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Sound synchronization of bubble trains in a viscous fluid: Experiment and modeling
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We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid
under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between
successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude
(A), the height (H ) of the solution above the top of the nozzle, and three values of the sound frequency (fs).
Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues
(frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental
results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model
for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.
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I. INTRODUCTION

Synchronization is ubiquitous in nature [1]. It has been
observed in biological processes [2], such as ecological sys-
tems [3], postural control [4], and cardiorespiratory system in
humans [5], coupled neurons [6,7] and neuron networks [8]. In
complex networks, synchronization may appear as a combined
effect of the dynamics of the nodes, their interactions, and the
topological connecting structure of the network [9,10].

Gas-liquid reactors have usually multiorifices or nozzles in
the same plenum, where air bubbles interact in a complex way
producing synchronous behaviors of the bubbling [11–14].
In Ref. [15], Snabre and Magnifotcham studied the effect
of adding an independent bubble stream aside a previously
ongoing one. They showed that the ongoing bubble stream
rising velocity is reduced as the airflow of the added nozzle
increases, and that the bubble streams attract each other,
causing a small deviation of the bubble paths from the
vertical. It was shown that synchronization depends on the
distance between the orifices [12]. Synchronization and also
bifurcations were shown in Ref. [14] to depend on the values
of the airflow rates for the two orifices and the altitude of
the liquid column [14]. This experimental observation was
shown to be a direct consequence of the fact that the coupling
between the two bubble trains is mediated by a change in
the equilibrium pressure of the bubble proportional to the
velocities of the bubbles in each train [16]. In Ref. [13],
two synchronized modes were found. One for low and
another for high airflow regimes, with nonperiodic behavior
(intermittence) for moderate regimes.

Synchronization can also be the result of an external force
being applied into a network or a self-sustained oscillator.
Periodic perturbations applied to chaotic arrays [17] induce
phase synchrony between the nodes, creating a physical
media that allows information from the stimulus to propagate.
That provides a simple explanation for how information can
be transmitted in networks. Perturbing a nonlinear system
by a periodic resonant signal has since long being a good
strategy to increase the dimension of a system to study its
bifurcations induced by resonances [18], such as a torus
breakdown [19,20], Arnold tongues [21,24], or chaotic phase
synchronization [25,27]. It is also a simple strategy to

study how a nonlinear system responds to complex periodic
perturbations [28], or how it adapts its behavior having in mind
potential technological applications where chaos needs to be
suppressed [29–31] or induced [30,32].

In a previous experiment, see Ref. [33,34], about the
dynamics of bubble formation under the effect of a periodic
external signal, it has been shown that the amplitude of the
sound waves was predominant in the appearance of limit
cycles, flip bifurcation, chaos, and 1:1 frequency locking,
when the frequency of the wave is equal to the inverse of
the average period of the bubbling [33,34]. In Ref. [35],
a methodological model based on two coupled circle maps
could describe surprisingly well the behaviors experimentally
obtained. This result showed evidences that this system could
be described by a low-dimensional model. A more realistic
still low-dimensional model based on an integrate-and-fire
dynamics with a sinusoidal baseline was shown in Ref. [36]
to reproduce remarkably well the long-time behavior of the
instant of the bubble detachment.

Our interest in this work is to report the scenario for
the onset of synchronization in the bubble formation under
the influence of a periodic external signal, and propose a
mathematical model for it. We will focus our attention in two
phenomena: frequency locking and phase synchronization.
Our parameters of interest are the airflow Q, the sound wave
amplitude A, and the fluid height H above the top nozzle. For
a weak input signal (low A) we observe (periodic) frequency
locking, a phenomenon characterized by a bubbling frequency
that is a submultiple of the sound frequency [34–36]. For
sufficiently strong input signal we observe (chaotic) phase
synchronization, when the difference between the phases of
the air bubbling and the external perturbation is bounded.
This scenario is similar to the one reported in Ref. [37]
for a self-excited oscillator with a double-well potential
perturbed by a periodic signal. The action of the sound
wave in the bubbling formation was modeled by introducing,
in the realistic gas-liquid model proposed in Ref. [38], an
equilibrium pressure [16] that is modulated by a cosine wave
of amplitude A. Numerical results from this model have
reproduced remarkably well all the main results observed
experimentally.

