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We present a family of exact solutions describing discrete solitary waves in a nonintegrable Fermi-Pasta-
Ulam chain. The family is sufficiently rich to cover the whole spectrum of known behaviors from delocalized
quasicontinuum waves moving with near-sonic velocities to highly localized anticontinuum excitations with only
one particle moving at a time.
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I. INTRODUCTION

Solitary waves in lattices, represented by homoclinic
traveling wave trajectories of discrete dynamical systems,
play a crucial role in many areas of science from condensed
matter theory to biophysics [1]. In integrable systems solitary
waves, known as solitons or quasiparticles, are understood
rather thoroughly, with Toda lattice being the most prominent
example that covers the whole range of possible behaviors
from weak quasicontinuum (QC) waves in almost harmonic
chains to strong anticontinuum (AC) waves in chains of rigid
disks [2]. However, quasiparticles in integrable systems do not
interact during collisions, which excludes, for instance, finite
thermal conductivity. Therefore integrable systems cannot be
used as a generic description of localized excitations, and the
challenge is to find a nonintegrable equivalent of the Toda
lattice allowing one to capture a similarly broad range of
behaviors.

Most of our theoretical knowledge about solitary waves
in nonintegrable systems comes from the study of various
quasicontinuum approximations which adequately describe
weak excitations in elastic lattices [3,4] and slow waves in
granular chains [5] but fail in a generic AC limit. Solitary
waves in general Fermi-Pasta-Ulam (FPU) lattices have been
studied mostly numerically [6] or using qualitative asymptotic
methods [7]. Some exact solutions were obtained for special
classes of potentials [8] which were too narrow to describe the
QC → AC crossover.

In this article we construct a family of exact solitary wave
solutions for a parametric nonintegrable FPU problem with
piecewise quadratic potential [9]. This class of potentials
can be viewed as an analytically transparent approximation
of general FPU potentials. We treat nonlinearity as inhomo-
geneity [10,11] and show that for this class of potentials the
problem of finding solitary wave solutions reduces to a linear
integral equation plus a nonlinear algebraic equation. We solve
the integral equation using the Wiener-Hopf technique and
express the solution as a combination of linear waves whose
phase speeds are equal to the speed of the solitary wave.
Truncations of the ensuing series, involving progressively
decreasing wavelengths, generate converging approximations
that are fully explicit.

The importance of the obtained family of solutions is
clear from the fact that it can be used as a nonintegrable

interpolant between two integrable limits: weak Korteweg-de
Vries (KdV) type QC solitary waves [12,13] and high-energy
strongly discrete AC solitary waves [14,15]. Our numerical
results indicate that the members of the crossover family
exhibit (weakly) inelastic interactions and that their stability
is controlled by the sign of the derivative of the energy-
velocity relation. We also show that the simplest long-wave
truncation of the obtained series provides a much better overall
quasicontinuum approximation of the discrete solution than
the conventional quasicontinuum theories based on either
Taylor [16] or Padé [17,18] approximations.

The remainder of the article is organized as follows.
In Sec. II we formulate the problem and introduce the
piecewise quadratic potential. The main ideas involved in the
construction of the solitary wave solutions are presented in
Sec. III, where we also briefly discuss some numerical results
on stability and collision of the solitary waves. In Sec. IV
we compare the simplest long-wave approximation of the
constructed solution to the more conventional quasicontinuum
models and discuss the low-energy KdV-type limit. The
strongly discrete AC limit is presented in Sec. V. Section VI
summarizes our findings. The two appendices contain the
results of a more technical nature, including the details of
the derivation of the solitary wave solution (Appendix A) and
numerical study of its stability (Appendix B).

