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Influence of intrapulse Raman scattering on stationary pulses in the presence of linear and
nonlinear gain as well as spectral filtering
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We examine numerically the influence of intrapulse Raman scattering (IRS) on the stable stationary pulses
in the presence of constant linear and nonlinear gain as well as spectral filtering. Numerical results show that
the small change of the value of the parameter describing IRS leads to qualitatively different behavior of the
evolution of pulse amplitudes. We prove that the strong dependence of the pulse dynamics on the parameter
describing IRS is related to the existence of the Poincaré-Andronov-Hopf bifurcation and the appearance of the
unstable limit cycle.
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I. INTRODUCTION

As is well known, the complex cubic-quintic Ginzburg-
Landau equation (CCQGLE) has been used to describe a va-
riety of phenomena including second-order phase transitions,
superconductivity, superfluidity, Bose-Einstein condensation,
liquid crystals, and string theory [1,2]. In optics the CCQGLE
can model, for example, soliton transmission lines [3,4] as well
as passively-mode-locked laser systems [5,6]. The CCQGLE
has exact chirped solitary-wave solutions [7–10]. Numerical
solutions of the CCQGLE could be divided into two groups:
localized fixed-shape solutions and localized pulsating solu-
tions. Localized fixed-shape solutions are the stable stationary
pulses, the composite pulses, and the moving pulses [11].
Localized pulsating solutions can be plain pulsating, creeping,
snaking, and erupting solutions [12,13]. Chaotic pulsating
and period-doubling solutions were observed in [14] (for
reviews see [15]). An analysis of the observed solutions of the
CCQGLE using the variational method has been performed in
[16,17]. It was found that the corresponding Euler-Lagrange
equations have periodic, quasiperiodic, and chaotic attractors,
which have been related to numerically observed solutions of
the CCQGLE [16,17].

The influence of higher-order effects [the third order of
dispersion, intrapulse Raman scattering (IRS), and the self-
steeping effect (for detailed description of these effects see
[18–20])] on the fiber laser operation or, in other words,
the influence of higher-order effects on the stable stationary
solutions of the CCQGLE, has been studied in [21]. It was
shown that narrow-band filtering and nonlinear gain can be
used to control the self-frequency shift due to the IRS of
ultrashort optical solitons in fiber-optic systems [22]. The role
of nonlinear gain is to give an effective gain to the soliton and
suppression to the noise or to reduce the background instability
[22]. The existence of the exact chirped solitary solution of this
generalized CCQGLE that includes the higher-order effects
was reported in [23].

The influence of the different higher-order effects as well as
their different combinations on the dynamics of the localized
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pulsating solutions has been numerically studied (see [24,25]
and references therein). A strong impact of higher-order effects
on the localized pulsating solutions was found. In particular,
it was shown that any of the localized pulsating solutions
under the combined influence of all higher-order effects can
be transformed in fixed-shape solutions for a certain range of
parameter values [24].

In this paper we present a numerical investigation of the
influence of IRS on one of the localized solutions of the
CCQGLE, namely, the stable stationary pulses. The basic
CCQGLE of this paper [see Eq. (1)], which describes the
propagation of ultrashort optical pulses under the effect of
IRS in the presence of linear and nonlinear gain as well as
spectral filtering, is the model applied earlier in [22]. Our
aim is to examine numerically the influence of IRS on the
stable stationary pulses in the presence of constant linear
and nonlinear gain as well as spectral filtering. We have
found that a small change of the value of the parameter γ

leads to qualitatively different behavior of the evolution of
pulse amplitudes. We prove that the strong dependence of
the latter on the parameter γ is related to the existence of
the Poincaré-Andronov-Hopf bifurcation and the appearance
of the unstable limit cycle, which completely explains our
numerical findings.