1539-3755/2014/90(4)/042902(8) 042902-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.042902


PEREIRA, BAPTISTA, AND SARTORELLI PHYSICAL REVIEW E 90, 042902 (2014)

FIG. 1. (Color online) Schematic drawing of the experimental
apparatus. The geometrical parameters are: Nozzle length h = 1.0
cm and radius r0 = 1.1 mm; VM = 10 ml is the syringe chamber
volume; L = 30 cm and VL = 4.2 ml, respectively, are the length
and the volume of the hose that connects the air flow control to
the chamber. The zoomed view shows details of bubble profile. H

represents the viscous fluid height above the top of the nozzle and
for H = 4, 8.5, 13 cm we have measured the time delay between
successive bubbles having the airflow Q as a parameter control in
forward/backward sweepings.

II. EXPERIMENTAL APPARATUS
AND TIME-SERIES MEASUREMENTS

In Fig. 1 is shown the diagram of the experimental
apparatus. It consists of an acrylic transparent cylindrical
container of 10 cm diameter which is partially filled with a
glycerol and water solution (75%–25%), of density ρ = 1.21
g/ml, kinematic viscosity ν = 0.30 cm2/s, and interface
surface tension σ = 67 dyn/cm. The bubbles are generated at
4.5 cm above the bottom of the solution container by injecting
air through a nozzle, which is the tip of a hypodermic syringe,
without needle, with a channel of length 10 mm and internal
radius 1.1 mm. The nozzle is connected to an air injecting
system, with its airflow rate Q controlled by a proportional
solenoid valve driven by a PID controller [33–35,39] and
measured with a flow meter in ml/min.

The time series of time intervals Tn (in seconds) between
successive bubbles are obtained by detecting in a resistor the
beginning of the 5 V voltage pulses induced by the scattering
of a laser beam (placed a little above the nozzle), focused in a
photodiode which is in series with the resistor.

The mean time bubble formation and bubbling frequency
(in bubbles/s) are respectively defined by

Tb = 1

N

N∑

n=1

Tn, fb = 1

Tb

, (1)

where N > 100 bubbles. We applied a sound wave with
frequency fs tuned above the air column. The boundary
conditions on the air-fluid interface shows that a small fraction

of the incident wave is refracted to the solution, that is,
Ar ≈ 0.0006Ai (see Ref. [36]), still carrying enough energy
to interfere significantly with the air bubble dynamics. We
have constructed parameter spaces (Q,A), in which the two
parameter controls are the air flow Q and the sound wave
amplitude A, measured at the generator output, in arbitrary
units (Ai ∝ A). For fixed values of A we obtained time series
Tn by varying the air flow Q in steps of 2 ml/min. The time
series of Tn and the values of Q were collected by a data
acquisition system composed by an analog to digital converter
(ADCs) of 16 bits at 250 ksamples/s measuring the signals
simultaneously.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Frequency locking

When bubbling is periodic we have that Tn+P = Tn, where
P ∈ N is the discrete period, which is equal to the number
of bubbles within one cycle. Additionally, Ti+2 = Ti . The
bubbling for period 1 is characterized by a constant value
of the Tn (so, Ti+1 = Ti). Period 2 is characterized by a shorter
time-interval Ti followed by a longer time-interval Ti+1. An
illustration of the bubbling behavior can be seen in Fig. 2.
See Supplemental Material for a video showing the bubbling
behavior for period 1 and period 2 [40]. The time of the
complete cycle, that is, the period Tcc in unit of time is given
by

Tcc =
P∑

i=1

Ti � PTb. (2)