II. PROBLEM FORMULATION

The dimensionless energy of the FPU chain can be
written as

H =
∞∑

j=−∞

[
1

2
u̇2

j + φ(uj − uj−1)

]
, (1)

where uj (t) is the displacement of a mass point and φ(w) is
the interaction potential. In strain variables yj = uj − uj−1 the
traveling wave solution moving with velocity V has the form
yj (t) = w(x), where x = j − V t . The function w(x) satisfies

V 2w′′ = f [w(x + 1)] − 2f [w(x)] + f [w(x − 1)], (2)

where f (w) = φ′(w). Solitary waves are selected by the
conditions at infinity: w(x) → 0 at |x| → ∞.

The main idea of our approximation is to replace the
general potential φ(w) by a piecewise quadratic function with
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FIG. 1. (a) Bilinear approximation
(bold curve) of a generic smooth
force-strain relation (dashed curve).
The inset shows a schematic structure of
the solitary wave. (b) The structure of
nonzero roots of L(k) = 0 (gray circles)
and G(k) = 0 (black circles) at V = 3 and
α = 16. The simplest approximation with
n = 1 includes the roots ±γ1 and λ±

1 located
within the strip |Rek| < l1 marked by the
dashed lines. The next approximation with
n = 3 also includes the roots ±γ2,3 and λ±

2,3.

continuous bilinear derivative

f (w) =
{
w, w � wc,

α(w − wc) + wc, w � wc.
(3)

In view of the invariance w(x) → −w(x) under f (w) →
−f (−w), it suffices to consider the case α > 1, as in Fig. 1(a).
One can show that the velocity of the solitary wave must be
within the range 1 < V <

√
α.

III. SOLITARY WAVE SOLUTION

Due to the linearity of f (w) at w �= wc the solution of
our boundary value problem can be written as a sum of plane
waves with phase velocities equal to the velocity of the solitary
wave. The corresponding wave numbers can be found from the
characteristic equations

G(k) = 4α sin2 k

2
− V 2k2 = 0

at |x| < z, where we assume w(x) > wc, and

L(k) = 4 sin2 k

2
− V 2k2 = 0

at |x| > z, where w(x) < wc. To find the amplitudes of the
plane waves we write (cf. [19,20])

f [w(x)] = w(x) + A

∫ z

−z

θ (s − x)h(s)ds, (4)

where θ (x) is the Heaviside function. We assume that the
unknown function h(x) representing the “inhomogeneity” is

odd and that it vanishes at |x| > z. It is also normalized via∫ z

0
h(s)ds = 1. (5)

The ensuing linear problem for the inhomogeneous mate-
rial (4) yields the following relation between the Fourier
transform H (k) = ∫ z

−z
h(s) exp(−iks)ds of h(x) and w(x):

w(x) = A

2πi(α − 1)

∫ ∞

−∞

(
G(k)

L(k)
− 1

)
H (k)

k
eikxdk. (6)

Using Eq. (6) together with the consistency condition Ah(x) =
(1 − α)w′(x) for |x| < z that follows from Eqs. (3) and (4),
we obtain the linear integral equation for h(x):

(α − 1)
∫ z

−z

q(x − s)h(s)ds + h(x) = 0, |x| < z, (7)

where

q(x) = 1

2π (α − 1)

∫ ∞

−∞

(
G(k)

L(k)
− 1

)
eikxdk.

The remaining nonlinear problem is to find z ensuring the
existence of a nontrivial solution of Eq. (7). Once z and
h(x) are known, one can recover w(x) from Eq. (6), with
the multiplicative constant A determined from w(z) = wc.

