in this range is periodic with periodicity two, say,
p1 and p2. As heterogeneity in the delay values is introduced

FIG. 6. (Color online) Schematic diagram representing two set
of nodes, when a pair of nodes in set A receiving the same inputs are
not directly connected (I) and when they are directly connected (II).
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such that fτ1 = fτ2 = 0.5, say, at the (t + 1)th time step, it
leads to the coupling term having a delay part in the evolution
equation for the difference variable of the ith and j th nodes as

f (xj (t − τ2)) − f (xi(t − τ1)) =
{

0 if �τ = 2,4, . . . ,

δ if �τ = 1,3, . . . ,

where δ = f (p1) − f (p2) and �τ = τ2 − τ1. �τ is even for
the odd-odd and the even-even heterogeneity, and odd for the
odd-even heterogeneity. Thus the even-even heterogeneity will
retain the behavior followed by the even homogeneous delay
values, and the odd-odd heterogeneity will retain the behavior
followed by the odd homogeneous delay values, whereas the
odd-even heterogeneity may disturb the behavior manifested
by the even homogeneous or odd homogeneous delays and lead
to the mixed cluster state. Note that for diffusive coupling, the
odd delays lead to a mismatch in the parity of the delay value of
the coupling terms, causing a change in the sign of the coupling
term. This may cause a significant impact on the dynamics of
the coupled system, leading to different phenomena for the
odd and even delays [10,38,39].

Furthermore, we analyze the origin of the mixed and
dominant SO clusters for the bipartite networks at intermediate
and strong couplings. A closer look into the time evolution of
the coupled nodes in the bipartite networks for intermediate
ε values reveals that the heterogeneity suppresses the exact
synchronization between the nodes which are not directly
connected while retaining the phase synchronization between
them (see Fig. 5), whereas all the pairs of nodes which
are directly connected experience an occurrence of phase
synchronization, producing a globally phase synchronized
state. In order to further explain the synchronization between
the nodes from two different sets at strong couplings, we
perform the following analysis. We consider ε = 1, for which
all the coupling terms in the difference variable [xi(t + 1) −
xk(t + 1)] for a pair of nodes in the same set (i.e., nodes are not
directly connected) will get canceled out for the undelayed and
the homogeneous delayed cases, causing synchronization of
all the pairs of nodes in the set. Let xA(t) be the synchronized
dynamics of nodes in the first set and xB(t) the synchronized
dynamics of the nodes in the second set. For a homogeneous
delay (τij = τ ), the difference variable for the nodes from the
different sets will be

xi(t + 1) − xj (t + 1) = g(xB(t − τ )) − g(xA(t − τ )); (4)

this difference variable will not die for the coupling function
g(x) lying in the chaotic regime if the initial conditions for
the nodes in the two sets are different. Hence the nodes from
different sets do not synchronize, ruling out SO synchroniza-
tion for the undelayed and homogeneously delayed cases for
ε = 1, whereas the heterogeneous delays do not lead to such
a simple situation, and the difference variable for the nodes in
the different sets takes the form

xi(t + 1) − xk(t + 1)

= 2

N

[
N∑

i=1

Aikg(xk(t − τki)) −
N∑

k=1

Akig(xi(t − τik))

]
. (5)

For the heterogeneous delays, the synchronization between a
pair of nodes from the same set for g(x) = 4x(1 − x) at ε = 1

depends on the coupling from other nodes. Thus, depending
on the heterogeneous delay values, these nodes may or may
not synchronize. Thus, the presence of heterogeneity in delay
breaks the restriction (4) and gives rise to the possibility of
synchronization between nodes in different sets. Though the
analysis carried out here was done for the extreme coupling
value (ε = 1) and cannot be directly applied to other ε values
for which another term consisting of the local dynamics of
nodes also appears in the difference variable given by Eqs. (4)
and (5), at the strong coupling this additional term will have
less of an impact on the dynamical evolution as compared to
the coupling term, leading to a similar effect being responsible.