FIG. 2. Snapshots of bubbling for Q = 126 ml/min. In (a) period
P = 1 without sound and in (b) of period P = 2 for A = 5. See
Supplemental Material for a video showing changing in the bubbling
behavior from period 1 to period 2 [40].
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Frequency locking between the sound wave and periodic
bubbling happens when the ratio between their frequencies
(in Hz) is a rational number:

fcc

fs

= Ts

Tcc

= Ts

PTb

= N1

N2
, (3)

where fcc = 1/Tcc and fs is the frequency of the sound wave.
Using that fb = 1

Tb
from Eqs. (1), and since P,N1,N2 ∈ N, we

also must have that

fb

fs

= p

q
, (4)

p = PN1,q = N2 ∈ N. In practice, to verify frequency lock-
ing, we consider that Eq. (4) is valid if

∣∣∣∣
fb

fs

− p

q

∣∣∣∣ � ε, (5)

where ε is of the order of ε � 2 × 10−3, a value determined
by observing how much | fb

fs
− p

q
| is different from zero, in

situations that the bifurcation diagrams of Figs. 3 and 4 indicate
the existence of a periodic behavior.

FIG. 3. (Color online) Experimental bifurcation diagrams Tn vs
Q, for fs = 128 Hz and H = 8.5 cm, obtained by increasing the air
flow, in empty light gray circles (green) and decreasing the airflow Q,
in full dark gray points (magenta) for A = 4.0 (top panel), A = 4.2
(middle panel), and A = 4.4 (bottom panel). The black full line in the
top panel represents the bifurcation diagram of a period-1 orbit for
no sound amplitude (A = 0). Frequency lockings p : q = fb : fs are
pointed out, 25.4/128 = 1 : 5, 21.33/128 = 1 : 6, and 18.28/128 =
1 : 7.

FIG. 4. (Color online) Experimental bifurcation diagrams Tn vs
Q, for fs = 128 Hz and H = 8.5 cm, obtained by increasing the air
flow, in empty light gray circles (green) and decreasing the airflow Q,
in full dark gray points (magenta) for A = 4.6 (top panel), A = 4.8
(middle panel), and A = 5.0 (bottom panel). The black full line in
the top panel represents the bifurcation diagram of a period-1 orbit
for no sound amplitude (A = 0). Frequency lockings 25.4/128 =
1 : 5, 21.33/128 = 1 : 6, and 18.28/128 = 1 : 7 are indicated by the
arrows.

To construct bifurcation diagrams Tn vs Q, we increase
the air flow in the interval [40 180] ml/min, in steps of
2 ml/min, having the amplitude of sound A as a fixed
parameter. Therefore, we collect data for 71 values of the
airflow. We initially set up the air flow in Q = 40 ml/min and
apply no sound wave (A = 0). Under these initial conditions,
the bubbling presents a stable period-1 behavior. Once that
period 1 is achieved, the sound amplifier is turned on at a
fixed amplitude, and the data acquisition starts for 71 values of
increasing Q, until it reaches the maximum value, and another
71 values of decreasing Q, until it reaches the minimum
value. In Figs. 3 and 4 we show such diagrams Tn vs Q with
H = 8.5 cm and fs = 128 Hz, for different values of the sound
amplitude A = 4.0, 4.2, 4.4, 4.6, 4.8, and 5.0 (arb. units). Each
bifurcation diagram was obtained first increasing the air flow
(empty light gray circles—green online) and after decreasing
the air flow (full dark gray point—magenta online). Many
coexistence of attractors can be identified by the hysteresis.
These diagrams show different dynamical behaviors, a variety
of bifurcations, crisis, coexistence of attractors, chaotic, and
periodic bubbling.