An explicit solution of Eq. (7) can be constructed using a
variant of the Wiener-Hopf method [21–23]. Let λ+

i and λ−
i

be the roots of L(k) = 0 with positive and negative imaginary
parts, respectively, and let γi denote the roots of G(k) = 0 with
positive real parts [24]. Suppose that n roots γi and n roots λ+

i

are located within a strip |Rek| < ln; such n is necessarily odd,
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FIG. 2. (a) Several finite-root approximations of the solitary wave at V = 3, wc = 1, and α = 16 compared with the numerical solution of
Eqs. (6) and (7). (b) The enlarged view of the solutions inside the rectangle in panel (a) around w = wc.
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FIG. 3. (a) The energy of the solitary wave H
as a function of V at α = 4 and wc = 1. The
dashed portion of the curve corresponds to unstable
waves. Circles and crosses mark velocities at which
the solitary wave solutions were found stable and
unstable, respectively, in the numerical simulations
of Eq. (B1) with initial conditions (B2) or (B3). (b)
Snapshots of two stable solitary waves before the
collision (upper panel: t = 30, V = 1.6) and after the
collision (lower panel: t = 90, Ṽ ≈ 1.6).

and due to the symmetry of the roots the total number of the
nonzero roots in the nth strip is 4n [see Fig. 1(b)]. Then

w(x) =
{

a0 + ∑∞
j=1 aj cos(γjx), |x| � z,∑∞

j=1 bj exp(iλ+
j |x|), |x| � z,

(8)

where the coefficients aj and bj derived in Appendix A are
given by Eqs. (A13)–(A15) as limits of expressions involving
the roots of characteristic equations inside the nth strip. The
derivation also yields the location of the transition point as
z = limn→∞ zn, where zn is a solution of the algebraic equation
detMn(zn) = 0, with

(Mn)jm = γ m−1
j

(
(−1)m−1eiγj zn∏n

i=1(γj − λ−
i )

+ e−iγj zn∏n
i=1(γj − λ+

i )

)
. (9)

Using the normalization condition (5), we obtain a unique
approximation wn(x) of the solution (8) for each n; see Ap-
pendix A for details. The convergence of these approximations
is illustrated in Fig. 2 (see also Fig. 8). The “corners” at
x = ±zn are the artifacts of the series truncation and disappear
in the limit n → ∞.

Stability and collision properties of the obtained solitary
waves were studied numerically; see Appendix B for details.
Our results, summarized in Fig. 3(a), suggest that the instability
condition is dH/dV < 0, which is known as the Vakhitov-
Kolokolov criterion [25,26]. In view of the nonintegrable
nature of the system it is not surprising that a typical collision
test for two stable solitary waves shows (slightly) inelastic
interaction [see Fig. 3(b)]. Additional stability and collision
results are presented in Appendix B.

IV. QUASICONTINUUM APPROXIMATIONS

Consider now in more detail the simplest approximate
solution wn(x) corresponding to n = 1. It involves four
nonzero roots of the characteristic equations that are closest to
k = 0 and therefore qualifies as a QC approximation. Letting
±γ1 = ±r and λ±

1 = ±ip [see Fig. 1(b)], where r and p

are positive real numbers, we obtain the following explicit
representation:

w(x) = wc

α − V 2

(
α − 1 + (V 2 − 1)

√
p2 + r2

p
cos rx

)
,

(10)

for |x| < z, and

w(x) = wce
−p(|x|−z), (11)

for |x| > z, with

z = 1

r

(
π − arctan

r

p

)
. (12)

The typical dependence of p and r on V is shown in Fig. 4.
It is instructive to compare the underlying nonlocal QC

theory with the more conventional local QC theories based
on either Taylor or Padé approximations of the operator
�(k) = 4 sin2(k/2)/k2 involved in the Fourier representation
of Eq. (2) [16,27]. The first-order Taylor expansion of �(k)
near k = 0 leads to the Boussinesq-type equation

utt = {f (uξ ) + (1/12)[f (uξ )]ξξ }ξ (13)

for the displacement field u(ξ,t). The solitary wave so-
lution of Eq. (13) is given again by Eqs. (10)–(12) but
with r =

√
12(1 − V 2/α) and p =

√
12(V 2 − 1). Similarly,

using the simplest Padé approximation [17,18], we obtain
the equation

utt − (1/12)uξξtt = [f (uξ )]ξ , (14)

whose solitary wave solution is still Eqs. (10)–(12) but now
with r =

√
12(αV −2 − 1) and p =

√
12(1 − V −2). All three

QC theories have the same structure of the roots of the
characteristic equations and therefore solutions differ only
through the way r and p depend on V .