V. EFFECT OF THE CHANGE IN AMOUNT
OF HETEROGENEITY

So far we have concentrated on the case h = 1 correspond-
ing to the maximum heterogeneity. We find that while the
amount of heterogeneity plays a crucial role in determining
the cluster synchronizability of networks, some cases even
demonstrate a transition from no cluster state to all nodes
forming clusters [Fig. 7(a)], while the mechanism is still
governed by the parity, except for the complete bipartite
networks, which show a transition from a robust D cluster
state to dominant SO clusters and a single SO cluster state
[Fig. 7(b)]. To the end of this section, we provide an
understanding of this behavior. Figure 7(a) demonstrates clear
examples of the enhancement in the cluster formation while
retaining the mechanism in the presence of heterogeneous
delays with odd-odd parity. For a homogeneous delay (say,
τ = 1), a very smaller number of nodes form clusters (Fig. 7).
As some connections start conducting with a different delay
value τ2, there is no significant change in the cluster formation,
as depicted in Fig. 7. With a further increase in fτ2 , there is an
increment in the number of nodes forming clusters, reaching
to all nodes forming clusters for h � 0.4.

As we have illustrated that the introduction of heterogeneity
in delays enhances synchronization and the complete bipartite
network already displays 100% nodes participating in the
formation of robust D clusters for the homogeneous delay,
the only possible way to achieve an enhancement of the
synchrony could be via synchronization between nodes of
two driven clusters giving rise to SO clusters. The arguments
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FIG. 7. (Color online) Variation of finter (solid circles) and fintra

(open circles) as a function of the amount of heterogeneity. (a) SF
network with N = 500 and τ1 = 1,τ2 = 3. (b) The complete bipartite
networks with N = 200 and τ1 = 2,τ2 = 4. Both graphs are for
f (x) = 4x(1 − x).
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FIG. 8. (Color online) A typical behavior of coupled dynamics
illustrating different cluster patterns for changes in the parity of
heterogeneous delays. The figure description is the same as in Fig. 3.
The example presents a scale-free network with N = 50, 〈k〉 = 4,
and ε = 0.02. All the graphs correspond to fτ1 = fτ2

delivered earlier using a difference variable [Eq. (4)] direct
that more heterogeneity in delays will lead to the occurrence
of a greater number of pairs of nodes from the same set for
which the difference variable does not die, thus destroying
synchronization between more pairs of nodes belonging to
the same set, and could be a possible reason behind more
heterogeneity inducing more SO synchronization.

VI. COUPLED CIRCLE MAPS

In order to demonstrate the robustness of the results, in this
section we present results for the coupled circle maps [40].
The local dynamics is given by

f (x) = x + ω + (p/2π ) sin(2πx) (mod 1). (6)

Here we discuss results with the parameters of the circle map
in the chaotic region (ω = 0.44 and p = 6). As discussed
for the logistic map, the coupled circle maps also lead to (i)
dependence of the mechanism behind cluster formation on the
parity of delays, (ii) the enhancement in the synchronization
by introduction of heterogeneity in delays, and (iii) change in
the cluster patterns with a change in the heterogeneous delays.

Figure 8 demonstrates the change in the mechanism behind
the cluster formation with the change in the parity of the
heterogeneous delay values, and exhibits the change in the
cluster patterns. These snapshots depict the formation of
the SO clusters for odd heterogeneous delays, mixed clusters
for the mixed parity of heterogeneous delays, and D clusters
for even heterogeneous delays. Figures 9(a) and 9(b) plot
examples demonstrating the transition from the ideal D to
the globally synchronized state for the coupled circle maps on
the complete bipartite networks.