The paper is organized as follows. The physical meaning
and applications of the generalized CCQGLE are presented in
Sec. II. The numerical results suggesting a strong dependence
on the parameter γ are presented in Sec. III. In Sec. IV a
nonlinear system of ordinary differential equations (ODEs) is
introduced by means of the method of conserved quantities.
In Sec. V we apply the bifurcation analysis to the nonlinear
system of ODEs. In Sec. VI we apply the results of the
analysis from Sec. V in order to establish the existence of
the Poincaré-Andronov-Hopf bifurcation and the appearance
of the unstable limit cycle. The agreement between theory and
numerical results is discussed in Sec. VII. We summarize in
Sec. VIII.

II. BASIC EQUATION

The propagation of ultrashort pulses in the presence of
spectral filtering, linear and nonlinear gain/loss, and IRS is
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described by the generalized CCQGLE [22]
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∂
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(|U |2),

(1)

where U is the normalized envelope of the electric field, x is
the normalized propagation distance, t is the retarded time, δ is
the linear gain or loss coefficient, β describes spectral filtering
(gain dispersion), ε is related to the nonlinear gain-absorption
process, and μ, if negative, accounts for the saturation of
the nonlinear gain. The last term in Eq. (1) describes IRS,
an important nonlinear physical effect that has to be taken
into account when femtosecond optical pulses propagate in
optical fibers. It is related to the first moment of the nonlinear
response function (the slope of the Raman gain spectrum)
and leads to different physical phenomena such as the soliton
self-frequency shift and breakup of the N -soliton bound states
(for a review see [18–20]).

Equation (1) has been used to model the solution of the
problem of linear-wave growth in bandwidth-limited amplified
soliton transmission systems [3,4]. In the context of solid
state lasers, Eq. (1) (μ = γ = 0) was proposed as a master
equation for a fast saturable absorber and additive pulse
mode locking [5] and later was used (γ = 0) as a model
for self-limited additive pulse mode locking [26]. It turned
out that Eq. (1) (μ = γ = 0) was also applicable as a master
equation for the mode-locked fiber lasers [27]. In addition,
the all-normal-dispersion passively-mode-locked fiber lasers
were successfully described by means of Eq. (1) (γ = 0)
[28–30]. Generally, the CCQGLE (γ = 0) has proved to be
a good model for the real mode-locked lasers (for a review see
[31–33]).

III. NUMERICAL RESULTS

As a result of intensive numerical investigation of the
CCQGLE, some areas in the space of physical parameters
δ, β, ε, and μ have been established in which stable localized
solutions of the CCQGLE exist [34,14,22]. It is believed that if
δ < 0, β > 0, and μ < 0 the background instability is avoided
[34,14,22]. Our calculations confirm these results, so we use
parameters that satisfy these conditions.

The numerical results for the solution of Eq. (1) presented
here have been obtained by means of the fourth-order Runge-
Kutta method in the interaction picture (RK4IP). The RK4IP
can generally be interpreted as the exponential Runge-Kutta
method applied to the solution of a parabolic partial differential
equation [35–39]. The method is with a fourth-order conver-
gence, which makes it a good alternative to the all-known
variants of the split-step Fourier method (SSFM). Moreover,
in some cases, the method is significantly more accurate
than the SSFM [36,37,39]. A comparison of performances
of the RK4IP and SSFM has been made for a number of
cases and a perfect match has been obtained. To verify our
numerical model, we have compared our results with those of
[24,40] obtained by means of the SSFM. Excellent agreement
has been established. The numerical parameters applied for

the numerical results presented here are the sampling rate
8192–16 384, the numerical time window 81.92–655.36, and
the propagation step 0.001. PRODUCT ORIGIN 8.5 has been
applied for the calculation of the average values of amplitudes
and frequencies.

As a representative example of our results we set
the parameters δ = −0.02, β = 0.05, ε = 0.1, and μ =
−0.02 and give the following values of γ : γ =
0.054 083 3,0.064 083 3,0.074 083 3 (The choice of these val-
ues of γ will become clear in Secs. V and VI). Equation
(1) has been solved with the initial condition U (0,t) =
η0sech(η0t) exp(−ik0t), where η0 and k0 are the initial ampli-
tude and initial frequency, respectively. The results obtained
for the evolution of pulse amplitudes during the propagation
are presented in Fig. 1.