From Fig. 4 we see that the Taylor approximation (dashed
curve) underestimates r and overestimates p, while the Padé
approximation (dotted curve) overestimates r and underes-
timates p. A comparison of the velocity dependence of the
transition point location z and amplitude of the solitary wave
w(0) generated by the three QC theories and by numerical so-
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FIG. 4. The velocity dependence of the magnitudes r and p of
real and purely imaginary roots of the characteristic equations in the
discrete model (solid lines) and in Taylor (dashed) and Padé (dotted)
quasicontinuum approximations. Here α = 16.
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FIG. 5. The velocity dependence of (a) z and (b) amplitude of the solitary wave profiles [numerical solution of Eqs. (6) and (7), solid
curves] compared with n = 1 (gray curves), Taylor (dashed curves), and Padé (dotted curves) QC approximations. Inset in panel (b) shows the
enlarged view of the region inside the rectangle. Here α = 16 and wc = 1.

lution of Eqs. (6) and (7) suggests that in the crossover regimes
the n = 1 truncation provides a better overall approximation
of the discrete problem than the conventional QC theories (see
Figs. 5 and 6). The reason is that in these regimes the first roots
of the characteristic equations are not close to the origin and are
therefore captured rather poorly by the low-order asymptotic
expansions around k = 0.

Both conventional QC theories work better at V � 1 and
V � √

α but these two sonic limits are not physically relevant.
Indeed, a realistic FPU potential with superquadratic growth
would produce solutions with w(0) → 0 for weak near-sonic
waves instead of our w(0) → wc and V → ∞ for strong waves
instead of our V → √

α. A similar artifact is the divergence of
the energy of solitary waves in both sonic limits [see Fig. 3(a)],
and therefore the bilinear model with fixed wc and α adequately
describes only the intermediate (crossover) velocity range
between QC and AC limits. The limiting regimes themselves
can be captured through the appropriate double limits.

To reproduce the QC regime with V � 1, the bilinear
approximation needs to be adjusted so that α → 1 and
wc → 0 as V → 1. Consider, for example, a generic smooth
interaction force satisfying f (0) = 0, f ′(0) = f ′′(0) = 1 and
construct a V -dependent bilinear approximation of f (w) with
α ≈ 2V 2 − 1 and wc ≈ V 2 − 1. It is then easy to show that
when V � 1 the first roots approach the origin, and the solitary
wave solution in all three QC theories converge to the same
KdV-type soliton.

w

x-2 -1 1 2
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2.0

FIG. 6. Solitary wave profile at V = 2.5 [numerical solution of
Eqs. (6) and (7), solid curve] compared with n = 1 (gray curve),
Taylor (dashed curve), and Padé (dotted curve) QC approximations.
Here α = 16 and wc = 1.

V. THE ANTICONTINUUM LIMIT

The AC limit can be captured if f (w) has a vertical
asymptote, as in the hard-core models, so that the velocity
V can grow to infinity. In this case we need to assume
that α → ∞ and V → ∞ while V/

√
α → 0. Indeed, when

α > V 2 � 1, the Fourier transform of q(x) has the asymptotic
representation q̂(k) ≈ −4 sin2(k/2)/(k2V 2). For sufficiently
small finite a = V/

√
2(α − 1) the integral equation (7) can

be then approximated by

− α − 1

V 2

∫ z

−z

(1 − |x − s|)h(s)ds + h(x) = 0, |x| < z.