VII. GAUSSIAN DISTRIBUTED DELAYS

In order to see the robustness of the phenomena, such as
enhancement in cluster synchronization and a change in the
mechanism for the two delay case, we consider the Gaussian
distributed delays as [41] τij = τ̄ + Near(cη), where η is
Gaussian distributed with mean zero and standard deviation
one. The delays are homogeneous (τij = τ ) for c = 0 and
are Gaussian distributed around τ̄ for c �= 0. We choose the
example of SF networks in order to capture a better overview
of the mechanism behind cluster synchronization as they
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FIG. 9. (Color online) Node vs node diagram demonstrating var-
ious cluster states for (a) and (b) for coupled circle maps on complete
bipartite networks of N = 50 at ε = 0.85, and (c) and (d) for coupled
logistic maps on a globally connected network of N = 200 at ε = 1.0.
(a) and (c) τ = 0/τ = 1 indicate that exactly the same patterns are
obtained for the undelayed (τ = 0) and the homogeneous delayed
(τ = 1) cases. Circles and dots remain the same as in Fig. 3. All the
graphs correspond to fτ1 = fτ2 .

are known to exhibit good synchronizability for undelayed
and delayed evolution. We find that the distributed delays
break the dominance of any of the two mechanisms, clearly
visible for the homogeneous and two delay cases, leading
to the mixed cluster state for ε � 0.15 [Fig. 10(a)]. The
other networks we have considered, except for the complete
bipartite networks, manifest similar results as for the SF
networks. The complete bipartite networks for the Gaussian
distributed delays are capable of displaying all the mechanisms
of cluster synchronization, as observed for the two delay case
[Fig. 10(b)], leading to rich cluster patterns depending on the
coupling strength. A comparison with Figs. 2(a) and 2(b)
indicates that the Gaussian distributed delays reveals no
further phenomena than already observed for the two delay
heterogeneity.
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FIG. 10. (Color online) Variation of finter (solid) and fintra (open)
circles as a function of ε for SF (left) and complete bipartite (right)
networks with N = 500 and for Gaussian distributed delays with
mean τ̄ = 10 and variance c = 9.
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VIII. EFFECT OF AVERAGE DEGREE

Previous studies have demonstrated that undelayed and
homogeneously delayed evolution of all the networks with
a high average degree leads to a globally synchronized state
after a critical ε value, whereas the introduction of odd-even
heterogeneity leads to the multicluster state. Note that for
this multicluster state there is no significant suppression in
the overall synchronization in the network, as still almost all
(95%) the nodes participate in the cluster formation. The only
difference is that the heterogeneity in delays breaks the
globally synchronized cluster, distributing its nodes into the
different clusters (Fig. 9). The Gaussian distributed delays
at strong couplings also generate the multicluster state, as
observed for the two delay odd-even heterogeneity.

For the coupled dynamics, there exists a tradeoff between
the local dynamics and the coupling term, resulting in various
emerging behaviors. At strong coupling values, the coupling
term dominates over the local dynamics. Again, as explained
earlier, for ε = 1, the Lyapunov function for a pair of nodes
[Eq. (2)] in the globally connected networks would depend
only on the term [g(xj (t − τ )) − g(xi(t − τ ))] while other
terms cancel out, whereas for the heterogeneous delays, the
Lyapunov function would contain all the coupling terms (3),
thereby making the stability of the synchronized state de-
pendent on the neighbors, and disturbing the synchronization
between the nodes for the homogeneous delay case. Therefore,
for heterogeneous delays, a pair of nodes i and j may or
may not get synchronized depending on the delays connecting
to all the neighbors, thereby leading to different cluster
patterns such as the multicluster state for a globally coupled
network against a global synchronized state for homogeneous
delays.

IX. DISCUSSION AND CONCLUSION

We study the impact of heterogeneity in delay values on
cluster synchronization and present the results for two different
delay arrangements: (i) the heterogeneity with two different
delay values, and (ii) the heterogeneity with Gaussian dis-
tributed delays. For the first case, the cluster synchronization
exhibits a dependence on the amount of heterogeneity in
the delays. Our results suggest that the heterogeneous delays
accomplish an enhancement in the cluster synchronization for
which we provide arguments using simple network structures.
The enhancement in cluster synchronization with the enhance-
ment in the heterogeneity in the delays at strong couplings
indicates that heterogeneity in the delay may simplify the
coupled dynamics.