Figure 1(a) shows numerically the appearance of a stable
stationary pulse with the average values of amplitude η̄ =
1.412 and frequency k̄ = −0.866. The results shown in
Fig. 1(a) have been extended by the numerical solution of
Eq. (1) with the same form of the initial condition but with
initial amplitudes in the range η0 ⊂ (1.043–2.037) and the
same initial frequency k0 = −0.8. In all cases behavior similar
to that shown in Fig. 1(a) has been observed, namely, after
some transition period in x the average values of η̄and k̄

asymptotically go to η̄ = 1.412 and k̄ = −0.866. (Note that
larger values of xmax up to 500 have been used without a
qualitative change of the results presented.) Thus, it is clear
that there is a stable attractor in the phase space of Eq. (1).

Figure 1(b) shows the unstable pulsating solution with
average values of the amplitude η̄ = 1.248 and frequency
k̄ = −0.801. Figure 1(c) numerically presents the pulse
destruction.

Comparing these three cases we clearly see that the small
change of the value of the parameter γ leads to qualitatively
different behavior of the evolution of pulse amplitudes. In
fact, under the increased value of γ we obtain the plain
pulsating solution. Note that in some respect this result is
just the opposite of the results reported in [24,25], where
the higher-order effects were found to transform the localized
pulsating solutions in fixed-shape solutions for some range of
parameter values. Such a strong dependence on the parameter
γ suggests the idea of a bifurcation dependence of γ . In what
follows we will prove the bifurcation type of the discussed
dependence and describe it qualitatively.

IV. DERIVATION OF THE ODE SYSTEM

For the analysis of Eq. (1) we apply the adiabatic per-
turbation method described in [18]. Considering terms on
the right-hand side of Eq. (1) of a small value, we can find
its solution as a perturbed soliton solution of the nonlinear
Schrödinger equation (NLSE) in the form

U (x,t) = η(x)sech{η(x)[t − τ (x)]} exp{−ik(x)t + iσ (x)},
(2)

where η(x) and k(x) are, respectively, the soliton am-
plitude and frequency [18]. In addition, d[τ (x)]/dx = −k

and d[σ (x)]/dx = 1
2 (η2 − κ2) are the pulse position and

pulse phase, respectively. Applying the adiabatic perturbation
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FIG. 1. Evolution of the pulse amplitude η(x) with distance
according to Eq. (1) with δ = −0.02, β = 0.05, ε = 0.1, and μ =
−0.02 for (a) γ = 0.054 083 3 and xmax = 300, with initial conditions
η0 = 1.25 and k0 = −0.8; (b) γ = 0.064 083 3, xmax = 300 with
initial conditions η0 = 1.25 and k0 = −0.8; and (c) γ = 0.074 083 3,
xmax = 80 with initial conditions η0 = 1.48 and k0 = −0.8.

method, we derive the equations for the evolution of the
first two conserved quantities of the NLSE [18], namely, the
total energy and the momentum (or the mean frequency),

i.e.,

C1 =
∫ +∞

−∞
|U (x,t)|2dt,

C2 = i

2

∫ +∞

−∞

(
U (x,t)

∂U ∗(x,t)

∂t
− U ∗(x,t)

∂U (x,t)

∂t

)
dt,

with x. Using the expressions of the conserved quantities
through the soliton amplitude and soliton frequency [18], we
obtain the following system of ODEs to describe the evolution
of the soliton amplitude and frequency:

dη

dx
= 2δη + 2

3
(2ε − β)η3 − 2βη k2 + 16

15
μη5,

(3)
dk

dx
= −4

3
β kη2 − 8

15
γ η4.