In Fig. 3, for values of Q larger than Q ≈ 115 ml/min, we
observe frequency locking fb/fs = 25.4/128 = 1 : 5 related
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FIG. 5. (Color online) Experimental parameter spaces of period-
icity for H = 8.5 cm, fs = 128 Hz. The different gray level (colored
online) regions with different textures show the periodicity P de-
tected. The regions representing parameters of time series with period
higher than 7 or not well specified periodicity are shown in white.
The black circles correspond to the point (Q,A) = (92 ml/min, 5),
and the crosses (blue) to the point (Q,A)= (150 ml/min, 7).

to a period P = 1 for all three values of A. Frequency
lockings fb/fs = 21.33/128 = 1 : 6 are clearly observed in
the intervals, [60 70] ml/min and [100 115] ml/min, related to
periodic bubbling of periods P = 1 and P = 2. For A = 4.2
and A = 4.4 frequency lockings fb/fs = 18.28/128 = 1 : 7
related to period P = 1 around to Q ≈ 80 ml/min and related
to P = 1 and P = 2 in the interval [42 47] ml/min. In
Fig. 4 we have similar bifurcation diagrams and frequency
lockings, fb/fs = 25.4/128 = 1 : 5 for P = 1 and P = 2
periodic behavior cases.

For a global view of the periodic behaviors of this system,
we constructed a parameter space (Q,A) of periodicity for
H = 8.5 cm shown in Fig. 5. We consider 50 values of A, and
for each value of A, we detect the period P of the bubbling

for 71 time series, each for a different value of Q. The airflow
Q is varied in the interval [40 180] ml/min, by increasing the
airflow and after decreasing it, with steps of 2 ml/min, and
the sound amplitude is varied in the interval [0.2 10.0], with
steps of 0.2. The attractors periodicity P , for every temporal
series, was obtained when |Tn+P − Tn| � 0.2 ms is satisfied
for every n = 1, 2, 3, . . . , N . To every period, from P = 1
up to P = 7, we attributed a gray level (color online) and
a texture as shown in Fig. 5. Within an Arnold tongue, by
increasing the value of A, maintaining Q constant, one sees
a period doubling bifurcation, where full light gray (yellow
online) represents parameters for which P = 1, slashed dark
gray (magenta online) represents parameters for which P = 2.
Periods bigger than 7 or not well defined, as it happens in the
case of chaotic bubbling regimes, were plotted with white
color. The colored points in the parameter spaces represent
parameters for which the time intervals between bubbling is
periodic and, in addition, there is frequency locking between
the air bubbling and the sound wave, i.e., these areas represent
the Arnold tongues of frequency locking. In both parameter
spaces shown in Fig. 5, the black empty circles at the point
(Q,A) = (92 ml/min, 5) and crosses at (Q,A) = (150 ml/min,
7) are out of any Arnold tongue of frequency locking, meaning
that for these parameters the bubbling is neither periodic nor
Eq. (4) can be verified. As we shall see in the next section, for
these parameters the time intervals for the bubbling is chaotic
and there is phase synchronization between the air bubbles and
the sound wave.

B. Phase synchronization

To have a global picture of the types of behaviors as shown
in Fig. 5, we have built parameter spaces (Q,A) whose color
describes the p : q mode of phase synchronization, defined
as in the following. First we need to define the two phases
involved. At each launching of a bubble, its phase grows by 2π ,
so at the time tk = ∑k

n=1 Tn the phase is given by θb(tk) = 2πk,
while the phase of the sound wave is given by θs(tk) = 2πfstk .
To measure phase synchronization, we used the generalized
phase difference [1]:

φp,q(t) = pθs(t) − qθb(t), (6)

where we considered the smallest (p,q) such that the absolute
value of the phase difference is bounded, i.e.,

|φp,q | � K. (7)

When φp,q � K , and K is a finite quantity such that K �
ε, where ε � 2 × 10−3, the system is in a p : q phase
synchronization. Notice that when a system has quantities that
satisfy Eq. (4), they must also satisfy Eq. (7) (see Ref. [41]).
In other words, if a system presents frequency locking [so the
motion is periodic and Eq. (4) is satisfied], these quantities
must also satisfy Eq. (7), and therefore the system presents
phase synchronization and Eq. (7) is satisfied. On the other
hand, satisfying Eq. (7) does not guarantee the existence of
frequency locking, since the existence of a periodic motion
cannot be stated, unless |φp,q | = 0.