Next, we find that at weak couplings the different parities
impose different constraints on the coupled dynamics, thereby
inducing a different mechanism of cluster formation for which
we provide an explanation by considering a simple case of
periodic evolution. For intermediate and strong couplings,
we find that more of the heterogeneity in the delays is
associated with enhanced cluster synchronizability of the
network. Thus, the amount of heterogeneity can be used as
a tool to improve or reduce the cluster synchronizability of the
model networks [4,5] and can be used to understand versatile
cluster patterns observed in the real world network [23]. The

Gaussian distributed delays exhibit similar results as observed
for the odd-even delays displaying mixed clusters at weak,
intermediate, and strong couplings. All the numerical results
indicate that the heterogeneity in delays favor the SO mecha-
nism of synchronization for achieving a better synchrony in the
network as connections in the network increase. This is more
evident in the case of odd-odd heterogeneity, which advances
the ideal D clusters for a network having less connections and
manifests a transition to the SO cluster as the connections
are increased. Note that for these high average degrees all
the networks (except the complete bipartite networks) with
homogeneous or zero delay display the globally synchronized
state at strong enough coupling strength, while the networks
with heterogeneous delays yield the multicluster state, keep-
ing the SO mechanism responsible for the synchronization
intact.

Using the Lyapunov function analysis, we furnish the
argument that the heterogeneity in delays causes a different
coupling environment for nodes that are directly connected,
which for the strong coupling regime, where the coupling
term dominates over the local evolution, is responsible for
disrupting the global cluster. We further substantiate that for
the complete bipartite networks, at strong couplings, in the
presence of heterogeneity in delays, the combined effect of
the two postulates, (i) the destruction of the ideal D cluster
state and (ii) the possibility of SO synchronization, leads to the
formation of different cluster patterns such as mixed, dominant
D, dominant SO, and ideal SO.

To conclude, using extensive numerical simulations for
various model networks, accompanied with an analytical
understanding using the Lyapunov function for completely
bipartite networks, we demonstrate that, in the presence of
heterogeneity in delays, the mechanism for cluster synchro-
nization can be completely different from the homogeneous
delayed evolution. In the brain, the time of information
transmission lies in a range exhibiting a heterogeneity in the
time delay [20], and the results presented in this paper can
be used to gain insight into the synchronized activities of
such systems. Furthermore, the heterogeneous delays have
been shown to display regular chaotic patterns in brain
networks [42]. Our results may be further extended to study the
mechanism behind the origin of these patterns. Furthermore,
since our definition of phase synchronization is based on the
study of matching local maxima (minima) in the time evolution
of the coupled nodes, and recently local maxima (minima)
have been found useful in understanding the dynamical
behavior of the stock market [43,44], our work may be
further extended to investigate the cluster patterns in the stock
market.
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[43] A. Grönlund, II. Gu. Yi, and B. J. Kim, PLoS ONE 7, e33960
(2012).

[44] F. Garzarelli et al., Sci. Rep. 4, 4487 (2014).