(15)

Differentiating Eq. (15) twice, we obtain

h′′ + h

a2
= 0,

which yields

h(x) = 1

a
sin

x

a
, |x| < z, z = πa

2
. (16)

Next, we observe that Eq. (6) can be written as

w(x) = A

∫ z

−z

ρ(x − s)h(s)ds, (17)
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FIG. 7. The asymptotic, almost triangular, profiles of the strong
solitary waves at large V and small a.
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where

ρ(x) =
∫ x

−∞
q(s)ds ≈ − 1

V 2

∫ x

−∞
(1 − |s|)θ (1 − |s|)ds

at V � 1. Substituting this and Eq. (16) into Eq. (17) and using w(πa/2) = wc to find A, we obtain

w(x) ≈ wc

1 − πa
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a cos x
a

+ 1 − πa
2 , |x| � πa

2 ,

1 − |x|, πa
2 � |x| � 1 − πa

2 ,

1
2

(
1 + πa

2 − |x| − a cos |x|−1
a

)
, 1 − πa

2 � |x| � 1 + πa
2 ,

0, |x| � 1 + πa
2 .

(18)

In the limit a → 0 the profile w(x) approaches the localized
“triangular” shape:

w∞(x) = wc(1 − |x|)θ (1 − |x|). (19)

Equation (19) describes the AC regime when only one particle
moves at a time [15]. The convergence to this limiting case is
illustrated in Fig. 7. It is clear that neither of our three QC
theories is applicable in this limit since it implies infinite values
for either r (Padé approximation) or p (Taylor and n = 1
models).

VI. CONCLUSIONS

We constructed a nonintegrable analog of the Toda family
of solitary waves linking two universal asymptotic limits:
weak delocalized QC solitary waves moving with near-sonic
velocities and strong highly localized AC solitary waves where
only one particle moves at a time. This new family of exact
solutions of the FPU system makes fully explicit the contribu-
tions due to progressively smaller characteristic wavelengths.
The solutions were obtained by a nontrivial application of the
“bilinearization” method which can be viewed as an extension
of the classical “linearization” approach. We showed that
even the simplest truncation of the obtained series solution,
accounting for the longest wave lengths, provides a better
overall QC approximation of solitary waves than any of the
conventional low-order QC models.

We provided numerical evidence of stability for some of the
constructed solitary wave solutions. To access linear stability
more systematically we need to consider small perturbations
in

yj (t) = w(x) + eλV t�(x)

and linearize the governing equation (B1) around the solitary
wave w(x). Observing that f ′[w(x)] = 1 + (α − 1)θ (z − |x|),
where z is known for given V , we obtain the following
eigenvalue problem (quadratic in λ):

V 2[�′′(x) − 2λ�′(x) + λ2�(x)] − �(x + 1) + 2�(x)

− �(x − 1) − (α − 1)[θ (z − |x + 1|)�(x + 1)

− 2θ (z − |x|)�(x) + θ (z − |x − 1|)�(x − 1)] = 0.

(20)

Here �(x) tends to zero at infinity. In view of the Hamiltonian
nature of the problem, a solitary wave is linearly stable if all
eigenvalues λ are purely imaginary and semisimple. Study
of the spectrum of the advance-delay differential operator in
Eq. (20) will be part of the future work.
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APPENDIX A: DERIVATION OF THE SOLUTION

To solve the linear integral equation (7), we follow [21–23]
and extend the left-hand side of the equation to the entire real
axis:

(α − 1)
∫ z

−z

q(x − s)h(s)ds + h(x)

= ψ−(x − z) + ψ+(x + z), −∞ < x < ∞.