The system of ODEs (3) was derived by means of a
perturbed inverse scattering method [18] in [22]. It has the
equilibrium points

(ηEP,kEP) =
(

ηEP, − 2γ

5β
η2

EP

)
(4a)

where

ηEP =
√

A ±
√

A2 − B,
(4b)

kEP = −2γ

5β
η2

EP = −2γ

5β
[A ±

√
A2 − B],

A = 25β(β − 2ε)

80βμ − 24γ 2
,

(4c)

B = 75δβ

40βμ − 12γ 2
.

Depending on the values of A and B, there are two steady-
state solutions if

A >
√

B > 0 [case (i)] (5a)

and one steady-state solution if

B < 0 [case (ii)],
A = √

B > 0 [case (iii)],
B = 0, A > 0 [case (iv)].

(5b)

As we study the system of ODEs (3) for δ < 0, β > 0, and
μ < 0 and all of them are different from zero, cases (ii) and (iv)
are excluded from our consideration. Moreover, as we look for
the bifurcation behavior with respect to parameter γ for fixed
values of δ, β, ε, and μ, case (iii) should also be excluded.
Finally, in this work we will focus only on case (i).

V. BIFURCATION ANALYSIS OF THE ODE SYSTEM

In this section we analyze the behavior of the ODE system
(3). Its behavior determines the solution of the initial wave
equation (1). The system (3) depends on a large number of
parameters having a different range of variation. In further
analysis we will focus our attention on the parameter γ , which
is related to the effect of IRS. The presented results are ob-
tained using the Poincaré-Andronov-Hopf bifurcation analysis
[41–43], wherein γ is regarded as a bifurcation parameter.
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We find the Jacobian matrix of the ODE system (3):

J =
[

2δ + 2(2ε − β)η2 − 2β k2 + 16
3 μη4 −4β η k

− 8
3β η k − 32

15γ η3 − 4
3βη2

]
.

(6)

The eigenvalues of the matrix J are determined by the
characteristic equation

pA(λ) = λ2 − (trJ) λ + det J = 0. (7)

It is well known that a Poincaré-Andronov-Hopf bifurcation
arises in the case of complex conjugate eigenvalues. Having
this in mind, we can write the roots of Eq. (7) (or the
eigenvalues of the matrix J) in the following way:

λ 1 , 2 = 1
2 trJ ± i 1

2

√−� = α(γ ) ± iβ(γ ), (8)

where

� = �(γ ) = (trJ)2 − 4 det J. (9)

After long but straightforward computation we find

α(γ ) = 1

2
trJ = δ +

(
2ε − 5

3
β

)
η2

EP +
(

8

3
μ − 4

25

γ 2

β

)
η4

EP, (10)

β(γ ) = 1

2

√−� = 1

2

√
512

75
γ 2η6

EP −
[

2δ + 2

(
2ε − 1

3
β

)
η2

EP +
(

16

3
μ − 8

25

γ 2

β

)
η4

EP

] 2

, (11)

α′(γ ) = dα(γ )

dγ
=

(
2ε − 5

3
β

)
d(η2

EP)

dγ
+

(
16

3
μ − 8

25

γ 2

β

)
η2

EP
d (η2

EP)

dγ
− 8

25

γ

β
η4

EP, (12)

where

d
(
η2

EP

)
dγ

= A′ ± 2AA′ − B ′

2
√

A2 − B
,

A′ = dA

dγ
= 75βγ (β − 2ε)

4(10βμ − 3γ 2)2 ,

B ′ = dB

dγ
= 225βγ δ

2(10βμ − 3γ 2)2 .

The expressions for �, α(γ ), β(γ ), and α′(γ ) given here
depend on all parameters, but we assume that they are functions
of the parameter γ , as we want to study the dynamics of the
system (3) where the parameter γ varies. These expressions, as
well as the expressions for the equilibrium points, contain the
quantity ηEP. The subscript EP means that the corresponding
quantity is calculated for a given equilibrium point, which
has not been concretized until now. Note that in case (i),
which is defined by Eq. (5a), the quantity ηEP accepts two
values η+

EP and η−
EP, which correspond to the plus and minus

signs, respectively, in Eq. (4b). Hence, the system (3) has two
equilibrium points.