042907-9

http://dx.doi.org/10.1038/20676
http://dx.doi.org/10.1038/20676
http://dx.doi.org/10.1038/20676
http://dx.doi.org/10.1038/20676
http://dx.doi.org/10.1038/nrn1650
http://dx.doi.org/10.1038/nrn1650
http://dx.doi.org/10.1038/nrn1650
http://dx.doi.org/10.1038/nrn1650
http://dx.doi.org/10.1103/PhysRevE.76.035202
http://dx.doi.org/10.1103/PhysRevE.76.035202
http://dx.doi.org/10.1103/PhysRevE.76.035202
http://dx.doi.org/10.1103/PhysRevE.76.035202
http://dx.doi.org/10.1209/0295-5075/93/66001
http://dx.doi.org/10.1209/0295-5075/93/66001
http://dx.doi.org/10.1209/0295-5075/93/66001
http://dx.doi.org/10.1209/0295-5075/93/66001
http://dx.doi.org/10.1038/nphys2535
http://dx.doi.org/10.1038/nphys2535
http://dx.doi.org/10.1038/nphys2535
http://dx.doi.org/10.1038/nphys2535
http://dx.doi.org/10.1103/PhysRevLett.90.014101
http://dx.doi.org/10.1103/PhysRevLett.90.014101
http://dx.doi.org/10.1103/PhysRevLett.90.014101
http://dx.doi.org/10.1103/PhysRevLett.90.014101
http://dx.doi.org/10.1103/PhysRevE.72.016211
http://dx.doi.org/10.1103/PhysRevE.72.016211
http://dx.doi.org/10.1103/PhysRevE.72.016211
http://dx.doi.org/10.1103/PhysRevE.72.016211
http://dx.doi.org/10.1103/PhysRevE.72.016212
http://dx.doi.org/10.1103/PhysRevE.72.016212
http://dx.doi.org/10.1103/PhysRevE.72.016212
http://dx.doi.org/10.1103/PhysRevE.72.016212
http://dx.doi.org/10.1103/PhysRevLett.92.144101
http://dx.doi.org/10.1103/PhysRevLett.92.144101
http://dx.doi.org/10.1103/PhysRevLett.92.144101
http://dx.doi.org/10.1103/PhysRevLett.92.144101
http://dx.doi.org/10.1137/060652531
http://dx.doi.org/10.1137/060652531
http://dx.doi.org/10.1137/060652531
http://dx.doi.org/10.1137/060652531
http://dx.doi.org/10.1007/s13370-011-0024-z
http://dx.doi.org/10.1007/s13370-011-0024-z
http://dx.doi.org/10.1007/s13370-011-0024-z
http://dx.doi.org/10.1007/s13370-011-0024-z
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1143/JPSJ.72.801
http://dx.doi.org/10.1143/JPSJ.72.801
http://dx.doi.org/10.1143/JPSJ.72.801
http://dx.doi.org/10.1143/JPSJ.72.801
http://dx.doi.org/10.1103/PhysRevE.86.016202
http://dx.doi.org/10.1103/PhysRevE.86.016202
http://dx.doi.org/10.1103/PhysRevE.86.016202
http://dx.doi.org/10.1103/PhysRevE.86.016202
http://dx.doi.org/10.1103/PhysRevE.87.030902
http://dx.doi.org/10.1103/PhysRevE.87.030902
http://dx.doi.org/10.1103/PhysRevE.87.030902
http://dx.doi.org/10.1103/PhysRevE.87.030902
http://dx.doi.org/10.1140/epjst/e2013-01891-2
http://dx.doi.org/10.1140/epjst/e2013-01891-2
http://dx.doi.org/10.1140/epjst/e2013-01891-2
http://dx.doi.org/10.1140/epjst/e2013-01891-2
http://dx.doi.org/10.1103/PhysRevLett.110.064104
http://dx.doi.org/10.1103/PhysRevLett.110.064104
http://dx.doi.org/10.1103/PhysRevLett.110.064104
http://dx.doi.org/10.1103/PhysRevLett.110.064104
http://dx.doi.org/10.1098/rsta.2009.0230
http://dx.doi.org/10.1098/rsta.2009.0230
http://dx.doi.org/10.1098/rsta.2009.0230
http://dx.doi.org/10.1098/rsta.2009.0230