Here ψ±(x) are some unknown functions satisfying ψ−(x) ≡
0 for x < 0 and ψ+(x) ≡ 0 for x > 0. Taking the Fourier
transform of both sides, we obtain

G(k)

L(k)
H (k) = eikz
̂+(k) + e−ikz
̂−(k), (A1)

where 
̂±(k) are Fourier transforms of ψ±(x). Using an infinite
product representation [28] of the ratio G(k)/L(k) in the
generic case when all nonzero roots of L(k) = 0 and G(k) = 0
are simple [29], we have

α − V 2

1 − V 2

∏∞
i=1 1 − k2

γ 2
i∏∞

i=1

(
1 − k

λ+
i

)(
1 − k

λ−
i

)H (k)

= eikz
̂+(k) + e−ikz
̂−(k). (A2)

If only finitely many roots ±γi λ±
i , i = 1, . . . ,n, located within

some strip |Rek| < ln are included, Eq. (A2) is approximated
by

∏n
i=1

(
k2 − γ 2

i

)
∏n

i=1(k − λ+
i )

∏n
i=1(k − λ−

i )
Hn(k)

= eikzn

(n)
+ (k) + e−ikzn


(n)
− (k), (A3)

where Hn(k) and zn approximate H (k) and z, respectively,
and



(n)
± (k) = V 2 − 1

α − V 2

n∏
i=1

|γi |2
|λ+

i |2 
̂±(k). (A4)
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An analytic continuation argument [22,23] then shows
that

Hn(k) =
{ n∑

m=1

[
(−1)m−1

n∏
i=1

(k − λ+
i )eikzn

+
n∏

i=1

(k − λ−
i )e−ikzn

]
c(n)
m km−1

}/ n∏
i=1

(
k2 − γ 2

i

)
,

where we took into account the symmetry of the roots about
the real and imaginary axes.

To determine the unknown coefficients c(n)
m , we observe that

as a Fourier transform of an L2 function, the function Hn(k)
must be entire, which means that all roots of its denominator
are also the roots of the numerator. This yields the following
linear system for the coefficients c(n)

m :

n∑
m=1

(Mn)jm(zn)c(n)
m = 0, j = 1, . . . ,n, (A5)

where (Mn)jm(zn) are given by Eq. (9). The system of
linear equations (A5) has a nontrivial solution if and only
if the determinant of the n × n matrix Mn(zn) with the
entries (Mn)jm(zn) is zero. Therefore we obtain the algebraic
equation

detMn(zn) = 0, (A6)

allowing one to find zn. Once zn is found, we can solve
Eq. (A5) for c(n)

m , which are determined up to an arbitrary
multiplicative constant. We can then compute Hn(k), which
after some algebra reduces to [22]

Hn(k) = i

n∑
j=1

∏n
i=1(γj − λ−

i )

γj

∏n
i=1, i �=j

(
γ 2

j − γ 2
i

) n∑
m=1

c(n)
m γ m−1

j

×e−iγj zn

(
sin[(k + γj )z]

k + γj

− sin[(k − γj )z]

k − γj

)
, (A7)

where we used the symmetry of the roots. This yields

hn(x) =
n∑

j=1

sin(γjx)e−iγj zn
∏n

i=1(γj − λ−
i )

γj

∏n
i=1, i �=j

(
γ 2

j − γ 2
i

) n∑
m=1

c(n)
m γ m−1

j .

(A8)

The normalization condition
∫ zn

0 hn(x)dx = 1 then selects a
unique set of coefficients c(n)

m and yields the approximate
solution hn(x) of the integral equation. The exact solution
of Eq. (7) and the value of z are obtained in the limit n → ∞.

We now show how the knowledge of hn(x) can be used
to recover the strain field wn(x). Substituting into Eq. (6)
the truncated approximation of G(k)H (k)/L(k) that includes
only the first 4n roots and recalling Eqs. (A3) and (A4), we
obtain

wn(x) = An

2πi(α − 1)

α − V 2

1 − V 2

( n∏
i=1

|γi |
)−2

×
(

n∏
i=1

λ+
i

∫
�

∑n
m=1(−1)m−1c(n)

m km−1

k
∏n

i=1

(
1 − k

λ−
i

) eik(x+zn)dk

+
n∏

i=1

λ−
i

∫
�

∑n
m=1 c(n)

m km−1

k
∏n+

i=1

(
1 − k

λ+
i

)eik(x−zn)dk

)