In Fig. 6 we show experimental parameter spaces of phase
synchronization, where we show by color code and different
textures the values of p and q that not only minimize φp,q but
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FIG. 6. (Color online) Experimental parameter space of synchro-
nization: (a) H = 4.0 cm, fs = 120 Hz, (b) H = 13.0 cm, fs =
139 Hz.

also satisfy inequality in (7). The two H values considered,
H = 4 cm and H = 13 cm, correspond to the lower and
higher bounding values within which we can obtain data with
a small signal/noise relation. The Arnold tongues of phase
synchronization [defined by Eq. (7)] are represented by colors
and texture, showing a strong dependence on H .

With the same data of Fig. 5 for H = 8.5 cm, the
corresponding parameter spaces of phase synchronization
obtained with Eqs. (6) and (7) are shown in Fig. 7. Now
we can see that the empty black circle (Q,A) = (92 ml/min,
5) and cross (Q,A) = (150 ml/min, 7) are inside of Arnold
tongues of phase synchronization. By comparison with the
respective parameter space of periodicity in Fig. 5, we
conclude that for these points we are observing an aperiodic
oscillation, an indication of chaotic phase synchronization.
To confirm this assumption, we construct the first return
maps of these two time series shown in Fig. 8(a). These
maps have a topology (see Ref. [33,34]) that provides all

FIG. 7. (Color online) Experimental parameter spaces of syn-
chronization for H = 8.5 cm and fs = 128 Hz. The black empty
circles correspond to the point (Q,A) = (92 ml/min, 5), and the
crosses (blue) to the point (Q,A) = (150 ml/min, 7). (a) Increasing
the airflow and (b) decreasing the airflow. It is possible to see a
sequence of Arnold tongues appearing with a ratio p/q respecting a
Farey tree, where the Arnold tongue 2 : 11 appears in between two
Arnold tongues, one with 1 : 5 and another with 1 : 6, and the Arnold
tongue 3 : 16 appears in between one with 2 : 11 and another with
1 : 5. Also the Arnold tongue 2 : 13 appears in between one with 1 : 7
and another with 1 : 6.

conditions for chaos: unstable periodic orbits, transitivity,
mixing, and sensibility to initial conditions. For the case
of (Q,A) = (92 ml/min, 5) (black circles) the experimental
bubbling frequency is fb = 21.34 bubbles/s since fs = 128
Hz, then fs/fb = 6. For (Q,A) = (150 ml/min, 7), in light
gray (green online) the experimental bubbling frequency is
fb = 25.595 bubbles/s then fs/fb = 5, implying 1 : 6 and
1 : 5 chaotic phase synchronizations. Another evidence that
these are indeed cases of chaotic phase synchronization (and
not of frequency locking), in addition to verifying Eq. (7), is
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FIG. 8. (Color online) H = 8.5 cm and fs = 128 Hz, in (a)
the chaotic first return maps Tn+1 vs Tn. Black dots are obtained
for (Q,A) = (92 ml/min, 5) and fb = 21.34 bubbles/s. Gray dots
(green) are obtained for (Q,A) = (150 ml/min, 7) and fb = 25.595
bubbles/s. In (b) the plots of phase difference |φp,q (t)| side by side
corresponding to chaotic synchronizations 1 : 5 in gray (green) and
1 : 6 in black. The dashed horizontal lines correspond to the bound
max(p,q)/(2π ) for synchronization.

that φp,q(t) > ε as shown in Fig. 8(b). Therefore, a periodic
attractor within the region of the frequency locking Arnold
tongue bifurcates into a chaotic one producing chaotic phase
synchronization.

IV. MODELING

We adapted a model presented in Ref. [38] to simulate the
effect of the sound wave signal into the bubble dynamics.