http://dx.doi.org/10.1016/j.physleta.2008.08.043
http://dx.doi.org/10.1016/j.physleta.2008.08.043
http://dx.doi.org/10.1016/j.physleta.2008.08.043
http://dx.doi.org/10.1016/j.physleta.2008.08.043
http://dx.doi.org/10.1073/pnas.84.7.1896
http://dx.doi.org/10.1073/pnas.84.7.1896
http://dx.doi.org/10.1073/pnas.84.7.1896
http://dx.doi.org/10.1073/pnas.84.7.1896
http://dx.doi.org/10.1103/PhysRevE.57.6589
http://dx.doi.org/10.1103/PhysRevE.57.6589
http://dx.doi.org/10.1103/PhysRevE.57.6589
http://dx.doi.org/10.1103/PhysRevE.57.6589
http://dx.doi.org/10.1103/PhysRevE.70.041904
http://dx.doi.org/10.1103/PhysRevE.70.041904
http://dx.doi.org/10.1103/PhysRevE.70.041904
http://dx.doi.org/10.1103/PhysRevE.70.041904
http://dx.doi.org/10.1103/PhysRevE.75.065202
http://dx.doi.org/10.1103/PhysRevE.75.065202
http://dx.doi.org/10.1103/PhysRevE.75.065202
http://dx.doi.org/10.1103/PhysRevE.75.065202
http://dx.doi.org/10.1103/PhysRevE.77.057201
http://dx.doi.org/10.1103/PhysRevE.77.057201
http://dx.doi.org/10.1103/PhysRevE.77.057201
http://dx.doi.org/10.1103/PhysRevE.77.057201
http://dx.doi.org/10.1103/PhysRevE.81.036215
http://dx.doi.org/10.1103/PhysRevE.81.036215
http://dx.doi.org/10.1103/PhysRevE.81.036215
http://dx.doi.org/10.1103/PhysRevE.81.036215
http://dx.doi.org/10.1016/j.physleta.2010.10.044
http://dx.doi.org/10.1016/j.physleta.2010.10.044
http://dx.doi.org/10.1016/j.physleta.2010.10.044
http://dx.doi.org/10.1016/j.physleta.2010.10.044
http://dx.doi.org/10.1140/epjd/e2011-10370-7
http://dx.doi.org/10.1140/epjd/e2011-10370-7
http://dx.doi.org/10.1140/epjd/e2011-10370-7
http://dx.doi.org/10.1140/epjd/e2011-10370-7
http://dx.doi.org/10.1140/epjb/e2014-40985-7
http://dx.doi.org/10.1140/epjb/e2014-40985-7
http://dx.doi.org/10.1140/epjb/e2014-40985-7
http://dx.doi.org/10.1140/epjb/e2014-40985-7
http://dx.doi.org/10.1103/PhysRevE.88.040902
http://dx.doi.org/10.1103/PhysRevE.88.040902
http://dx.doi.org/10.1103/PhysRevE.88.040902
http://dx.doi.org/10.1103/PhysRevE.88.040902
http://dx.doi.org/10.1103/PhysRevLett.110.104102
http://dx.doi.org/10.1103/PhysRevLett.110.104102
http://dx.doi.org/10.1103/PhysRevLett.110.104102
http://dx.doi.org/10.1103/PhysRevLett.110.104102
http://dx.doi.org/10.1364/OL.29.001215
http://dx.doi.org/10.1364/OL.29.001215
http://dx.doi.org/10.1364/OL.29.001215
http://dx.doi.org/10.1364/OL.29.001215
http://dx.doi.org/10.1103/PhysRevE.77.056213
http://dx.doi.org/10.1103/PhysRevE.77.056213
http://dx.doi.org/10.1103/PhysRevE.77.056213
http://dx.doi.org/10.1103/PhysRevE.77.056213
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevLett.63.219
http://dx.doi.org/10.1103/PhysRevLett.63.219
http://dx.doi.org/10.1103/PhysRevLett.63.219
http://dx.doi.org/10.1103/PhysRevLett.63.219
http://dx.doi.org/10.1103/PhysRevLett.89.054101
http://dx.doi.org/10.1103/PhysRevLett.89.054101
http://dx.doi.org/10.1103/PhysRevLett.89.054101
http://dx.doi.org/10.1103/PhysRevLett.89.054101
http://dx.doi.org/10.1038/nphys2516