From the Poincaré-Andronov-Hopf bifurcation theory it
follows that the system (3) possesses a limit cycle only
in the case where the parameter γ takes the value γ0, for
which the following nonhyperbolicity condition (conjugate
pair of imaginary eigenvalues) and transversality condition
(the eigenvalues cross the imaginary axis with nonzero speed)
are satisfied, i.e.,

α(γ0) = 0, �(γ0) < 0, α′(γ0) �= 0. (13)

To find the value of γ0 we first choose an equilibrium point
that satisfies Eq. (5a) or case (i). Then we take the plus sign in
the formulas for ηEP and kEP given in Eq. (4b). The resulting
expressions for ηEP and kEP are imported into Eqs. (10)–(12).
The function α = α(γ ) given by Eqs. (10), (4a), and (4b)
defines a complicated (irrational one) dependence of α on the

parameter γ (more precisely on γ 2). In fact, α could take the
real and complex values. Depending on the fixed values of δ, β,
ε, and μ, the first of Eqs. (13) does not always have a solution.
Thus, fixing the parameters δ, β, ε, and μ, we could only build
numerically the graphs α = α(γ ) and � = �(γ ) for some
range of variation of γ in which α = α(γ ) and � = �(γ ) are
real functions and a solution for γ0 exists. In Fig. 2 we present
the graphs of α = α(γ ) and � = �(γ ) for the following values
of the parameters: δ = −0.02, β = 0.05, ε = 0.1, and μ =
−0.02 in the range of variation of γ ⊂ [0,0.08]. As we can see,
α = α(γ ) passes through zero at γ0 = 0.064 083 3, while � =
�(γ ) at this point is negative. For the value γ0 = 0.064 083 3
the derivative α′(γ0) = 2.7358 is different from zero. Thus,
γ0 = 0.064 083 3 turns out to be the bifurcation value of the
parameter γ for the Poincaré-Andronov-Hopf bifurcation.

If the system (3) allows a limit cycle, it is important to deter-
mine the stability of this limit cycle. The Poincaré-Andronov-
Hopf bifurcation theory gives an analytical expression that aids
in the determination of the stability of the arising limit cycle.
To obtain this expression it is necessary to put the system

0.00 0.02 0.04 0.06 0.08
0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Γ

Α
Γ Γ

FIG. 2. (Color online) Graphs of α = α(γ ) (solid line) and � =
�(γ ) (dashed line).
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(3) into a normal form. We do not describe this process; it
is shown in detail in [39]. We briefly describe the first two
steps, which represent the so-called center manifold reduction
of the system (3). First, we transform the regarded equilibrium
point of the system (3) to the origin. Then we perform a linear
transformation of the coordinates so that the linear part of
the system is put into a canonical Jordan form. After these
operations the system (3) takes the form[

ṗ

q̇

]
=

[
f (p,q,γ )
g(p,q,γ )

]

=
[
α(γ ) −β(γ )
β(γ ) α(γ )

] [
p

q

]
+

[
f1(p,q,γ )
g1(p,q,γ )

]
. (14)

Taking into account the last system, we define the quantity

a = 1

16
(fppp + fpqq + gppq + gqqq)

+ 1

16ω
[fpq(fpp + fqq) − gpq(gpp + gqq) − fppgpp

+ fqqgqq], (15)

where ω = β(γ0) and the values of the derivatives are evaluated
in the bifurcation point of the system (14), which is (p,q,γ ) =
(0 , 0 , γ0). Now we can state that the system (3) admits a limit
cycle in the case where not only conditions (13) are satisfied,
but the so-called genericity condition is also fulfilled, i.e., a �=
0. Moreover, when a < 0 the limit cycle is stable and when a >

0 it is unstable. Finally, we note that in Eq. (15) we can take the
derivatives of the functions f1 and g1 instead of the derivatives
of the functions f and g. This information is sufficient to
analyze the system (3) with respect to the Poincaré-Andronov-
Hopf bifurcation theory.