We consider a single bubble being formed with a volume
V (z), with z(t) being the bubble size in the vertical direction,
measured from the top of the nozzle as shown in a zoomed
view in Fig. 1:

ṗ = 1

Vo

[RT Q − pV̇ (z)],

(8)

z̈ = 1

a(z)
|[p − pe(z)] − b(z)ż − c(z)ż2|,

where R, T , and Vo = VM + VL = 14.2 ml are constants; and
V (z), a(z), b(z), and c(z) are functions related with the flow
regime and depend on the geometrical parameters h, L, Vo, and
r0 of the system, see the Appendix of Ref. [38] for details. The
dynamic variables are the pressure inside the syringe chamber
p, z, and ż. pe(z) is the equilibrium pressure, which is the
sum of the hydrostatic pressure and the surface tension in the
interface air/solution. The instants of the bubble detachments

are given by an equilibrium formula when the upward force
(buoyancy) is equal to the downward forces (surface tension
and viscous drag). The interaction between the bubble and
the sound wave was modeled by perturbing the equilibrium
pressure pe with a resonant sound wave:

ps
e = pe + As cos(2πfst), (9)

where As and fs = 128 Hz are, respectively, the amplitude and
the frequency of the perturbation. To detect synchronization
between the perturbing wave and the bubbles, we consider time
series numerically obtained for the instants of detachment of
the bubbles.

The parameter space of phase synchronization is shown in
Fig. 9, obtained by verifying Eq. (7), for the lowest values

FIG. 9. (Color online) Simulated parameter space of phase syn-
chronization [Eq. (7)] fs = 128 Hz. The black empty circles are
the point (Q,As) = (102.4 ml/min, 30 Pa), and the crosses (blue)
correspond to (Q,As) = (129 ml/min, 32 Pa), whose time series are
examples of chaotic phase synchronization. Sequences of Arnold
tongues respecting the Farey tree can also be observed, as observed
experimentally.
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FIG. 10. (Color online) For fs = 128 Hz. In (a) the simulated
chaotic attractors for (Q,A) = (102.4 ml/min, 30 Pa), fb = 21.333
bubbles/s in black dots; and for (Q,A) = (129 ml/min, 30 Pa),
fb = 25.60 bubbles/s in gray dots (green). In (b) the plots of
phase difference |φp,q (t)| side by side corresponding to chaotic
synchronizations 1 : 5 in gray (green) and 1 : 6 in black. The
dashed horizontal lines correspond to the bound max(p,q)/(2π ) for
synchronization.

of p and q, by decreasing (a) and increasing (b) the airflow.
Notice that we observe the same p,q Arnold tongues obtained

experimentally (p : q = 1 : 5,1 : 6,1 : 7,1 : 8,1 : 9,2 : 11,2 :
13). In this numerical simulations, the higher-order Arnold
tongues, appearing in between the main ones (forming a
Farey tree), are better recognized. The black and the light
gray points correspond to the points (Q,As) = (102.4 ml/min,
30 Pa) and (Q,As) = (129 ml/min, 32 Pa), respectively,
where we observe chaotic phase synchronization with the
chaotic attractors similar to the experimental ones, as shown
in Fig. 10(a). The positiveness of |φp,q |, another evidence for
chaotic phase synchronization, is shown in Fig. 10(b).

V. CONCLUSIONS

We showed experimentally that air bubbles expelled from
a nozzle immersed in a viscous fluid can be both frequency
locked and phase synchronized with the external sound wave.
We observed coexistence of attractors through hysteresis by
increasing the airflow Q followed by a decreasing of it. Such
complex behavior and many modes of synchronization were
shown to depend on the air flows, the height (H ) of the solution
above the top of the nozzle, and the amplitude of the sound
wave. Chaotic phase synchronization appears in the top region
of the Arnold tongues that describe periodic frequency locking.
Therefore, a periodic attractor bifurcates into a chaotic one
producing phase synchronization. The experimental results
were reproduced by numerical simulations of a single model
for a bubble growing that interacts with a fluid whose
movement is being disturbed by a sound wave, a phenomenon
that was modeled by changing the equilibrium pressure
parametrically with a cosine wave. This model, despite being
very simple, can capture the main characteristics of the dy-
namics of formation of air bubbles under an external resonant
perturbation.
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