http://dx.doi.org/10.1038/nphys2516
http://dx.doi.org/10.1038/nphys2516
http://dx.doi.org/10.1038/nphys2516
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/j.physa.2012.07.055
http://dx.doi.org/10.1016/j.physa.2012.07.055
http://dx.doi.org/10.1016/j.physa.2012.07.055
http://dx.doi.org/10.1016/j.physa.2012.07.055
http://dx.doi.org/10.1103/PhysRevLett.81.3639
http://dx.doi.org/10.1103/PhysRevLett.81.3639
http://dx.doi.org/10.1103/PhysRevLett.81.3639
http://dx.doi.org/10.1103/PhysRevLett.81.3639
http://dx.doi.org/10.1016/j.physa.2004.08.044
http://dx.doi.org/10.1016/j.physa.2004.08.044
http://dx.doi.org/10.1016/j.physa.2004.08.044
http://dx.doi.org/10.1016/j.physa.2004.08.044
http://dx.doi.org/10.1103/PhysRevA.46.7387
http://dx.doi.org/10.1103/PhysRevA.46.7387
http://dx.doi.org/10.1103/PhysRevA.46.7387
http://dx.doi.org/10.1103/PhysRevA.46.7387
http://dx.doi.org/10.1209/0295-5075/99/40005
http://dx.doi.org/10.1209/0295-5075/99/40005
http://dx.doi.org/10.1209/0295-5075/99/40005
http://dx.doi.org/10.1209/0295-5075/99/40005
http://dx.doi.org/10.1016/0375-9601(94)90947-4
http://dx.doi.org/10.1016/0375-9601(94)90947-4
http://dx.doi.org/10.1016/0375-9601(94)90947-4
http://dx.doi.org/10.1016/0375-9601(94)90947-4
http://dx.doi.org/10.1103/PhysRevE.54.1346
http://dx.doi.org/10.1103/PhysRevE.54.1346
http://dx.doi.org/10.1103/PhysRevE.54.1346
http://dx.doi.org/10.1103/PhysRevE.54.1346
http://dx.doi.org/10.1063/1.4825095
http://dx.doi.org/10.1063/1.4825095
http://dx.doi.org/10.1063/1.4825095
http://dx.doi.org/10.1063/1.4825095
http://dx.doi.org/10.1103/PhysRevE.63.016210
http://dx.doi.org/10.1103/PhysRevE.63.016210
http://dx.doi.org/10.1103/PhysRevE.63.016210
http://dx.doi.org/10.1103/PhysRevE.63.016210
http://dx.doi.org/10.1016/0167-2789(82)90033-1
http://dx.doi.org/10.1016/0167-2789(82)90033-1
http://dx.doi.org/10.1016/0167-2789(82)90033-1
http://dx.doi.org/10.1016/0167-2789(82)90033-1
http://dx.doi.org/10.1103/PhysRevLett.94.134102
http://dx.doi.org/10.1103/PhysRevLett.94.134102
http://dx.doi.org/10.1103/PhysRevLett.94.134102
http://dx.doi.org/10.1103/PhysRevLett.94.134102
http://dx.doi.org/10.1038/srep01319
http://dx.doi.org/10.1038/srep01319
http://dx.doi.org/10.1038/srep01319
http://dx.doi.org/10.1038/srep01319
http://dx.doi.org/10.1371/journal.pone.0012166
http://dx.doi.org/10.1371/journal.pone.0012166
http://dx.doi.org/10.1371/journal.pone.0012166
http://dx.doi.org/10.1371/journal.pone.0012166
http://dx.doi.org/10.1007/BF01276421
http://dx.doi.org/10.1007/BF01276421
http://dx.doi.org/10.1007/BF01276421
http://dx.doi.org/10.1007/BF01276421
http://dx.doi.org/10.1371/journal.pone.0033960
http://dx.doi.org/10.1371/journal.pone.0033960
http://dx.doi.org/10.1371/journal.pone.0033960
http://dx.doi.org/10.1371/journal.pone.0033960
http://dx.doi.org/10.1038/srep04487
http://dx.doi.org/10.1038/srep04487
http://dx.doi.org/10.1038/srep04487
http://dx.doi.org/10.1038/srep04487