VI. NUMERICAL ANALYSIS OF THE ODE SYSTEM

Let us now study the ODE system (3) numerically by means
of a computer software system Wolfram Mathematica 8.0.
Remember that in all cases it is assumed that δ = −0.02,
β = 0.05, ε = 0.1, and μ = −0.02. The numerical study of
this system includes two groups of results. In the first case,

1.30 1.35 1.40 1.45
Amplitude,Η

0.85

0.80

0.75

Frequency,k

FIG. 3. (Color online) Phase portrait of the ODE system (3) for
δ = −0.02, β = 0.05, ε = 0.1, μ = −0.02, γ = 0.054 083 3, and
initial conditions η0 = 1.25 and k0 = −0.8 (marked with a small
circle) for xmax = 500, demonstrating the existence of the stable focal
point (marked with a large circle).

1.2490 1.2495 1.2500 1.2505 1.2510 1.2515
Amplitude,Η

0.8015

0.8010

0.8005

0.8000

Frequency,k

FIG. 4. (Color online) Phase portrait of the system of ODEs (3)
for δ = −0.02, β = 0.05, ε = 0.1, μ = −0.02, γ = 0.064 083 3, and
initial conditions η0 = 1.25 and k0 = −0.8 (marked with a small
circle) for xmax = 500, demonstrating the appearance of the limit
cycle. The fixed point is marked with a large circle.

we numerically build the phase portraits of the system (3)
where the parameter γ takes the values below, at, and above
the bifurcation value γ0 = 0.064 083 3. The second group of
results includes the numerical solution of the system (3) for
the cases considered in Fig. 1.

Case 1. The value of γ is below the bifurcation value γ =
0.054 083 3 < γ0. Here A = 1.248 33 and B = 0.998 668. The
fixed point (ηEP,kEP) = (1.412 96 , − 0.863 796) is a stable
focal point. The corresponding phase portrait is shown in
Fig. 3.

Case 2. The value of γ is equal to the bifurcation value γ =
0.064 083 3 = γ0. Here A = 1.050 07 and B = 0.840 054. The
fixed point is (ηEP,kEP) = (1.25 , − 0.801 041). The corre-
sponding phase portrait is shown in Fig. 4.

Further, we have calculated the expected period of the
limit cycle. As β(γ0) = 0.126 037, we expect the period to
be T ≈ 2π/β(γ0) ≈ 49.8518. The quantity a = 0.001 826 24
is positive, so we expect that the observed limit cycle is an
unstable one. This expectation has been proved by studying

0.95 1.00 1.05 1.10 1.15
Amplitude,Η

0.72

0.70

0.68

0.66

0.64

0.62

0.60
Frequency,k

FIG. 5. (Color online) Phase portrait of the ODE system (3) for
δ = −0.02, β = 0.05, ε = 0.1, μ = −0.02, γ = 0.074 083 3, and
initial conditions η0 = 1.09 and k0 = −0.7 (marked with a small
circle) for xmax = 120, demonstrating the existence of unstable focal
point (marked with a large circle).
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(x)

( 
 )

FIG. 6. Evolution of the pulse amplitude η(x) with δ =
−0.02, β = 0.05, ε = 0.1, and μ = −0.02 for γ = 0.054 083 3
and xmax = 300, with initial conditions η0 = 1.25 and k0 = −0.8.
The solid line denotes the numerical solution of the CCQGLE
(1) and the circles denote the numerical solution of the ODE
system (3).

the phase portrait for different values of the initial amplitude
and velocity.

Case 3. The value of γ is above the bifurcation value γ =
0.074 083 3 > γ0. Here A = 0.885 603 and B = 0.708 483.
The fixed point (ηEP,kEP) = (1.077 47 , − 0.688 051) is an
unstable focal point. The corresponding phase portrait is shown
in Fig. 5.