+ An

α − 1

∫ zn

x

hn(x)dx. (A9)

Here the contour � goes along the real line everywhere except
a small neighborhood of k = 0, where it goes above the origin
in order to resolve the simple pole at k = 0. In addition to this
singularity on the real axis, the first integrand has simple poles
at k = λ−

i in the lower half Imk < 0 of the complex plane, and
the second integrand has simple poles at k = λ+

i in the upper
half-plane Imk > 0. Applying the residue theorem, recalling
Eq. (A8) and using wn(±zn) = wc to determine An, we
obtain

wn(x) = wc

⎛
⎜⎝1 − V 2 − 1

c
(n)
1 (α − V 2)

n∑
j=1

∏n
i=1

(
1 − γj

λ−
i

)
∏n

i=1, i �=j

(
1 − γ 2

j

γ 2
i

)

×e−iγj zn

n∑
m=1

c(n)
m γ m−1

j [cos(γjx) − cos(γjzn)]

⎞
⎟⎠ ,

(A10)

for |x| < zn, and

wn(x) = wc

c
(n)
1

n∑
j=1

∑n
m=1 c(n)

m (λ+
j )m−1

∏n
i=1, i �=j

(
1 − λ+

j

λ+
i

)eiλ+
j (|x|−zn), (A11)

for |x| > zn. The continuity at x = ±zn is automatically
ensured by the fact that the sum of residues of the first integrand
of Eq. (A9) at x = −zn and the second integrand at x = zn at
all poles equals zero, meaning that

c
(n)
1 −

n∑
j=1

∑n
m=1 c(n)

m (λ+
j )m−1

∏n
i=1, i �=j

(
1 − λ+

j

λ+
i

) = 0.

Equations (A8) and (A10) together with the constraint∫ zn

0 hn(x)dx = 1 yield an explicit formula for the amplitude
of the solitary wave:

wn(0) = wc

[
1 + V 2 − 1

α − V 2

( n∏
i=1

|γi |
)2(

c
(n)
1

n∏
i=1

λ−
i

)−1]
.

(A12)

The expressions (A10) and (A11), with coefficients c(n)
m ,

m = 1, . . . ,n, solving the linear system (A5), and with zn

satisfying the nonlinear equation (A6), furnish an approximate
solution of the problems (2) and (3). In the limit n → ∞ we
obtain the exact solution (8) with

a0 = wc

⎛
⎜⎝1 + V 2 − 1

α − V 2
lim

n→∞
1

c
(n)
1

n∑
j=1

∏n
i=1

(
1 − γj

λ−
i

)
∏n

i=1, i �=j

(
1 − γ 2

j

γ 2
i

)

×e−iγj zn

n∑
m=1

c(n)
m γ m−1

j cos(γjzn)

⎞
⎟⎠ , (A13)
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FIG. 8. The errors due to finite truncation of the series at α = 16 and wc = 1. Here wn(0) and zn were obtained from Eqs. (A12) and (A6),
respectively, and the reference values w(0) and z were computed numerically using trapezoidal approximation of Eqs. (7) and (17).

aj = −wc

V 2 − 1

α − V 2
lim

n→∞
1

c
(n)
1

∏n
i=1

(
1 − γj

λ−
i

)
∏n

i=1, i �=j

(
1 − γ 2

j

γ 2
i

)
×e−iγj zn

n∑
m=1

c(n)
m γ m−1

j , (A14)

and

bj = wc lim
n→∞

e−iλ+
j zn

c
(n)
1

∑n
m=1 c(n)

m (λ+
j )m−1

∏n
i=1, i �=j

(
1 − λ+

j

λ+
i

) . (A15)

Numerical results shown in Figs. 2 and 8 illustrate convergence
to the exact solution.