The considered increase of the value of the parameter γ

(γ = 0.054 083 3, 0.064 083 3, and 0.074 083 3) describes the
typical bifurcation behavior of the ODE system (3) regarding
this parameter. We start with the stable focal point with
γ = 0.054 083 3. By increasing the value of γ we arrive
at the bifurcation value γ0 = 0.064 083 3. According to the
Poincaré-Andronov-Hopf bifurcation theory, an unstable limit
cycle emerges. A further increase of γ to γ = 0.074 083 3
leads us to an unstable focal point.

The second group of results includes the numerical solution
of the ODE system (3) for the cases considered in Fig. 1. In
Fig. 6 we compare the results in Fig. 1(a) for the evolution
of the pulse amplitude η(x) with the results obtained by the
numerical solution of the CCQGLE (1).

Moreover, the ODE system (3) with the initial amplitudes in
the range η0 ⊂ (1.045–2.036) and initial frequency k0 = −0.8
has been solved and the results have been compared with
the results obtained by the numerical solution of the CCGLE
(1). Very good agreement of the results obtained by the two
methods has been established (as in Fig. 6). We can conclude
that these results clearly indicate the applicability of the ODE

system (3) for the description of Eq. (1) with the assumed
values of the parameters δ, β, ε, and μ.

VII. DISCUSSION

After showing the applicability of the ODE system (3)
for the description of numerical solutions of the Eq. (1), we
now discuss the results of Sec. III in view of the bifurcation
analysis performed in Secs. IV–VI. For the value of γ smaller
than the critical one γ = 0.054 083 3 < γ0, Fig. 1(a) presents
numerically the appearance of a stable stationary pulse with
average values of the amplitude η̄ = 1.412 and frequency
k̄ = −0.866. These values for the average quantities coincide
nicely with the values for the stable focal fixed point ηEP =
1.412 96 and kEP = −0.863 796, obtained in Sec. VI (case 1).

For the bifurcation value of γ = 0.064 083 3 = γ0, Fig. 1(b)
shows the unstable pulsating pulse propagation with average
values of amplitude η̄ = 1.248 and frequency k̄ = −0.801.
These values could be compared to the values of the fixed point
ηEP = 1.25 and kEP = −0.801 041 related to the appearance
of the unstable limit cycle discussed in Sec. VI (case 2).
We mention the very similar results for the period of the
amplitude fluctuation numerically observed in Fig. 1(b) and
the one calculated in Sec. VI (case 2).

For the value of γ larger than the critical one γ =
0.074 083 3 > γ0, Fig. 1(c) presents numerically destruction
of the pulse. Such behavior could be expected in view of the
unstable focal point obtained in Sec. VI (case 3).

We conclude that with the assumed values of the parameters
δ, β,ε, and μ the performed bifurcation analysis of the ODE
system (3) in Secs. IV–VI reveals and clarifies the observed
numerical solutions of Eq. (1).

VIII. CONCLUSION

We have numerically examined the influence of IRS on
the stable stationary pulses in the presence of constant linear
and nonlinear gain as well as spectral filtering. The numerical
results have shown that a small change of the value of
the parameter γ leads to qualitatively different behavior of
the evolution of pulse amplitudes. In particular, it has been
established that if γ is increased, the transition from a stable
stationary pulse to a plane pulsating solution is observed. Using
the first two conserved quantities of the NLSE, we have derived
the ODE system (3). The bifurcation analysis of the ODE
system (3) has proved that the strong dependence of the pulse
dynamics on the parameter γ is related to the existence of the
Poincaré-Andronov-Hopf bifurcation and the appearance of
an unstable limit cycle.

An interesting question remains for further analysis. Are
there regions in the parametric space for which stable limit
cycles appear? A similar question for an equation slightly
different from Eq. (1) was recently studied in [44,45].
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