APPENDIX B: NUMERICAL EVIDENCE OF STABILITY
FOR SOME OF THE SOLITARY WAVE SOLUTIONS

To study the stability of the obtained solitary wave solutions
we consider the initial value problem for the original discrete
system

ÿj = f (yj+1) − 2f (yj ) + f (yj−1) (B1)

with zero boundary conditions.
The first type of initial conditions was constructed from

the solitary wave solutions yj (t) = w(x) and x = j − V t

computed numerically at a given V :

yj (0) = w(j − j0), ẏj (0) = −V w′(j − j0), (B2)

where we set j0 = 100. We found that at 1 < V < Vcr, where
Vcr depends on α (e.g., Vcr ≈ 1.05 at α = 4), the amplitude of
the initial perturbation decreases with time and at large times
the strain localizes in the first linear regime (yj < wc). At
Vcr < V <

√
α in Eq. (B2) the numerical solution converges

to a steadily propagating solitary wave. We found that the
velocities, amplitudes, and values of z of the attracting
solitary waves were very close to the ones in the initial
conditions, suggesting stability of the corresponding traveling
wave solutions. The results are presented by black circles in
Fig. 9.

To probe stability of the solitary waves in a larger domain,
we also considered the second type of initial conditions with
a localized initial profile

yj (0) = A0 exp

(
−1

2

∣∣∣∣j − M

2

∣∣∣∣
2)

, ẏj (0) = 0, (B3)

where the amplitude A0 served as a parameter. At sufficiently
small amplitudes (e.g., A0 < 1.94 at α = 4), the long-time
behavior corresponded again to a solution of the linear equation
with yj < wc. For larger A0 the initial data evolved into two
solitary waves propagating towards different ends of the chain.
A broad agreement in the whole range of velocities Vcr < V <√

α can be seen on the amplitude-velocity relation shown in
Fig. 9, where the results of numerical solutions with initial
conditions (B3) are presented by gray circles.

In both sets of simulations the threshold velocity V = Vcr

at which the stability changes corresponds to the minimum of
the energy (1) as the function of V , with solitary waves stable
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FIG. 9. (a) Amplitude-velocity relation and (b) the corresponding z(V ) at α = 4 and wc = 1 obtained from the semianalytical solution
(solid curves) and numerical simulation of Eq. (B1) with initial conditions (B2) (black circles) and (B3) (gray circles).
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FIG. 10. Numerical simulations showing
collision of the solitary waves: (a) a faster (V1 =
1.8) and a slower (V2 = 1.2) wave moving to the
right before the collision (t = 30); (b) after the
collision (t = 145) the faster wave propagates
with Ṽ1 ≈ 1.8, while the slower wave slows
down to Ṽ2 ≈ 1.1. The corresponding amplitude
and z values are shown by circles in panels (c)
and (d), respectively.

along the increasing portion of H(V ) (V > Vcr) and unstable
otherwise [see Fig. 3(a)].

We now report the results of two collision tests. In the
first test, illustrated in Fig. 3(b), two solitary waves traveling
towards each other with the speed V = 1.6 were chosen as
the initial condition. After the collision both waves continued
propagating with only slightly lower velocities and with
some oscillations developing in the wake. This numerical
experiment shows that the collision is not fully elastic, as
expected since the system is nonintegrable. In the second test
the initial conditions involved two waves moving in the same

direction but with different velocities, a faster wave, with
V1 = 1.8, behind, and a slower wave, with V2 = 1.2, ahead
[see Fig. 10(a)]. In this case after the faster wave overtook
the slower one, it continued propagating with almost the same
speed as before, while the slower wave’s velocity decreased
to Ṽ2 ≈ 1.1 and a dispersive wave developed behind it, as
can be seen in Fig. 10(b). Once again, the collision was not
completely elastic even though solitary wave profiles have
been rebuilt after the collision. The values of amplitude and
z for the two collision experiments are shown in Figs. 10(c)
and 10(d).
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